Classical 2-Absorbing Submodules of Modules over Commutative Rings

Hojjat Mostafanasab ${ }^{1, *}$, Ünsal Tekir ${ }^{2}$ and Kürşat Hakan Oral ${ }^{3}$
${ }^{1}$ Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran
${ }^{2}$ Department of Mathematics, Marmara University, Ziverbey, Goztepe, Istanbul 34722, Turkey
${ }^{3}$ Department of Mathematics, Yildiz Technical University, Davutpasa Campus, Esenler, Istanbul, Turkey

Abstract

In this article, all rings are commutative with nonzero identity. Let M be an R-module. A proper submodule N of M is called a classical prime submodule, if for each $m \in M$ and elements $a, b \in R, a b m \in N$ implies that $a m \in N$ or $b m \in N$. We introduce the concept of "classical 2-absorbing submodules" as a generalization of "classical prime submodules". We say that a proper submodule N of M is a classical 2-absorbing submodule if whenever $a, b, c \in R$ and $m \in M$ with $a b c m \in N$, then $a b m \in N$ or $a c m \in N$ or $b c m \in N$.

2010 Mathematics Subject Classifications: 13A15, 13C99, 13F05
Key Words and Phrases: Classical prime submodule, Classical 2-absorbing submodule

1. Introduction

Throughout this paper, we assume that all rings are commutative with $1 \neq 0$. Let R be a commutative ring and M be an R-module. A proper submodule N of M is said to be a prime submodule, if for each element $a \in R$ and $m \in M$, $a m \in N$ implies that $m \in N$ or $a \in\left(N:_{R} M\right)=\{r \in R \mid r M \subseteq N\}$. A proper submodule N of M is called a classical prime submodule, if for each $m \in M$ and $a, b \in R, a b m \in N$ implies that $a m \in N$ or $b m \in N$. This notion of classical prime submodules has been extensively studied by Behboodi in [9, 10] (see also, [11], in which, the notion of "weakly prime submodules" is investigated). For more information on weakly prime submodules, the reader is referred to [3, 4, 12].

Badawi gave a generalization of prime ideals in [5] and said such ideals 2-absorbing ideals. A proper ideal I of R is a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. He proved that I is a 2 -absorbing ideal of R if and only if

[^0]Email addresses: h.mostafanasab@gmail.com (H. Mostafanasab), utekir@marmara.edu.tr (Ü. Tekir), khoral@yildiz.edu.tr (K. Hakan Oral)
whenever I_{1}, I_{2}, I_{3} are ideals of R with $I_{1} I_{2} I_{3} \subseteq I$, then $I_{1} I_{2} \subseteq I$ or $I_{1} I_{3} \subseteq I$ or $I_{2} I_{3} \subseteq I$. Anderson and Badawi [2] generalized the notion of 2 -absorbing ideals to n-absorbing ideals. A proper ideal I of R is called an n-absorbing (resp. a strongly n-absorbing) ideal if whenever $x_{1} \cdots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$ (resp. $I_{1} \ldots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R), then there are n of the x_{i} 's (resp. n of the I_{i} 's) whose product is in I. The reader is referred to [6-8] for more concepts related to 2-absorbing ideals. Yousefian Darani and Soheilnia in [13] extended 2-absorbing ideals to 2-absorbing submodules. A proper submodule N of M is called a 2-absorbing submodule of M if whenever $a b m \in N$ for some $a, b \in R$ and $m \in M$, then $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)$. Generally, a proper submodule N of M is called an n-absorbing submodule if whenever $a_{1} \ldots a_{n} m \in N$ for $a_{1}, \ldots a_{n} \in R$ and $m \in M$, then either $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)$ or there are $n-1$ of a_{i} 's whose product with m is in N, see [14]. Several authors investigated properties of 2 -absorbing submodules, for example [15].

In this paper we introduce the definition of classical 2-absorbing submodules. A proper submodule N of an R-module M is called classical 2-absorbing submodule if whenever $a, b, c \in R$ and $m \in M$ with $a b c m \in N$, then $a b m \in N$ or $a c m \in N$ or $b c m \in N$. Clearly, every classical prime submodule is a classical 2 -absorbing submodule. We show that every Noetherian R-module M contains a finite number of minimal classical 2-absorbing submodules (Theorem 3). Further, we give the relationship between classical 2-absorbing submodules, classical prime submodules and 2-absorbing submodules (Proposition 2, Proposition 7). Moreover, we characterize classical 2-absorbing submodules in (Theorem 2, Theorem 4). In (Theorem 7, Theorem 8) we investigate classical 2-absorbing submodules of a finite direct product of modules.

