EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 8, No. 3, 2015, 417-430 ISSN 1307-5543 – www.ejpam.com

Classical 2-Absorbing Submodules of Modules over Commutative Rings

Hojjat Mostafanasab^{1,*}, Ünsal Tekir² and Kürşat Hakan Oral³

¹ Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran

² Department of Mathematics, Marmara University, Ziverbey, Goztepe, Istanbul 34722, Turkey

³ Department of Mathematics, Yildiz Technical University, Davutpasa Campus, Esenler, Istanbul, Turkey

Abstract. In this article, all rings are commutative with nonzero identity. Let *M* be an *R*-module. A proper submodule *N* of *M* is called a *classical prime submodule*, if for each $m \in M$ and elements $a, b \in R$, $abm \in N$ implies that $am \in N$ or $bm \in N$. We introduce the concept of "classical 2-absorbing submodules" as a generalization of "classical prime submodules". We say that a proper submodule *N* of *M* is a *classical 2-absorbing submodule* if whenever $a, b, c \in R$ and $m \in M$ with $abcm \in N$, then $abm \in N$ or $acm \in N$ or $bcm \in N$.

2010 Mathematics Subject Classifications: 13A15, 13C99, 13F05

Key Words and Phrases: Classical prime submodule, Classical 2-absorbing submodule

1. Introduction

Throughout this paper, we assume that all rings are commutative with $1 \neq 0$. Let *R* be a commutative ring and *M* be an *R*-module. A proper submodule *N* of *M* is said to be a *prime submodule*, if for each element $a \in R$ and $m \in M$, $am \in N$ implies that $m \in N$ or $a \in (N :_R M) = \{r \in R \mid rM \subseteq N\}$. A proper submodule *N* of *M* is called a *classical prime submodule*, if for each $m \in M$ and $a, b \in R$, $abm \in N$ implies that $am \in N$ or $bm \in N$. This notion of classical prime submodules has been extensively studied by Behboodi in [9, 10] (see also, [11], in which, the notion of "weakly prime submodules" is investigated). For more information on weakly prime submodules, the reader is referred to [3, 4, 12].

Badawi gave a generalization of prime ideals in [5] and said such ideals 2-absorbing ideals. A proper ideal *I* of *R* is a 2-absorbing ideal of *R* if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. He proved that *I* is a 2-absorbing ideal of *R* if and only if

http://www.ejpam.com

© 2015 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: h.mostafanasab@gmail.com (H. Mostafanasab), utekir@marmara.edu.tr (Ü. Tekir), khoral@yildiz.edu.tr (K. Hakan Oral)

whenever I_1 , I_2 , I_3 are ideals of R with $I_1I_2I_3 \subseteq I$, then $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq I$ or $I_2I_3 \subseteq I$. Anderson and Badawi [2] generalized the notion of 2-absorbing ideals to n-absorbing ideals. A proper ideal I of R is called an n-absorbing (resp. a strongly n-absorbing) ideal if whenever $x_1 \cdots x_{n+1} \in I$ for $x_1, \ldots, x_{n+1} \in R$ (resp. $I_1 \ldots I_{n+1} \subseteq I$ for ideals I_1, \ldots, I_{n+1} of R), then there are n of the x_i 's (resp. n of the I_i 's) whose product is in I. The reader is referred to [6–8] for more concepts related to 2-absorbing ideals. Yousefian Darani and Soheilnia in [13] extended 2-absorbing ideals to 2-absorbing submodules. A proper submodule N of M is called a 2-absorbing submodule of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$. Generally, a proper submodule N of M is called an n-absorbing submodule if whenever $a_1 \ldots a_n m \in N$ for $a_1, \ldots a_n \in R$ and $m \in M$, then either $a_1 \ldots a_n \in (N :_R M)$ or there are n-1 of a_i 's whose product with m is in N, see [14]. Several authors investigated properties of 2-absorbing submodules, for example [15].

In this paper we introduce the definition of classical 2-absorbing submodules. A proper submodule N of an R-module M is called *classical 2-absorbing submodule* if whenever $a, b, c \in R$ and $m \in M$ with $abcm \in N$, then $abm \in N$ or $acm \in N$ or $bcm \in N$. Clearly, every classical prime submodule is a classical 2-absorbing submodule. We show that every Noetherian R-module M contains a finite number of minimal classical 2-absorbing submodules (Theorem 3). Further, we give the relationship between classical 2-absorbing submodules, classical prime submodules and 2-absorbing submodules (Proposition 2, Proposition 7). Moreover, we characterize classical 2-absorbing submodules in (Theorem 2, Theorem 4). In (Theorem 7, Theorem 8) we investigate classical 2-absorbing submodules of a finite direct product of modules.

2. Characterizations of Classical 2-Absorbing Submodules

First of all we give a module which has no classical 2-absorbing submodule.

Example 1. Let p be a fixed prime integer and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Then

$$E(p) := \left\{ \alpha \in \mathbb{Q}/\mathbb{Z} \mid \alpha = \frac{r}{p^n} + \mathbb{Z} \text{ for some } r \in \mathbb{Z} \text{ and } n \in \mathbb{N}_0 \right\}$$

is a nonzero submodule of the \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} . For each $t \in \mathbb{N}_0$, set

$$G_t := \left\{ \alpha \in \mathbb{Q}/\mathbb{Z} \mid \alpha = \frac{r}{p^t} + \mathbb{Z} \text{ for some } r \in \mathbb{Z} \right\}.$$

Notice that for each $t \in \mathbb{N}_0$, G_t is a submodule of E(p) generated by $\frac{1}{p^t} + \mathbb{Z}$ for each $t \in \mathbb{N}_0$. Each proper submodule of E(p) is equal to G_i for some $i \in \mathbb{N}_0$ (see, [17, Example 7.10]). However, no G_t is a classical 2-absorbing submodule of E(p). Indeed, $\frac{1}{p^{t+3}} + \mathbb{Z} \in E(p)$. Then $p^3(\frac{1}{p^{t+3}} + \mathbb{Z}) = \frac{1}{p^t} + \mathbb{Z} \in G_t$ but $p^2(\frac{1}{p^{t+3}} + \mathbb{Z}) = \frac{1}{p^{t+1}} + \mathbb{Z} \notin G_t$.

Theorem 1. Let $f : M \to M'$ be an epimorphism of *R*-modules.

(i) If N' is a classical 2-absorbing submodule of M', then $f^{-1}(N')$ is a classical 2-absorbing submodule of M.