2. Characterizations of Classical 2-Absorbing Submodules

First of all we give a module which has no classical 2-absorbing submodule.
Example 1. Let p be a fixed prime integer and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Then

$$
E(p):=\left\{\alpha \in \mathbb{Q} / \mathbb{Z} \left\lvert\, \alpha=\frac{r}{p^{n}}+\mathbb{Z}\right. \text { for some } r \in \mathbb{Z} \text { and } n \in \mathbb{N}_{0}\right\}
$$

is a nonzero submodule of the \mathbb{Z}-module \mathbb{Q} / \mathbb{Z}. For each $t \in \mathbb{N}_{0}$, set

$$
G_{t}:=\left\{\alpha \in \mathbb{Q} / \mathbb{Z} \left\lvert\, \alpha=\frac{r}{p^{t}}+\mathbb{Z}\right. \text { for some } r \in \mathbb{Z}\right\}
$$

Notice that for each $t \in \mathbb{N}_{0}, G_{t}$ is a submodule of $E(p)$ generated by $\frac{1}{p^{t}}+\mathbb{Z}$ for each $t \in \mathbb{N}_{0}$. Each proper submodule of $E(p)$ is equal to G_{i} for some $i \in \mathbb{N}_{0}$ (see, [17, Example 7.10]). However, no G_{t} is a classical 2-absorbing submodule of $E(p)$. Indeed, $\frac{1}{p^{t+3}}+\mathbb{Z} \in E(p)$. Then $p^{3}\left(\frac{1}{p^{t+3}}+\mathbb{Z}\right)=\frac{1}{p^{t}}+\mathbb{Z} \in G_{t}$ but $p^{2}\left(\frac{1}{p^{t+3}}+\mathbb{Z}\right)=\frac{1}{p^{t+1}}+\mathbb{Z} \notin G_{t}$.
Theorem 1. Let $f: M \rightarrow M^{\prime}$ be an epimorphism of R-modules.
(i) If N^{\prime} is a classical 2-absorbing submodule of M^{\prime}, then $f^{-1}\left(N^{\prime}\right)$ is a classical 2-absorbing submodule of M.
(ii) If N is a classical 2-absorbing submodule of M containing $\operatorname{Ker}(f)$, then $f(N)$ is a classical 2 -absorbing submodule of M^{\prime}.

Proof. (i) Since f is epimorphism, $f^{-1}\left(N^{\prime}\right)$ is a proper submodule of M. Let $a, b, c \in R$ and $m \in M$ such that $a b c m \in f^{-1}\left(N^{\prime}\right)$. Then $a b c f(m) \in N^{\prime}$. Hence $a b f(m) \in N^{\prime}$ or $a c f(m) \in N^{\prime}$ or $b c f(m) \in N^{\prime}$, and thus $a b m \in f^{-1}\left(N^{\prime}\right)$ or $a c m \in f^{-1}\left(N^{\prime}\right)$ or $b c m \in f^{-1}\left(N^{\prime}\right)$. So, $f^{-1}\left(N^{\prime}\right)$ is a classical 2 -absorbing submodule of M.
(ii) Let $a, b, c \in R$ and $m^{\prime} \in M^{\prime}$ be such that $a b c m^{\prime} \in f(N)$. By assumption there exists $m \in M$ such that $m^{\prime}=f(m)$ and so $f(a b c m) \in f(N)$. Since $\operatorname{Ker}(f) \subseteq N$, we have $a b c m \in N$. It implies that $a b m \in N$ or $a c m \in N$ or $b c m \in N$. Hence $a b m^{\prime} \in f(N)$ or $a c m^{\prime} \in f(N)$ or $b c m^{\prime} \in f(N)$. Consequently $f(N)$ is a classical 2-absorbing submodule of M^{\prime}.

As an immediate consequence of Theorem 1 we have the following corollary.
Corollary 1. Let M be an R-module and $L \subseteq N$ be submodules of M. Then N is a classical 2-absorbing submodule of M if and only if N / L is a classical 2-absorbing submodule of M / L.
Proposition 1. Let M be an R-module and N_{1}, N_{2} be classical prime submodules of M. Then $N_{1} \cap N_{2}$ is a classical 2-absorbing submodule of M.

Proof. Let for some $a, b, c \in R$ and $m \in M, a b c m \in N_{1} \cap N_{2}$. Since N_{1} is a classical prime submodule, then we may assume that $a m \in N_{1}$. Likewise, assume that $b m \in N_{2}$. Hence abm $\in N_{1} \cap N_{2}$ which implies $N_{1} \cap N_{2}$ is a classical 2-absorbing submodule.

Proposition 2. Let N be a proper submodule of an R-module M.
(i) If N is a 2-absorbing submodule of M, then N is a classical 2-absorbing submodule of M.
(ii) N is a classical prime submodule of M if and only if N is a 2-absorbing submodule of M and $\left(N:_{R} M\right)$ is a prime ideal of R.
Proof. (i) Assume that N is a 2 -absorbing submodule of M. Let $a, b, c \in R$ and $m \in M$ such that $a b c m \in N$. Therefore either $a c m \in N$ or $b c m \in N$ or $a b \in(N: M)$. The first two cases lead us to the claim. In the third case we have that $a b m \in N$. Consequently N is a classical 2-absorbing submodule.
(ii) It is evident that if N is classical prime, then it is 2 -absorbing. Also, [3, Lemma 2.1] implies that $\left(N:_{R} M\right)$ is a prime ideal of R. Assume that N is a 2 -absorbing submodule of M and $\left(N:_{R} M\right)$ is a prime ideal of R. Let $a b m \in N$ for some $a, b \in R$ and $m \in M$ such that neither $a m \in N$ nor $b m \in N$. Then $a b \in\left(N:_{R} M\right)$ and so either $a \in\left(N:_{R} M\right)$ or $b \in\left(N:_{R} M\right)$.This contradiction shows that N is classical prime.
he following example shows that the converse of Proposition $2(i)$ is not true.
Example 2. Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{p} \oplus \mathbb{Z}_{q} \oplus \mathbb{Q}$ where p, q are two distinct prime integers. One can easily see that the zero submodule of M is a classical 2 -absorbing submodule. Notice that $p q(1,1,0)=(0,0,0)$, but $p(1,1,0) \neq(0,0,0), q(1,1,0) \neq(0,0,0)$ and $p q(1,1,1) \neq 0$. So the zero submodule of M is not 2-absorbing. Also, part (ii) of Proposition 2 shows that the zero submodule is not a classical prime submodule. Hence the two concepts of classical prime submodules and of classical 2-absorbing submodules are different in general.

Let M be an R-module and N a submodule of M. For every $a \in R,\{m \in M \mid a m \in N\}$ is denoted by $\left(N:_{R} a\right)$. It is easy to see that $\left(N:_{M} a\right)$ is a submodule of M containing N.

Theorem 2. Let M be an R-module and N be a proper submodule of M. The following conditions are equivalent:
(i) N is classical 2-absorbing;
(ii) For every $a, b, c \in R,\left(N:_{M} a b c\right)=\left(N:_{M} a b\right) \cup\left(N:_{M} a c\right) \cup\left(N:_{M} b c\right)$;
(iii) For every $a, b \in R$ and $m \in M$ with $a b m \notin N,\left(N:_{R} a b m\right)=\left(N:_{R} a m\right) \cup\left(N:_{R} b m\right)$;
(iv) For every $a, b \in R$ and $m \in M$ with $a b m \notin N,\left(N:_{R} a b m\right)=\left(N:_{R} a m\right)$ or ($\left.N:_{R} a b m\right)=\left(N:_{R} b m\right) ;$
(v) For every $a, b \in R$ and every ideal I of R and $m \in M$ with abIm $\subseteq N$, either $a b m \in N$ or $\operatorname{aIm} \subseteq N$ or $b I m \subseteq N$;
(vi) For every $a \in R$ and every ideal I of R and $m \in M$ with $\operatorname{aIm} \nsubseteq N,\left(N:_{R} a \operatorname{Im}\right)=\left(N:_{R} a m\right)$ or $\left(N:_{R} \operatorname{IIm}\right)=\left(N:_{R} \operatorname{Im}\right)$;
(vii) For every $a \in R$ and every ideals I, J of R and $m \in M$ with aIJm $\subseteq N$, either $\operatorname{aIm} \subseteq N$ or $a J m \subseteq N$ or $I J m \subseteq N$;
(viii) For every ideals I, J of R and $m \in M$ with $\operatorname{IJm} \nsubseteq N,\left(N:_{R} I J m\right)=\left(N:_{R} I m\right)$ or $\left(N:_{R} I J m\right)=\left(N:_{R} J m\right) ;$
(ix) For every ideals I, J, K of R and $m \in M$ with $I J K m \subseteq N$, either $I J m \subseteq N$ or $I K m \subseteq N$ or $J K m \subseteq N$;
(x) For every $m \in M \backslash N,\left(N:_{R} m\right)$ is a 2-absorbing ideal of R.

Proof. $(i) \Rightarrow$ (ii) Suppose that N is a classical 2-absorbing submodule of M. Let
$m \in\left(N:_{M} a b c\right)$. Then $a b c m \in N$. Hence $a b m \in N$ or $a c m \in N$ or $b c m \in N$. Therefore $m \in\left(N:_{M} a b\right)$ or $m \in\left(N:_{M} a c\right)$ or $m \in\left(N:_{M} b c\right)$. Consequently,

$$
\left(N:_{M} a b c\right)=\left(N:_{M} a b\right) \cup\left(N:_{M} a c\right) \cup\left(N:_{M} b c\right) .
$$

(ii) \Rightarrow (iii) Let $a b m \notin N$ for some $a, b \in R$ and $m \in M$. Assume that $x \in\left(N:_{R} a b m\right)$. Then $a b x m \in N$, and so $m \in\left(N:_{M} a b x\right)$. Since $a b m \notin N, m \notin\left(N:_{M} a b\right)$. Thus by part (i), $m \in\left(N:_{M} a x\right)$ or $m \in\left(N:_{M} b x\right)$, whence $x \in\left(N:_{R} a m\right)$ or $x \in\left(N:_{R} b m\right)$. Therefore $\left(N:_{R} a b m\right)=\left(N:_{R} a m\right) \cup\left(N:_{R} b m\right)$.
(iii) \Rightarrow ($i v$) By the fact that if an ideal (a subgroup) is the union of two ideals (two subgroups), then it is equal to one of them.
$(i v) \Rightarrow(v)$ Let for some $a, b \in R$, an ideal I of R and $m \in M, a b I m \subseteq N$. Hence $I \subseteq\left(N:_{R} a b m\right)$. If $a b m \in N$, then we are done. Assume that $a b m \notin N$. Therefore by part ($i v$) we have that $I \subseteq\left(N:_{R} a m\right)$ or $I \subseteq\left(N:_{R} b m\right)$, i.e., $a I m \subseteq N$ or $\operatorname{bIm} \subseteq N$.
$(v) \Rightarrow(v i) \Rightarrow(v i i) \Rightarrow(v i i i) \Rightarrow(i x)$ Have proofs similar to that of the previous implications.
$(i x) \Rightarrow(i)$ Is trivial. (ix) $\Leftrightarrow(x)$ Straightforward.