(ii) If N is a classical 2-absorbing submodule of M containing Ker(f), then f(N) is a classical 2-absorbing submodule of M'.

Proof. (*i*) Since *f* is epimorphism, $f^{-1}(N')$ is a proper submodule of *M*. Let *a*, *b*, *c* \in *R* and $m \in M$ such that $abcm \in f^{-1}(N')$. Then $abcf(m) \in N'$. Hence $abf(m) \in N'$ or $acf(m) \in N'$ or $bcf(m) \in N'$, and thus $abm \in f^{-1}(N')$ or $acm \in f^{-1}(N')$ or $bcm \in f^{-1}(N')$. So, $f^{-1}(N')$ is a classical 2-absorbing submodule of *M*.

(*ii*) Let $a, b, c \in R$ and $m' \in M'$ be such that $abcm' \in f(N)$. By assumption there exists $m \in M$ such that m' = f(m) and so $f(abcm) \in f(N)$. Since $Ker(f) \subseteq N$, we have $abcm \in N$. It implies that $abm \in N$ or $acm \in N$ or $bcm \in N$. Hence $abm' \in f(N)$ or $acm' \in f(N)$ or $bcm' \in f(N)$. Consequently f(N) is a classical 2-absorbing submodule of M'.

As an immediate consequence of Theorem 1 we have the following corollary.

Corollary 1. Let M be an R-module and $L \subseteq N$ be submodules of M. Then N is a classical 2-absorbing submodule of M if and only if N/L is a classical 2-absorbing submodule of M/L.

Proposition 1. Let M be an R-module and N_1 , N_2 be classical prime submodules of M. Then $N_1 \cap N_2$ is a classical 2-absorbing submodule of M.

Proof. Let for some $a, b, c \in R$ and $m \in M$, $abcm \in N_1 \cap N_2$. Since N_1 is a classical prime submodule, then we may assume that $am \in N_1$. Likewise, assume that $bm \in N_2$. Hence $abm \in N_1 \cap N_2$ which implies $N_1 \cap N_2$ is a classical 2-absorbing submodule.

Proposition 2. Let N be a proper submodule of an R-module M.

- (i) If N is a 2-absorbing submodule of M, then N is a classical 2-absorbing submodule of M.
- (ii) N is a classical prime submodule of M if and only if N is a 2-absorbing submodule of M and $(N :_R M)$ is a prime ideal of R.

Proof. (*i*) Assume that *N* is a 2-absorbing submodule of *M*. Let $a, b, c \in R$ and $m \in M$ such that $abcm \in N$. Therefore either $acm \in N$ or $bcm \in N$ or $ab \in (N : M)$. The first two cases lead us to the claim. In the third case we have that $abm \in N$. Consequently *N* is a classical 2-absorbing submodule.

(*ii*) It is evident that if *N* is classical prime, then it is 2-absorbing. Also, [3, Lemma 2.1] implies that $(N :_R M)$ is a prime ideal of *R*. Assume that *N* is a 2-absorbing submodule of *M* and $(N :_R M)$ is a prime ideal of *R*. Let $abm \in N$ for some $a, b \in R$ and $m \in M$ such that neither $am \in N$ nor $bm \in N$. Then $ab \in (N :_R M)$ and so either $a \in (N :_R M)$ or $b \in (N :_R M)$. This contradiction shows that *N* is classical prime.

he following example shows that the converse of Proposition 2(i) is not true.

Example 2. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}_p \bigoplus \mathbb{Z}_q \bigoplus \mathbb{Q}$ where p, q are two distinct prime integers. One can easily see that the zero submodule of M is a classical 2-absorbing submodule. Notice that pq(1,1,0) = (0,0,0), but $p(1,1,0) \neq (0,0,0)$, $q(1,1,0) \neq (0,0,0)$ and $pq(1,1,1) \neq 0$. So the zero submodule of M is not 2-absorbing. Also, part (ii) of Proposition 2 shows that the zero submodule is not a classical prime submodule. Hence the two concepts of classical prime submodules and of classical 2-absorbing submodules are different in general.

Let *M* be an *R*-module and *N* a submodule of *M*. For every $a \in R$, $\{m \in M \mid am \in N\}$ is denoted by $(N :_R a)$. It is easy to see that $(N :_M a)$ is a submodule of *M* containing *N*.

Theorem 2. Let *M* be an *R*-module and *N* be a proper submodule of *M*. The following conditions are equivalent:

- (i) N is classical 2-absorbing;
- (*ii*) For every $a, b, c \in R$, $(N :_M abc) = (N :_M ab) \cup (N :_M ac) \cup (N :_M bc)$;
- (iii) For every $a, b \in R$ and $m \in M$ with $abm \notin N$, $(N :_R abm) = (N :_R am) \cup (N :_R bm)$;
- (iv) For every $a, b \in R$ and $m \in M$ with $abm \notin N$, $(N :_R abm) = (N :_R am)$ or $(N :_R abm) = (N :_R bm)$;
- (v) For every $a, b \in R$ and every ideal I of R and $m \in M$ with $abIm \subseteq N$, either $abm \in N$ or $aIm \subseteq N$ or $bIm \subseteq N$;
- (vi) For every $a \in R$ and every ideal I of R and $m \in M$ with $aIm \notin N$, $(N :_R aIm) = (N :_R am)$ or $(N :_R aIm) = (N :_R Im)$;
- (vii) For every $a \in R$ and every ideals I, J of R and $m \in M$ with $aIJm \subseteq N$, either $aIm \subseteq N$ or $aJm \subseteq N$ or $IJm \subseteq N$;
- (viii) For every ideals I, J of R and $m \in M$ with $IJm \not\subseteq N$, $(N :_R IJm) = (N :_R Im)$ or $(N :_R IJm) = (N :_R Jm)$;
- (ix) For every ideals I, J, K of R and $m \in M$ with $IJKm \subseteq N$, either $IJm \subseteq N$ or $IKm \subseteq N$ or $JKm \subseteq N$;
- (x) For every $m \in M \setminus N$, $(N :_R m)$ is a 2-absorbing ideal of R.