Corollary 2. Let R be a ring and I be a proper ideal of R.
(i) ${ }_{R} I$ is a classical 2-absorbing submodule of R if and only if I is a 2-absorbing ideal of R.
(ii) Every proper ideal of R is 2-absorbing if and only if for every R-module M and every proper submodule N of M, N is a classical 2-absorbing submodule of M.

Proof. (i) Let I be a classical 2-absorbing submodule of R. Then by Theorem 2, $\left(I:_{R} 1\right)=I$ is a 2 -absorbing ideal of R. For the converse see part (i) of Proposition 2.
(ii) Assume that every proper ideal of R is 2 -absorbing. Let N be a proper submodule of an R-module M. Since for every $m \in M \backslash N,\left(N:_{R} m\right)$ is a proper ideal of R, then it is a 2-absorbing ideal of R. Hence by Theorem 2, N is a classical 2 -absorbing submodule of M. We have the converse immediately by part (i).

Proposition 3. Let M be an R-module and $\left\{K_{i} \mid i \in I\right\}$ be a chain of classical 2-absorbing submodules of M. Then $\cap_{i \in I} K_{i}$ is a classical 2-absorbing submodule of M.

Proof. Suppose that $a b c m \in \cap_{i \in I} K_{i}$ for some $a, b, c \in R$ and $m \in M$. Assume that $a b m \notin \cap_{i \in I} K_{i}$ and $a c m \notin \cap_{i \in I} K_{i}$. Then there are $t, l \in I$ where $a b m \notin K_{t}$ and $a c m \notin K_{l}$. Hence, for every $K_{s} \subseteq K_{t}$ and every $K_{d} \subseteq K_{l}$ we have that $a b m \notin K_{s}$ and $\operatorname{acm} \notin K_{d}$. Thus, for every submodule K_{h} such that $K_{h} \subseteq K_{t}$ and $K_{h} \subseteq K_{l}$ we get $b c m \in K_{h}$. Hence bcm $\in \cap_{i \in I} K_{i}$.

A classical 2-absorbing submodule of M is called minimal, if for any classical 2-absorbing submodule K of M such that $K \subseteq N$, then $K=N$. Let L be a classical 2-absorbing submodule of M. Set

$$
\Gamma=\{K \mid K \text { is a classical 2-absorbing submodule of } M \text { and } K \subseteq L\}
$$

If $\left\{K_{i}: i \in I\right\}$ is any chain in Γ, then $\cap_{i \in I} K_{i}$ is in Γ, by Proposition 3. By Zorn's Lemma, Γ contains a minimal member which is clearly a minimal classical 2 -absorbing submodule of M. Thus, every classical 2 -absorbing submodule of M contains a minimal classical 2-absorbing submodule of M. If M is a finitely generated, then it is clear that M contains a minimal classical 2-absorbing submodule.

Theorem 3. Let M be a Noetherian R-module. Then M contains a finite number of minimal classical 2-absorbing submodules.

Proof. Suppose that the result is false. Let Γ denote the collection of proper submodules N of M such that the module M / N has an infinite number of minimal classical 2-absorbing submodules. Since $0 \in \Gamma$ we get $\Gamma \neq \varnothing$. Therefore Γ has a maximal member T, since M is a Noetherian R-module. It is clear that T is not a classical 2 -absorbing submodule. Therefore, there exists an element $m \in M \backslash T$ and ideals I, J, K in R such that $I J K m \subseteq T$ but $I J m \nsubseteq T$, $I K m \nsubseteq T$ and $J K m \nsubseteq T$. The maximality of T implies that $M /(T+I J m), M /(T+I K m)$
and $M /(T+J K m)$ have only finitely many minimal classical 2 -absorbing submodules. Suppose P / T be a minimal classical 2-absorbing submodule of M / T. So $I J K m \subseteq T \subseteq P$, which implies that $I J m \subseteq P$ or $I K m \subseteq P$ or $J K m \subseteq P$. Thus $P /(T+I J m)$ is a minimal classical 2-absorbing submodule of $M /(T+I J m)$ or $P /(T+I K m)$ is a minimal classical 2-absorbing submodule of $M /(T+I K m)$ or $P /(T+J K m)$ is a minimal classical 2-absorbing submodule of $M /(T+J K m)$. Thus, there are only a finite number of possibilities for the submodule P. This is a contradiction.

We recall from [5] that if I is a 2-absorbing ideal of a ring R, then either $\sqrt{I}=P$ where P is a prime ideal of R or $\sqrt{I}=P_{1} \cap P_{2}$ where P_{1}, P_{2} are the only distinct minimal prime ideals of I.

Corollary 3. Let N be a classical 2-absorbing submodule of an R-module M. Suppose that $m \in M \backslash N$ and $\sqrt{\left(N:_{R} m\right)}=P$ where P is a prime ideal of R and $\left(N:_{R} m\right) \neq P$. Then for each $x \in \sqrt{\left(N:_{R} m\right)} \backslash\left(N:_{R} m\right)$, $\left(N:_{R} x m\right)$ is a prime ideal of R containing P. Furthermore, either $\left(N:_{R} x m\right) \subseteq\left(N:_{R} y m\right)$ or $\left(N:_{R} y m\right) \subseteq\left(N:_{R} x m\right)$ for every $x, y \in \sqrt{\left(N:_{R} m\right)} \backslash\left(N:_{R} m\right)$.