Proof. (*i*) \Rightarrow (*ii*) Suppose that *N* is a classical 2-absorbing submodule of *M*. Let $m \in (N :_M abc)$. Then $abcm \in N$. Hence $abm \in N$ or $acm \in N$ or $bcm \in N$. Therefore $m \in (N :_M ab)$ or $m \in (N :_M ac)$ or $m \in (N :_M bc)$. Consequently,

$$(N:_M abc) = (N:_M ab) \cup (N:_M ac) \cup (N:_M bc).$$

 $(ii) \Rightarrow (iii)$ Let $abm \notin N$ for some $a, b \in R$ and $m \in M$. Assume that $x \in (N :_R abm)$. Then $abxm \in N$, and so $m \in (N :_M abx)$. Since $abm \notin N$, $m \notin (N :_M ab)$. Thus by part (i), $m \in (N :_M ax)$ or $m \in (N :_M bx)$, whence $x \in (N :_R am)$ or $x \in (N :_R bm)$. Therefore $(N :_R abm) = (N :_R am) \cup (N :_R bm)$.

 $(iii) \Rightarrow (iv)$ By the fact that if an ideal (a subgroup) is the union of two ideals (two subgroups), then it is equal to one of them.

 $(iv) \Rightarrow (v)$ Let for some $a, b \in R$, an ideal I of R and $m \in M$, $abIm \subseteq N$. Hence $I \subseteq (N :_R abm)$. If $abm \in N$, then we are done. Assume that $abm \notin N$. Therefore by part (iv) we have that $I \subseteq (N :_R am)$ or $I \subseteq (N :_R bm)$, i.e., $aIm \subseteq N$ or $bIm \subseteq N$.

 $(v) \Rightarrow (vi) \Rightarrow (vii) \Rightarrow (viii) \Rightarrow (ix)$ Have proofs similar to that of the previous implications.

 $(ix) \Rightarrow (i)$ Is trivial. $(ix) \Leftrightarrow (x)$ Straightforward.

Corollary 2. Let R be a ring and I be a proper ideal of R.

- (i) $_{R}I$ is a classical 2-absorbing submodule of R if and only if I is a 2-absorbing ideal of R.
- (ii) Every proper ideal of R is 2-absorbing if and only if for every R-module M and every proper submodule N of M, N is a classical 2-absorbing submodule of M.

Proof. (*i*) Let *I* be a classical 2-absorbing submodule of *R*. Then by Theorem 2, $(I :_R 1) = I$ is a 2-absorbing ideal of *R*. For the converse see part (*i*) of Proposition 2.

(*ii*) Assume that every proper ideal of *R* is 2-absorbing. Let *N* be a proper submodule of an *R*-module *M*. Since for every $m \in M \setminus N$, $(N :_R m)$ is a proper ideal of *R*, then it is a 2-absorbing ideal of *R*. Hence by Theorem 2, *N* is a classical 2-absorbing submodule of *M*. We have the converse immediately by part (*i*).

Proposition 3. Let *M* be an *R*-module and $\{K_i | i \in I\}$ be a chain of classical 2-absorbing submodules of *M*. Then $\cap_{i \in I} K_i$ is a classical 2-absorbing submodule of *M*.

Proof. Suppose that $abcm \in \bigcap_{i \in I} K_i$ for some $a, b, c \in R$ and $m \in M$. Assume that $abm \notin \bigcap_{i \in I} K_i$ and $acm \notin \bigcap_{i \in I} K_i$. Then there are $t, l \in I$ where $abm \notin K_t$ and $acm \notin K_l$. Hence, for every $K_s \subseteq K_t$ and every $K_d \subseteq K_l$ we have that $abm \notin K_s$ and $acm \notin K_d$. Thus, for every submodule K_h such that $K_h \subseteq K_t$ and $K_h \subseteq K_l$ we get $bcm \in K_h$. Hence $bcm \in \bigcap_{i \in I} K_i$. \Box

A classical 2-absorbing submodule of *M* is called *minimal*, if for any classical 2-absorbing submodule *K* of *M* such that $K \subseteq N$, then K = N. Let *L* be a classical 2-absorbing submodule of *M*. Set

 $\Gamma = \{K \mid K \text{ is a classical 2-absorbing submodule of } M \text{ and } K \subseteq L\}.$

If $\{K_i : i \in I\}$ is any chain in Γ , then $\bigcap_{i \in I} K_i$ is in Γ , by Proposition 3. By Zorn's Lemma, Γ contains a minimal member which is clearly a minimal classical 2-absorbing submodule of M. Thus, every classical 2 -absorbing submodule of M contains a minimal classical 2-absorbing submodule of M. If M is a finitely generated, then it is clear that M contains a minimal classical 2-absorbing submodule.

Theorem 3. Let *M* be a Noetherian *R*-module. Then *M* contains a finite number of minimal classical 2-absorbing submodules.

Proof. Suppose that the result is false. Let Γ denote the collection of proper submodules N of M such that the module M/N has an infinite number of minimal classical 2-absorbing submodules. Since $0 \in \Gamma$ we get $\Gamma \neq \emptyset$. Therefore Γ has a maximal member T, since M is a Noetherian R-module. It is clear that T is not a classical 2-absorbing submodule. Therefore, there exists an element $m \in M \setminus T$ and ideals I, J, K in R such that $IJKm \subseteq T$ but $IJm \not\subseteq T$, $IKm \not\subseteq T$ and $JKm \not\subseteq T$. The maximality of T implies that M/(T + IJm), M/(T + IKm)

and M/(T + JKm) have only finitely many minimal classical 2-absorbing submodules. Suppose P/T be a minimal classical 2-absorbing submodule of M/T. So $IJKm \subseteq T \subseteq P$, which implies that $IJm \subseteq P$ or $IKm \subseteq P$ or $JKm \subseteq P$. Thus P/(T + IJm) is a minimal classical 2-absorbing submodule of M/(T + IJm) or P/(T + IKm) is a minimal classical 2-absorbing submodule of M/(T + IKm) or P/(T + JKm) is a minimal classical 2-absorbing submodule of M/(T + IKm) or P/(T + JKm) is a minimal classical 2-absorbing submodule of M/(T + IKm) or P/(T + JKm) is a minimal classical 2-absorbing submodule of M/(T + IKm) or P/(T + JKm) is a minimal classical 2-absorbing submodule of M/(T + IKm). Thus, there are only a finite number of possibilities for the submodule P. This is a contradiction.

We recall from [5] that if *I* is a 2-absorbing ideal of a ring *R*, then either $\sqrt{I} = P$ where *P* is a prime ideal of *R* or $\sqrt{I} = P_1 \cap P_2$ where P_1 , P_2 are the only distinct minimal prime ideals of *I*.