Proof. By Theorem 2 and [5, Theorem 2.5].
Corollary 4. Let N be a classical 2-absorbing submodule of an R-module M. Suppose that $m \in M \backslash N$ and $\sqrt{\left(N:_{R} m\right)}=P_{1} \cap P_{2}$ where P_{1} and P_{2} are the only nonzero distinct prime ideals of R that are minimal over $\left(N:_{R} m\right)$. Then for each $x \in \sqrt{\left(N:_{R} m\right)} \backslash\left(N:_{R} m\right)$, $\left(N:_{R} x m\right)$ is a prime ideal of R containing P_{1} and P_{2}. Furthermore, either $\left(N:_{R} x m\right) \subseteq\left(N:_{R} y m\right)$ or $\left(N:_{R} y m\right) \subseteq\left(N:_{R} x m\right)$ for every $x, y \in \sqrt{\left(N:_{R} m\right)} \backslash\left(N:_{R} m\right)$.

Proof. By Theorem 2 and [5, Theorem 2.6].
An R-module M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. Let N and K be submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product of N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. Then by [1, Theorem 3.4], the product of N and K is independent of presentations of N and K.

Proposition 4. Let M be a multiplication R-module and N be a proper submodule of M. The following conditions are equivalent:
(i) N is a classical 2-absorbing submodule of M;
(ii) If $N_{1} N_{2} N_{3} m \subseteq N$ for some submodules N_{1}, N_{2}, N_{3} of M and $m \in M$, then either $N_{1} N_{2} m \subseteq N$ or $N_{1} N_{3} m \subseteq N$ or $N_{2} N_{3} m \subseteq N$.

Proof. (i) \Rightarrow (ii) Let $N_{1} N_{2} N_{3} m \subseteq N$ for some submodules N_{1}, N_{2}, N_{3} of M and $m \in M$. Since M is multiplication, there are ideals I_{1}, I_{2}, I_{3} of R such that $N_{1}=I_{1} M, N_{2}=I_{2} M$ and $N_{3}=I_{3} M$. Therefore $I_{1} I_{2} I_{3} m \subseteq N$, and so either $I_{1} I_{2} m \subseteq N$ or $I_{1} I_{3} m \subseteq N$ or $I_{2} I_{3} m \subseteq N$. Hence $N_{1} N_{2} m \subseteq N$ or $N_{1} N_{3} m \subseteq N$ or $N_{2} N_{3} m \subseteq N$.
(ii) \Rightarrow (i) Suppose that $I_{1} I_{2} I_{3} m \subseteq N$ for some ideals I_{1}, I_{2}, I_{3} of R and some $m \in M$. It is sufficient to set $N_{1}:=I_{1} M, N_{2}:=I_{2} M$ and $N_{3}=I_{3} M$ in part (ii).

In [16], Quartararo et al. said that a commutative ring R is a u-ring provided R has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals; and a um-ring is a ring R with the property that an R-module which is equal to a finite union of submodules must be equal to one of them. They show that every Bézout ring is a u-ring. Moreover, they proved that every Prüfer domain is a u-domain. Also, any ring which contains an infinite field as a subring is a u-ring, [17, Exercise 3.63].

Theorem 4. Let R be a um-ring, M be an R-module and N be a proper submodule of M. The following conditions are equivalent:
(i) N is classical 2-absorbing;
(ii) For every $a, b, c \in R,\left(N:_{M} a b c\right)=\left(N:_{M} a b\right)$ or $\left(N:_{M} a b c\right)=\left(N:_{M} a c\right)$ or $\left(N:_{M} a b c\right)=\left(N:_{M} b c\right) ;$
(iii) For every $a, b, c \in R$ and every submodule L of $M, a b c L \subseteq N$ implies that $a b L \subseteq N$ or $a c L \subseteq N$ or $b c L \subseteq N ;$
(iv) For every $a, b \in R$ and every submodule L of M with $a b L \nsubseteq N,\left(N:_{R} a b L\right)=\left(N:_{R} a L\right)$ or $\left(N:_{R} a b L\right)=\left(N:_{R} b L\right) ;$
(v) For every $a, b \in R$, every ideal I of R and every submodule L of $M, a b I L \subseteq N$ implies that $a b L \subseteq N$ or $a I L \subseteq N$ or $b I L \subseteq N$;
(vi) For every $a \in R$, every ideal I of R and every submodule L of M with $a I L \nsubseteq N,\left(N:_{R} a I L\right)=\left(N:_{R} a L\right)$ or $\left(N:_{R} a I L\right)=\left(N:_{R} I L\right) ;$
(vii) For every $a \in R$, every ideals I, J of R and every submodule L of M, aIJ $L \subseteq N$ implies that $a I L \subseteq N$ or $a J L \subseteq N$ or $I J L \subseteq N ;$
(viii) For every ideals I, J of R and every submodule L of M with $I J L \nsubseteq N,\left(N:_{R} I J L\right)=\left(N:_{R} I L\right)$ or $\left(N:_{R} I J L\right)=\left(N:_{R} J L\right) ;$
(ix) For every ideals I, J, K of R and every submodule L of $M, I J K L \subseteq N$ implies that $I J L \subseteq N$ or $I K L \subseteq N$ or $J K L \subseteq N$;
(x) For every submodule L of M not contained in $N,\left(N:_{R} L\right)$ is a 2-absorbing ideal of R.