Corollary 3. Let N be a classical 2-absorbing submodule of an R-module M. Suppose that $m \in M \setminus N$ and $\sqrt{(N:_R m)} = P$ where P is a prime ideal of R and $(N:_R m) \neq P$. Then for each $x \in \sqrt{(N:_R m)} \setminus (N:_R m)$, $(N:_R xm)$ is a prime ideal of R containing P. Furthermore, either $(N:_R xm) \subseteq (N:_R ym)$ or $(N:_R ym) \subseteq (N:_R xm)$ for every $x, y \in \sqrt{(N:_R m)} \setminus (N:_R m)$.

Proof. By Theorem 2 and [5, Theorem 2.5].

Corollary 4. Let N be a classical 2-absorbing submodule of an R-module M. Suppose that $m \in M \setminus N$ and $\sqrt{(N:_R m)} = P_1 \cap P_2$ where P_1 and P_2 are the only nonzero distinct prime ideals of R that are minimal over $(N:_R m)$. Then for each $x \in \sqrt{(N:_R m)} \setminus (N:_R m)$, $(N:_R m)$ is a prime ideal of R containing P_1 and P_2 . Furthermore, either $(N:_R m) \subseteq (N:_R ym)$ or $(N:_R ym) \subseteq (N:_R xm)$ for every $x, y \in \sqrt{(N:_R m)} \setminus (N:_R m)$.

Proof. By Theorem 2 and [5, Theorem 2.6].

An *R*-module *M* is called a *multiplication module* if every submodule *N* of *M* has the form *IM* for some ideal *I* of *R*. Let *N* and *K* be submodules of a multiplication *R*-module *M* with $N = I_1M$ and $K = I_2M$ for some ideals I_1 and I_2 of *R*. The product of *N* and *K* denoted by *NK* is defined by $NK = I_1I_2M$. Then by [1, Theorem 3.4], the product of *N* and *K* is independent of presentations of *N* and *K*.

Proposition 4. Let *M* be a multiplication *R*-module and *N* be a proper submodule of *M*. The following conditions are equivalent:

- (i) N is a classical 2-absorbing submodule of M;
- (ii) If $N_1N_2N_3m \subseteq N$ for some submodules N_1 , N_2 , N_3 of M and $m \in M$, then either $N_1N_2m \subseteq N$ or $N_1N_3m \subseteq N$ or $N_2N_3m \subseteq N$.

Proof. (*i*) \Rightarrow (*ii*) Let $N_1N_2N_3m \subseteq N$ for some submodules N_1 , N_2 , N_3 of M and $m \in M$. Since M is multiplication, there are ideals I_1 , I_2 , I_3 of R such that $N_1 = I_1M$, $N_2 = I_2M$ and $N_3 = I_3M$. Therefore $I_1I_2I_3m \subseteq N$, and so either $I_1I_2m \subseteq N$ or $I_1I_3m \subseteq N$ or $I_2I_3m \subseteq N$. Hence $N_1N_2m \subseteq N$ or $N_1N_3m \subseteq N$ or $N_2N_3m \subseteq N$.

 $(ii) \Rightarrow (i)$ Suppose that $I_1I_2I_3m \subseteq N$ for some ideals I_1 , I_2 , I_3 of R and some $m \in M$. It is sufficient to set $N_1 := I_1M$, $N_2 := I_2M$ and $N_3 = I_3M$ in part (*ii*).

In [16], Quartararo *et al.* said that a commutative ring *R* is a *u*-ring provided *R* has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals; and a *um*-ring is a ring *R* with the property that an *R*-module which is equal to a finite union of submodules must be equal to one of them. They show that every Bézout ring is a *u*-ring. Moreover, they proved that every Prüfer domain is a *u*-domain. Also, any ring which contains an infinite field as a subring is a *u*-ring, [17, Exercise 3.63].

Theorem 4. Let *R* be a um-ring, *M* be an *R*-module and *N* be a proper submodule of *M*. The following conditions are equivalent:

- (i) N is classical 2-absorbing;
- (ii) For every $a, b, c \in R$, $(N :_M abc) = (N :_M ab)$ or $(N :_M abc) = (N :_M ac)$ or $(N :_M abc) = (N :_M bc)$;
- (iii) For every $a, b, c \in R$ and every submodule L of M, $abcL \subseteq N$ implies that $abL \subseteq N$ or $acL \subseteq N$ or $bcL \subseteq N$;
- (iv) For every $a, b \in R$ and every submodule L of M with $abL \notin N$, $(N :_R abL) = (N :_R aL)$ or $(N :_R abL) = (N :_R bL)$;
- (v) For every $a, b \in R$, every ideal I of R and every submodule L of M, $abIL \subseteq N$ implies that $abL \subseteq N$ or $aIL \subseteq N$ or $bIL \subseteq N$;
- (vi) For every $a \in R$, every ideal I of R and every submodule L of M with $aIL \not\subseteq N$, $(N :_R aIL) = (N :_R aL)$ or $(N :_R aIL) = (N :_R IL)$;
- (vii) For every $a \in R$, every ideals I, J of R and every submodule L of M, $aIJL \subseteq N$ implies that $aIL \subseteq N$ or $aJL \subseteq N$ or $IJL \subseteq N$;
- (viii) For every ideals I, J of R and every submodule L of M with $IJL \not\subseteq N$, $(N :_R IJL) = (N :_R IL)$ or $(N :_R IJL) = (N :_R JL)$;
- (ix) For every ideals I, J, K of R and every submodule L of M, $IJKL \subseteq N$ implies that $IJL \subseteq N$ or $IKL \subseteq N$ or $JKL \subseteq N$;
- (x) For every submodule L of M not contained in N, $(N :_R L)$ is a 2-absorbing ideal of R.

Proof. Similar to the proof of Theorem 2.

Proposition 5. Let *R* be a um-ring and *N* be a proper submodule of an *R*-module *M*. Then *N* is a classical 2-absorbing submodule of *M* if and only if *N* is a 3-absorbing submodule of *M* and $(N :_R M)$ is a 2-absorbing ideal of *R*.

Proof. It is trivial that if *N* is classical 2-absorbing, then it is 3-absorbing. Also, Theorem 4 implies that $(N :_R M)$ is a 2-absorbing ideal of *R*. Now, assume that *N* is a 3-absorbing submodule of *M* and $(N :_R M)$ is a 2-absorbing ideal of *R*. Let $a_1a_2a_3m \in N$ for some $a_1, a_2, a_3 \in R$ and $m \in M$ such that neither $a_1a_2m \in N$ nor $a_1a_3m \in N$ nor $a_2a_3m \in N$. Then $a_1a_2a_3 \in (N :_R M)$

and so either $a_1a_2 \in (N :_R M)$ or $a_1a_3 \in (N :_R M)$ or $a_2a_3 \in (N :_R M)$. This contradiction shows that *N* is classical 2-absorbing.