Proof. Similar to the proof of Theorem 2.
Proposition 5. Let R be a um-ring and N be a proper submodule of an R-module M. Then N is a classical 2-absorbing submodule of M if and only if N is a 3 -absorbing submodule of M and ($N:_{R} M$) is a 2-absorbing ideal of R.

Proof. It is trivial that if N is classical 2 -absorbing, then it is 3 -absorbing. Also, Theorem 4 implies that $\left(N:_{R} M\right)$ is a 2-absorbing ideal of R. Now, assume that N is a 3-absorbing submodule of M and $\left(N:_{R} M\right)$ is a 2 -absorbing ideal of R. Let $a_{1} a_{2} a_{3} m \in N$ for some $a_{1}, a_{2}, a_{3} \in R$ and $m \in M$ such that neither $a_{1} a_{2} m \in N$ nor $a_{1} a_{3} m \in N$ nor $a_{2} a_{3} m \in N$. Then $a_{1} a_{2} a_{3} \in\left(N:_{R} M\right)$
and so either $a_{1} a_{2} \in\left(N:_{R} M\right)$ or $a_{1} a_{3} \in\left(N:_{R} M\right)$ or $a_{2} a_{3} \in\left(N:_{R} M\right)$. This contradiction shows that N is classical 2-absorbing.

Proposition 6. Let M be an R-module and N be a classical 2-absorbing submodule of M. The following conditions hold:
(i) For every $a, b, c \in R$ and $m \in M,\left(N:_{R} a b c m\right)=\left(N:_{R} a b m\right) \cup\left(N:_{R} a c m\right) \cup\left(N:_{R} b c m\right)$;
(ii) If R is a u-ring, then for every $a, b, c \in R$ and $m \in M,\left(N:_{R} a b c m\right)=\left(N:_{R} a b m\right)$ or $\left(N:_{R} a b c m\right)=\left(N:_{R} a c m\right)$ or $\left(N:_{R} a b c m\right)=\left(N:_{R} b c m\right)$.

Proof. (i) Let $a, b, c \in R$ and $m \in M$. Suppose that $r \in\left(N:_{R} a b c m\right)$. Then $a b c(r m) \in N$. So, either $a b(r m) \in N$ or $a c(r m) \in N$ or $b c(r m) \in N$. Therefore, either $r \in\left(N:_{R} a b m\right)$ or $r \in\left(N:_{R} a c m\right)$ or $r \in\left(N:_{R} b c m\right)$. Consequently
$\left(N:_{R} a b c m\right)=\left(N:_{R} a b m\right) \cup\left(N:_{R} a c m\right) \cup\left(N:_{R} b c m\right)$.
(ii) Use part (i).

Proposition 7. Let R be a um-ring, M be a multiplication R-module and N be a proper submodule of M. The following conditions are equivalent:
(i) N is a classical 2-absorbing submodule of M;
(ii) If $N_{1} N_{2} N_{3} N_{4} \subseteq N$ for some submodules $N_{1}, N_{2}, N_{3}, N_{4}$ of M, then either $N_{1} N_{2} N_{4} \subseteq N$ or $N_{1} N_{3} N_{4} \subseteq N$ or $N_{2} N_{3} N_{4} \subseteq N$;
(iii) If $N_{1} N_{2} N_{3} \subseteq N$ for some submodules N_{1}, N_{2}, N_{3} of M, then either $N_{1} N_{2} \subseteq N$ or $N_{1} N_{3} \subseteq N$ or $N_{2} N_{3} \subseteq N$;
(iv) N is a 2-absorbing submodule of M;
(v) $\left(N:_{R} M\right)$ is a 2-absorbing ideal of R.

Proof. (i) \Rightarrow (ii) Let $N_{1} N_{2} N_{3} N_{4} \subseteq N$ for some submodules $N_{1}, N_{2}, N_{3}, N_{4}$ of M. Since M is multiplication, there are ideals I_{1}, I_{2}, I_{3} of R such that $N_{1}=I_{1} M, N_{2}=I_{2} M$ and $N_{3}=I_{3} M$. Therefore $I_{1} I_{2} I_{3} N_{4} \subseteq N$, and so $I_{1} I_{2} N_{4} \subseteq N$ or $I_{1} I_{3} N_{4} \subseteq N$ or $I_{2} I_{3} N_{4} \subseteq N$. Thus by Theorem 4, either $N_{1} N_{2} N_{4} \subseteq N$ or $N_{1} N_{3} N_{4} \subseteq N$ or $N_{2} N_{3} N_{4} \subseteq N$.
(ii) \Rightarrow (iii) Is easy.
(iii) \Rightarrow (iv) Suppose that $I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M. It is sufficient to set $N_{1}:=I_{1} M, N_{2}:=I_{2} M$ and $N_{3}=K$ in part (iii).
(iv) \Rightarrow (i) By part (i) of Proposition 2.
(iv) $\Rightarrow(v)$ By [15, Theorem 2.3].
$(v) \Rightarrow(i v)$ Let $I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M. Since M is multiplication, then there is an ideal I_{3} of R such that $K=I_{3} M$. Hence $I_{1} I_{2} I_{3} \subseteq\left(N:_{R} M\right)$ which implies that either $I_{1} I_{2} \subseteq\left(N:_{R} M\right)$ or $I_{1} I_{3} \subseteq\left(N:_{R} M\right)$ or $I_{2} I_{3} \subseteq\left(N:_{R} M\right)$. If $I_{1} I_{2} \subseteq\left(N:_{R} M\right)$, then we are done. So, suppose that $I_{1} I_{3} \subseteq\left(N:_{R} M\right)$. Thus $I_{1} I_{3} M=I_{1} K \subseteq N$. Similarly if $I_{2} I_{3} \subseteq\left(N:_{R} M\right)$, then we have $I_{2} K \subseteq N$.

Definition 1. Let R be a um-ring, M be an R-module and S be a subset of $M \backslash\{0\}$. If for all ideals I, J, Q of R and all submodules K, L of $M,(K+I J L) \cap S \neq \emptyset$ and $(K+I Q L) \cap S \neq \emptyset$ and $(K+J Q L) \cap S \neq \emptyset$ implies $(K+I J Q L) \cap S \neq \emptyset$, then the subset S is called classical 2-absorbing m-closed.

Proposition 8. Let R be a um-ring, M be R-module and N a submodule of M. Then N is a classical 2-absorbing submodule if and only if $M \backslash N$ is a classical 2-absorbing m-closed.

Proof. Suppose that N is a classical 2-absorbing submodule of M and I, J, Q are ideals of R and K, L are submodules of M such that $(K+I J L) \cap S \neq \emptyset$ and $(K+I Q L) \cap S \neq \emptyset$ and $(K+J Q L) \cap S \neq \emptyset$ where $S=M \backslash N$. Assume that $(K+I J Q L) \cap S=\emptyset$. Then $K+I J Q L \subseteq N$ and so $K \subseteq N$ and $I J Q L \subseteq N$. Since N is a classical 2-absorbing submodule, we get $I J L \subseteq N$ or $I Q L \subseteq N$ or $J Q L \subseteq N$. If $I J L \subseteq N$, then we get $(K+I J L) \cap S=\emptyset$, since $K \subseteq N$. This is a contradiction. By the other cases we get similar contradictions. Now for the converse suppose that $S=M \backslash N$ is a classical 2-absorbing m-closed and assume that $I J Q L \subseteq N$ for some ideals I, J, Q of R and submodule L of M. Then we get for submodule $K=(0), K+I J Q L \subseteq N$. Thus $(K+I J Q L) \cap S=\emptyset$. Since S is a classical 2 -absorbing m-closed, $(K+I J L) \cap S=\emptyset$ or $(K+I Q L) \cap S=\emptyset$ or $(K+J Q L) \cap S=\emptyset$. Hence $I J L \subseteq N$ or $I Q L \subseteq N$ or $J Q L \subseteq N$. So N is a classical 2-absorbing submodule.

Proposition 9. Let R be a um-ring, M be an R-module, N a submodule of M and $S=M \backslash N$. The following conditions are equivalent:
(i) N is a classical 2-absorbing submodule of M;
(ii) S is a classical 2-absorbing m-closed;
(iii) For every ideals I, J, Q of R and every submodule L of M, if $I J L \cap S \neq \emptyset$ and $I Q L \cap S \neq \emptyset$ and $J Q L \cap S \neq \emptyset$, then $I J Q L \cap S \neq \emptyset$;
(iv) For every ideals I, J, Q of R and every $m \in M$, if $I J m \cap S \neq \emptyset$ and $I Q m \cap S \neq \emptyset$ and $J Q m \cap S \neq \emptyset$, then $I J Q m \cap S \neq \emptyset$.

Proof. It follows from the previous Proposition, Theorem 2 and Theorem 4.
Theorem 5. Let R be a um-ring, M be an R-module and S be a classical 2-absorbing m-closed. Then the set of all submodules of M which are disjoint from S has at least one maximal element. Any such maximal element is a classical 2-absorbing submodule.

Proof. Let $\Psi=\{N \mid N$ is a submodule of M and $N \cap S=\emptyset\}$. Then (0) $\in \Psi \neq \emptyset$. Since Ψ is partially ordered by using Zorn's Lemma we get at least a maximal element of Ψ, say P, with property $P \cap S=\emptyset$. Now we will show that P is classical 2-absorbing. Suppose that $I J Q L \subseteq P$ for ideals I, J, Q of R and submodule L of M. Assume that $I J L \nsubseteq P$ or $I Q L \nsubseteq P$ or $J Q L \nsubseteq P$. Then by the maximality of P we get $(I J L+P) \cap S \neq \emptyset$ and $(I Q L+P) \cap S \neq \emptyset$ and $(J Q L+P) \cap S \neq \emptyset$. Since S is a classical 2 -absorbing m-closed we have $(I J Q L+P) \cap S \neq \emptyset$. Hence $P \cap S \neq \emptyset$, which is a contradiction. Thus P is a classical 2-absorbing submodule of M.

Theorem 6. Let R be a um-ring and M be an R-module.
(i) If F is a flat R-module and N is a classical 2 -absorbing submodule of M such that $F \otimes N \neq F \otimes M$, then $F \otimes N$ is a classical 2 -absorbing submodule of $F \otimes M$.
(ii) Suppose that F is a faithfully flat R-module. Then N is a classical 2 -absorbing submodule of M if and only if $F \otimes N$ is a classical 2-absorbing submodule of $F \otimes M$.