Proposition 6. Let *M* be an *R*-module and *N* be a classical 2-absorbing submodule of *M*. The following conditions hold:

- (i) For every $a, b, c \in R$ and $m \in M$, $(N :_R abcm) = (N :_R abm) \cup (N :_R acm) \cup (N :_R bcm)$;
- (ii) If R is a u-ring, then for every $a, b, c \in R$ and $m \in M$, $(N :_R abcm) = (N :_R abm)$ or $(N :_R abcm) = (N :_R acm)$ or $(N :_R abcm) = (N :_R bcm)$.

Proof. (*i*) Let $a, b, c \in R$ and $m \in M$. Suppose that $r \in (N :_R abcm)$. Then $abc(rm) \in N$. So, either $ab(rm) \in N$ or $ac(rm) \in N$ or $bc(rm) \in N$. Therefore, either $r \in (N :_R abm)$ or $r \in (N :_R acm)$ or $r \in (N :_R bcm)$. Consequently

 $(N :_R abcm) = (N :_R abm) \cup (N :_R acm) \cup (N :_R bcm).$ (*ii*) Use part (*i*).

Proposition 7. Let *R* be a um-ring, *M* be a multiplication *R*-module and *N* be a proper submodule of *M*. The following conditions are equivalent:

- (i) N is a classical 2-absorbing submodule of M;
- (ii) If $N_1N_2N_3N_4 \subseteq N$ for some submodules N_1 , N_2 , N_3 , N_4 of M, then either $N_1N_2N_4 \subseteq N$ or $N_1N_3N_4 \subseteq N$ or $N_2N_3N_4 \subseteq N$;
- (iii) If $N_1N_2N_3 \subseteq N$ for some submodules N_1 , N_2 , N_3 of M, then either $N_1N_2 \subseteq N$ or $N_1N_3 \subseteq N$ or $N_2N_3 \subseteq N$;
- (iv) N is a 2-absorbing submodule of M;
- (v) $(N :_R M)$ is a 2-absorbing ideal of R.

Proof. (*i*) \Rightarrow (*ii*) Let $N_1N_2N_3N_4 \subseteq N$ for some submodules N_1 , N_2 , N_3 , N_4 of M. Since M is multiplication, there are ideals I_1 , I_2 , I_3 of R such that $N_1 = I_1M$, $N_2 = I_2M$ and $N_3 = I_3M$. Therefore $I_1I_2I_3N_4 \subseteq N$, and so $I_1I_2N_4 \subseteq N$ or $I_1I_3N_4 \subseteq N$ or $I_2I_3N_4 \subseteq N$. Thus by Theorem 4, either $N_1N_2N_4 \subseteq N$ or $N_1N_3N_4 \subseteq N$ or $N_2N_3N_4 \subseteq N$.

 $(ii) \Rightarrow (iii)$ Is easy.

 $(iii) \Rightarrow (iv)$ Suppose that $I_1I_2K \subseteq N$ for some ideals I_1 , I_2 of R and some submodule K of M. It is sufficient to set $N_1 := I_1M$, $N_2 := I_2M$ and $N_3 = K$ in part (*iii*).

 $(iv) \Rightarrow (i)$ By part (i) of Proposition 2.

 $(iv) \Rightarrow (v)$ By [15, Theorem 2.3].

 $(v) \Rightarrow (iv)$ Let $I_1I_2K \subseteq N$ for some ideals I_1 , I_2 of R and some submodule K of M. Since M is multiplication, then there is an ideal I_3 of R such that $K = I_3M$. Hence $I_1I_2I_3 \subseteq (N :_R M)$ which implies that either $I_1I_2 \subseteq (N :_R M)$ or $I_1I_3 \subseteq (N :_R M)$ or $I_2I_3 \subseteq (N :_R M)$. If $I_1I_2 \subseteq (N :_R M)$, then we are done. So, suppose that $I_1I_3 \subseteq (N :_R M)$. Thus $I_1I_3M = I_1K \subseteq N$. Similarly if $I_2I_3 \subseteq (N :_R M)$, then we have $I_2K \subseteq N$. **Definition 1.** Let *R* be a um-ring, *M* be an *R*-module and *S* be a subset of $M \setminus \{0\}$. If for all ideals *I*, *J*, *Q* of *R* and all submodules *K*, *L* of *M*, $(K + IJL) \cap S \neq \emptyset$ and $(K + IQL) \cap S \neq \emptyset$ and $(K + JQL) \cap S \neq \emptyset$ implies $(K + IJQL) \cap S \neq \emptyset$, then the subset *S* is called classical 2-absorbing *m*-closed.

Proposition 8. Let *R* be a um-ring, *M* be *R*-module and *N* a submodule of *M*. Then *N* is a classical 2-absorbing submodule if and only if $M \setminus N$ is a classical 2-absorbing m-closed.

Proof. Suppose that *N* is a classical 2-absorbing submodule of *M* and *I*, *J*, *Q* are ideals of *R* and *K*, *L* are submodules of *M* such that $(K + IJL) \cap S \neq \emptyset$ and $(K + IQL) \cap S \neq \emptyset$ and $(K + JQL) \cap S \neq \emptyset$ where $S = M \setminus N$. Assume that $(K + IJQL) \cap S = \emptyset$. Then $K + IJQL \subseteq N$ and so $K \subseteq N$ and $IJQL \subseteq N$. Since *N* is a classical 2-absorbing submodule, we get $IJL \subseteq N$ or $IQL \subseteq N$ or $JQL \subseteq N$. If $IJL \subseteq N$, then we get $(K + IJL) \cap S = \emptyset$, since $K \subseteq N$. This is a contradiction. By the other cases we get similar contradictions. Now for the converse suppose that $S = M \setminus N$ is a classical 2-absorbing m-closed and assume that $IJQL \subseteq N$ for some ideals *I*, *J*, *Q* of *R* and submodule *L* of *M*. Then we get for submodule K = (0), $K + IJQL \subseteq N$. Thus $(K + IJQL) \cap S = \emptyset$. Since *S* is a classical 2-absorbing m-closed, $(K + IJL) \cap S = \emptyset$ or $(K + IQL) \cap S = \emptyset$ or $(K + JQL) \cap S = \emptyset$. Hence $IJL \subseteq N$ or $IQL \subseteq N$ or $JQL \subseteq N$. So *N* is a classical 2-absorbing submodule.

Proposition 9. Let *R* be a um-ring, *M* be an *R*-module, *N* a submodule of *M* and $S = M \setminus N$. The following conditions are equivalent:

- (i) N is a classical 2-absorbing submodule of M;
- (ii) S is a classical 2-absorbing m-closed;
- (iii) For every ideals I, J, Q of R and every submodule L of M, if $IJL \cap S \neq \emptyset$ and $IQL \cap S \neq \emptyset$, then $IJQL \cap S \neq \emptyset$;
- (iv) For every ideals I, J, Q of R and every $m \in M$, if $IJm \cap S \neq \emptyset$ and $IQm \cap S \neq \emptyset$ and $JQm \cap S \neq \emptyset$, then $IJQm \cap S \neq \emptyset$.

Proof. It follows from the previous Proposition, Theorem 2 and Theorem 4.

Theorem 5. Let *R* be a um-ring, *M* be an *R*-module and *S* be a classical 2-absorbing m-closed. Then the set of all submodules of *M* which are disjoint from *S* has at least one maximal element. Any such maximal element is a classical 2-absorbing submodule.

Proof. Let $\Psi = \{N \mid N \text{ is a submodule of } M \text{ and } N \cap S = \emptyset\}$. Then $(0) \in \Psi \neq \emptyset$. Since Ψ is partially ordered by using Zorn's Lemma we get at least a maximal element of Ψ , say P, with property $P \cap S = \emptyset$. Now we will show that P is classical 2-absorbing. Suppose that $IJQL \subseteq P$ for ideals I, J, Q of R and submodule L of M. Assume that $IJL \nsubseteq P$ or $IQL \oiint P$ or $JQL \oiint P$. Then by the maximality of P we get $(IJL + P) \cap S \neq \emptyset$ and $(IQL + P) \cap S \neq \emptyset$ and $(JQL + P) \cap S \neq \emptyset$. Since S is a classical 2-absorbing m-closed we have $(IJQL + P) \cap S \neq \emptyset$. Hence $P \cap S \neq \emptyset$, which is a contradiction. Thus P is a classical 2-absorbing submodule of M.

Theorem 6. Let *R* be a um-ring and *M* be an *R*-module.

- (i) If *F* is a flat *R*-module and *N* is a classical 2-absorbing submodule of *M* such that $F \otimes N \neq F \otimes M$, then $F \otimes N$ is a classical 2-absorbing submodule of $F \otimes M$.
- (ii) Suppose that *F* is a faithfully flat *R*-module. Then *N* is a classical 2-absorbing submodule of *M* if and only if $F \otimes N$ is a classical 2-absorbing submodule of $F \otimes M$.

Proof. (*i*) Let $a, b, c \in \mathbb{R}$. Then we get by Theorem 4, $(N :_M abc) = (N :_M ab)$ or $(N :_M abc) = (N :_M ac)$ or $(N :_M abc) = (N :_M bc)$. Assume that $(N :_M abc) = (N :_M ab)$. Then by [4, Lemma 3.2],

$$(F \otimes N :_{F \otimes M} abc) = F \otimes (N :_{M} abc) = F \otimes (N :_{M} ab) = (F \otimes N :_{F \otimes M} ab).$$

Again Theorem 4 implies that $F \otimes N$ is a classical 2-absorbing submodule of $F \otimes M$.

(*ii*) Let *N* be a classical 2-absorbing submodule of *M* and assume that $F \otimes N = F \otimes M$. Then $0 \to F \otimes N \xrightarrow{\subseteq} F \otimes M \to 0$ is an exact sequence. Since *F* is a faithfully flat module, $0 \to N \xrightarrow{\subseteq} M \to 0$ is an exact sequence. So N = M, which is a contradiction. So $F \otimes N \neq F \otimes M$. Then $F \otimes N$ is a classical 2-absorbing submodule by (1). Now for conversely, let $F \otimes N$ be a classical 2-absorbing submodule of $F \otimes M$. We have $F \otimes N \neq F \otimes M$ and so $N \neq M$. Let $a, b, c \in R$. Then $(F \otimes N :_{F \otimes M} abc) = (F \otimes N :_{F \otimes M} ab)$ or

 $(F \otimes N :_{F \otimes M} abc) = (F \otimes N :_{F \otimes M} ac)$ or $(F \otimes N :_{F \otimes M} abc) = (F \otimes N :_{F \otimes M} bc)$ by Theorem 4. Assume that $(F \otimes N :_{F \otimes M} abc) = (F \otimes N :_{F \otimes M} ab)$. Hence

$$F \otimes (N:_{M} ab) = (F \otimes N:_{F \otimes M} ab) = (F \otimes N:_{F \otimes M} abc) = F \otimes (N:_{M} abc).$$

So $0 \to F \otimes (N:_M ab) \xrightarrow{\subseteq} F \otimes (N:_M abc) \to 0$ is an exact sequence. Since *F* is a faithfully flat module, $0 \to (N:_M ab) \xrightarrow{\subseteq} (N:_M abc) \to 0$ is an exact sequence which implies that $(N:_M ab) = (N:_M abc)$. Consequently *N* is a classical 2-absorbing submodule of *M* by Theorem 4.

Corollary 5. Let R be a um-ring, M be an R-module and X be an indeterminate. If N is a classical 2-absorbing submodule of M, then N[X] is a classical 2-absorbing submodule of M[X].

Proof. Assume that *N* is a classical 2-absorbing submodule of *M*. Notice that R[X] is a flat *R*-module. So by Theorem 6, $R[X] \otimes N \simeq N[X]$ is a classical 2-absorbing submodule of $R[X] \otimes M \simeq M[X]$.

For an *R*-module *M*, the set of zero-divisors of *M* is denoted by $Z_R(M)$.

Proposition 10. Let *M* be an *R*-module, *N* be a submodule and *S* be a multiplicative subset of *R*.

(i) If N is a classical 2-absorbing submodule of M such that $(N :_R M) \cap S = \emptyset$, then $S^{-1}N$ is a classical 2-absorbing submodule of $S^{-1}M$.

(ii) If $S^{-1}N$ is a classical 2-absorbing submodule of $S^{-1}M$ such that $Z_R(M/N) \cap S = \emptyset$, then N is a classical 2-absorbing submodule of M.

Proof. (*i*) Let *N* be a classical 2-absorbing submodule of *M* and $(N :_R M) \cap S = \emptyset$. Suppose that $\frac{a_1}{s_1} \frac{a_2}{s_2} \frac{a_3}{s_3} \frac{m}{s_4} \in S^{-1}N$. Then there exist $n \in N$ and $s \in S$ such that $\frac{a_1}{s_1} \frac{a_2}{s_2} \frac{a_3}{s_3} \frac{m}{s_4} = \frac{n}{s}$. Therefore there exists an $s' \in S$ such that $s'sa_1a_2a_3m = s's_1s_2s_3s_4n \in N$. So $a_1a_2a_3(s^*m) \in N$ for $s^* = s's$. Since *N* is a classical 2-absorbing submodule we get $a_1a_2(s^*m) \in N$ or $a_1a_3(s^*m) \in N$ or $a_2a_3(s^*m) \in N$. Thus $\frac{a_1a_2m}{s_1s_2s_4} = \frac{a_1a_2(s^*m)}{s_1s_2s_4s^*} \in S^{-1}N$ or $\frac{a_1a_3m}{s_1s_3s_4} \in S^{-1}N$.

(*ii*) Assume that $S^{-1}N$ is a classical 2-absorbing submodule of $S^{-1}M$ and $Z_R(M/N) \cap S = \emptyset$. Let $a, b, c \in R$ and $m \in M$ such that $abcm \in N$. Then $\frac{a}{1} \frac{b}{1} \frac{c}{1} \frac{m}{1} \in S^{-1}N$. Therefore $\frac{a}{1} \frac{b}{1} \frac{m}{1} \in S^{-1}N$ or $\frac{a}{1} \frac{c}{1} \frac{m}{1} \in S^{-1}N$ or $\frac{b}{1} \frac{c}{1} \frac{m}{1} \in S^{-1}N$. We may assume that $\frac{a}{1} \frac{b}{1} \frac{m}{1} \in S^{-1}N$. So there exists $u \in S$ such that $uabm \in N$. But $Z_R(M/N) \cap S = \emptyset$, whence $abm \in N$. Consequently N is a classical 2-absorbing submodule of M.

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Theorem 7. Let $R = R_1 \times R_2$ be a decomposable ring and $M = M_1 \times M_2$ be an *R*-module where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $N = N_1 \times N_2$ is a proper submodule of *M*. Then the following conditions are equivalent:

- (i) N is a classical 2-absorbing submodule of M;
- (ii) Either $N_1 = M_1$ and N_2 is a classical 2-absorbing submodule of M_2 or $N_2 = M_2$ and N_1 is a classical 2-absorbing submodule of M_1 or N_1 , N_2 are classical prime submodules of M_1 , M_2 , respectively.

Proof. (*i*) \Rightarrow (*ii*) Suppose that *N* is a classical 2-absorbing submodule of *M* such that $N_2 = M_2$. From our hypothesis, *N* is proper, so $N_1 \neq M_1$. Set $M' = \frac{M}{\{0\} \times M_2}$. Hence $N' = \frac{N}{\{0\} \times M_2}$ is a classical 2-absorbing submodule of *M'* by Corollary 1. Also observe that $M' \cong M_1$ and $N' \cong N_1$. Thus N_1 is a classical 2-absorbing submodule of M_1 . Suppose that $N_1 \neq M_1$ and $N_2 \neq M_2$. We show that N_1 is a classical prime submodule of M_1 . Since $N_2 \neq M_2$, there exists $m_2 \in M_2 \setminus N_2$. Let $abm_1 \in N_1$ for some $a, b \in R_1$ and $m_1 \in M_1$. Thus

$$(a,1)(b,1)(1,0)(m_1,m_2) = (abm_1,0) \in N = N_1 \times N_2.$$

So either $(a, 1)(1, 0)(m_1, m_2) = (am_1, 0) \in N$ or $(b, 1)(1, 0)(m_1, m_2) = (bm_1, 0) \in N$. Hence either $am_1 \in N_1$ or $bm_1 \in N_1$ which shows that N_1 is a classical prime submodule of M_1 . Similarly we can show that N_2 is a classical prime submodule of M_2 .

 $(ii) \Rightarrow (i)$ Suppose that $N = N_1 \times M_2$ where N_1 is a classical 2-absorbing (resp. classical prime) submodule of M_1 . Then it is clear that N is a classical 2-absorbing (resp. classical prime) submodule of M. Now, assume that $N = N_1 \times N_2$ where N_1 and N_2 are classical prime submodules of M_1 and M_2 , respectively. Hence $(N_1 \times M_2) \cap (M_1 \times N_2) = N_1 \times N_2 = N$ is a classical 2-absorbing submodule of M, by Proposition 1.

Lemma 1. Let $R = R_1 \times R_2 \times \cdots \times R_n$ be a decomposable ring and $M = M_1 \times M_2 \times \cdots \times M_n$ be an R-module where for every $1 \le i \le n$, M_i is an R_i -module, respectively. A proper submodule N of M is a classical prime submodule of M if and only if $N = \times_{i=1}^n N_i$ such that for some $k \in \{1, 2, \dots, n\}$, N_k is a classical prime submodule of M_k , and $N_i = M_i$ for every $i \in \{1, 2, \dots, n\} \setminus \{k\}$.

Proof. (\Rightarrow) Let *N* be a classical prime submodule of *M*. We know $N = \times_{i=1}^{n} N_i$ where for every $1 \le i \le n$, N_i is a submodule of M_i , respectively. Assume that N_r is a proper submodule of M_r and N_s is a proper submodule of M_s for some $1 \le r < s \le n$. So, there are $m_r \in M_r \setminus N_r$ and $m_s \in M_s \setminus N_s$. Since

$$(0,\ldots,0,\overbrace{1_{R_r}}^{r\text{-th}},0,\ldots,0)(0,\ldots,0,\overbrace{1_{R_s}}^{s\text{-th}},0,\ldots,0)(0,\ldots,0,\overbrace{m_r}^{r\text{-th}},0,\ldots,0,\overbrace{m_s}^{s\text{-th}},0,\ldots,0) = (0,\ldots,0) \in N,$$

then either

$$(0, \dots, 0, \overbrace{1_{R_r}}^{r-\text{th}}, 0, \dots, 0)(0, \dots, 0, \overbrace{m_r}^{r-\text{th}}, 0, \dots, 0, \overbrace{m_s}^{s-\text{th}}, 0, \dots, 0) = (0, \dots, 0, \overbrace{m_r}^{r-\text{th}}, 0, \dots, 0) \in N$$

or

$$(0, \dots, 0, \overbrace{1_{R_s}}^{s-\text{th}}, 0, \dots, 0)(0, \dots, 0, \overbrace{m_r}^{r-\text{th}}, 0, \dots, 0, \overbrace{m_s}^{s-\text{th}}, 0, \dots, 0) = (0, \dots, 0, \overbrace{m_s}^{s-\text{th}}, 0, \dots, 0) \in N,$$

which is a contradiction. Hence exactly one of the N_i 's is proper, say N_k . Now, we show that N_k is a classical prime submodule of M_k . Let $abm_k \in N_k$ for some $a, b \in R_k$ and $m_k \in M_k$. Therefore

$$(0, \dots, 0, \overbrace{a}^{k-\text{th}}, 0, \dots, 0)(0, \dots, 0, \overbrace{b}^{k-\text{th}}, 0, \dots, 0)(0, \dots, 0, \overbrace{m_k}^{k-\text{th}}, 0, \dots, 0) = (0, \dots, 0, \overbrace{abm_k}^{k-\text{th}}, 0, \dots, 0) \in N,$$

and so

$$(0, \dots, 0, \overbrace{a}^{k-\text{th}}, 0, \dots, 0)(0, \dots, 0, \overbrace{m_k}^{k-\text{th}}, 0, \dots, 0) = (0, \dots, 0, \overbrace{am_k}^{k-\text{th}}, 0, \dots, 0) \in N$$

or

$$(0,\ldots,0,\overbrace{b}^{k-\text{th}},0,\ldots,0)(0,\ldots,0,\overbrace{m_k}^{k-\text{th}},0,\ldots,0) = (0,\ldots,0,\overbrace{bm_k}^{k-\text{th}},0,\ldots,0) \in N.$$

Thus $am_k \in N_k$ or $bm_k \in N_k$ which implies that N_k is a classical prime submodule of M_k . (\Leftarrow) Is easy.

REFERENCES

Theorem 8. Let $R = R_1 \times R_2 \times \cdots \times R_n$ $(2 \le n < \infty)$ be a decomposable ring and $M = M_1 \times M_2 \times \cdots \times M_n$ be an *R*-module where for every $1 \le i \le n$, M_i is an R_i -module, respectively. For a proper submodule N of M the following conditions are equivalent:

- (i) N is a classical 2-absorbing submodule of M;
- (ii) Either $N = \times_{t=1}^{n} N_t$ such that for some $k \in \{1, 2, ..., n\}$, N_k is a classical 2-absorbing submodule of M_k , and $N_t = M_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k\}$ or $N = \times_{t=1}^{n} N_t$ such that for some $k, m \in \{1, 2, ..., n\}$, N_k is a classical prime submodule of M_k , N_m is a classical prime submodule of M_m , and $N_t = M_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k, m\}$.

Proof. We argue induction on *n*. For n = 2 the result holds by Theorem 7. Then let $3 \le n < \infty$ and suppose that the result is valid when $K = M_1 \times \cdots \times M_{n-1}$. We show that the result holds when $M = K \times M_n$. By Theorem 7, *N* is a classical 2-absorbing submodule of *M* if and only if either $N = L \times M_n$ for some classical 2-absorbing submodule *L* of *K* or $N = K \times L_n$ for some classical 2-absorbing submodule *L* of *K* and some classical prime submodule L_n of M_n or $N = L \times L_n$ for some classical prime submodule *L* of *K* is a classical prime submodule of *M* if and only if $L = \times \frac{n-1}{t-1}N_t$ such that for some $k \in \{1, 2, ..., n-1\}$, N_k is a classical prime submodule of M_k , and $N_t = M_t$ for every $t \in \{1, 2, ..., n-1\} \setminus \{k\}$. Consequently we reach the claim.

References

- [1] R. Ameri. *On the prime submodules of multiplication modules*, International Journal of Mathematics and Mathematical Sciences, 27, 1715–1724. 2003.
- [2] D. F. Anderson and A. Badawi. *On n-absorbing ideals of commutative rings*, Comunications in Algebra, 39, 1646–1672. 2011.
- [3] A. Azizi. *On prime and weakly prime submodules*, Vietnam Journal of Mathematics, 36(3), 315–325. 2008.
- [4] A. Azizi. *Weakly prime submodules and prime submodules*, Glasgow Mathematical Journal, 48, 343–346. 2006.
- [5] A. Badawi. On 2-absorbing ideals of commutative rings, Bulletin of the Australian Mathematical Society, 75, 417–429. 2007.
- [6] A. Badawi, Ü. Tekir, and E. Yetkin. *On 2-absorbing primary ideals in commutative rings*, Bulletin of the Korean Mathematical Society, 51(4), 1163–1173. 2014.
- [7] A. Badawi, E. Yetkin, and Ü. Tekir. On weakly 2-absorbing primary ideals of commutative rings, Journal of the Korean Mathematical Society, 52(1), 97–111. 2015.
- [8] A. Badawi and A. Yousefian Darani. *On weakly 2-absorbing ideals of commutative rings*, Houston Journal of Mathematics, 39, 441–452. 2013.

- [9] M. Behboodi. *A generalization of Bear's lower nilradical for modules*, Journal of Algebra and its Applications, 6(2), 337-353. 2007.
- [10] M. Behboodi. On weakly prime radical of modules and semi-compatible modules, Acta Mathematical Hungarica, 113(3), 239-250. 2006.
- [11] M. Behboodi and H. Koohy. *Weakly prime modules*, Vietnam Journal of Mathematics, 32(2), 185-195. 2004.
- [12] M. Behboodi and S. H. Shojaee. On chains of classical prime submodules and dimension theory of modules, Bulletin of the Iranian Mathematical Society, 36(1), 149–166. 2010.
- [13] A. Y. Darani and F. Soheilnia. 2-absorbing and weakly 2-absorbing submodules, Thai Journal of Mathematics, 9(3), 577–584. 2011.
- [14] A. Y. Darani and F. Soheilnia. On n-absorbing submodules, Mathematical Communications, 17, 547-557. 2012.
- [15] Sh. Payrovi and S. Babaei. On 2-absorbing submodules, Algebra Colloquium, 19, 913–920.
 2012.
- [16] P. Quartararo and H. S. Butts. *Finite unions of ideals and modules*, Proceedings of the American Mathematical Society, 52, 91-96. 1975.
- [17] R.Y. Sharp. *Steps in commutative algebra*, Second edition, Cambridge University Press, Cambridge, 2000.