Proof. (i) Let $a, b, c \in R$. Then we get by Theorem 4, $\left(N:_{M} a b c\right)=\left(N:_{M} a b\right)$ or $\left(N:_{M} a b c\right)=\left(N:_{M} a c\right)$ or $\left(N:_{M} a b c\right)=\left(N:_{M} b c\right)$. Assume that $\left(N:_{M} a b c\right)=\left(N:_{M} a b\right)$. Then by [4, Lemma 3.2],

$$
\left(F \otimes N:_{F \otimes M} a b c\right)=F \otimes\left(N:_{M} a b c\right)=F \otimes\left(N:_{M} a b\right)=\left(F \otimes N:_{F \otimes M} a b\right) .
$$

Again Theorem 4 implies that $F \otimes N$ is a classical 2-absorbing submodule of $F \otimes M$.
(ii) Let N be a classical 2-absorbing submodule of M and assume that $F \otimes N=F \otimes M$. Then $0 \rightarrow F \otimes N \stackrel{\subsetneq}{\rightarrow} F \otimes M \rightarrow 0$ is an exact sequence. Since F is a faithfully flat module, $0 \rightarrow N \stackrel{\leftrightarrows}{\leftrightharpoons} M \rightarrow 0$ is an exact sequence. So $N=M$, which is a contradiction. So $F \otimes N \neq F \otimes M$. Then $F \otimes N$ is a classical 2 -absorbing submodule by (1). Now for conversely, let $F \otimes N$ be a classical 2-absorbing submodule of $F \otimes M$. We have $F \otimes N \neq F \otimes M$ and so $N \neq M$. Let $a, b, c \in R$. Then $\left(F \otimes N:_{F \otimes M} a b c\right)=\left(F \otimes N:_{F \otimes M} a b\right)$ or
$\left(F \otimes N:_{F \otimes M} a b c\right)=\left(F \otimes N:_{F \otimes M} a c\right)$ or $\left(F \otimes N:_{F \otimes M} a b c\right)=\left(F \otimes N:_{F \otimes M} b c\right)$ by Theorem 4. Assume that $\left(F \otimes N:_{F \otimes M} a b c\right)=\left(F \otimes N:_{F \otimes M} a b\right)$. Hence

$$
F \otimes\left(N:_{M} a b\right)=\left(F \otimes N:_{F \otimes M} a b\right)=\left(F \otimes N:_{F \otimes M} a b c\right)=F \otimes\left(N:_{M} a b c\right) .
$$

So $0 \rightarrow F \otimes\left(N:_{M} a b\right) \stackrel{\subseteq}{\leftrightharpoons} F \otimes\left(N:_{M} a b c\right) \rightarrow 0$ is an exact sequence. Since F is a faithfully flat module, $0 \rightarrow\left(N:_{M} a b\right) \stackrel{\subseteq}{\leftrightarrows}\left(N:_{M} a b c\right) \rightarrow 0$ is an exact sequence which implies that $\left(N:_{M} a b\right)=\left(N:_{M} a b c\right)$. Consequently N is a classical 2-absorbing submodule of M by Theorem 4.

Corollary 5. Let R be a um-ring, M be an R-module and X be an indeterminate. If N is a classical 2 -absorbing submodule of M, then $N[X]$ is a classical 2-absorbing submodule of $M[X]$.

Proof. Assume that N is a classical 2-absorbing submodule of M. Notice that $R[X]$ is a flat R-module. So by Theorem $6, R[X] \otimes N \simeq N[X]$ is a classical 2-absorbing submodule of $R[X] \otimes M \simeq M[X]$.
For an R-module M, the set of zero-divisors of M is denoted by $Z_{R}(M)$.
Proposition 10. Let M be an R-module, N be a submodule and S be a multiplicative subset of R.
(i) If N is a classical 2-absorbing submodule of M such that $\left(N:_{R} M\right) \cap S=\emptyset$, then $S^{-1} N$ is a classical 2-absorbing submodule of $S^{-1} M$.
(ii) If $S^{-1} N$ is a classical 2-absorbing submodule of $S^{-1} M$ such that $Z_{R}(M / N) \cap S=\emptyset$, then N is a classical 2-absorbing submodule of M.

Proof. (i) Let N be a classical 2-absorbing submodule of M and $\left(N:_{R} M\right) \cap S=\emptyset$. Suppose that $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \frac{a_{3}}{s_{3}} \frac{m}{s_{4}} \in S^{-1} N$. Then there exist $n \in N$ and $s \in S$ such that $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \frac{a_{3}}{s_{3}} \frac{m}{s_{4}}=\frac{n}{s}$. Therefore there exists an $s^{\prime} \in S$ such that $s^{\prime} s a_{1} a_{2} a_{3} m=s^{\prime} s_{1} s_{2} s_{3} s_{4} n \in N$. So $a_{1} a_{2} a_{3}\left(s^{*} m\right) \in N$ for $s^{*}=s^{\prime} s$. Since N is a classical 2 -absorbing submodule we get $a_{1} a_{2}\left(s^{*} m\right) \in N$ or $a_{1} a_{3}\left(s^{*} m\right) \in N$ or $a_{2} a_{3}\left(s^{*} m\right) \in N$. Thus $\frac{a_{1} a_{2} m}{s_{1} s_{2} s_{4}}=\frac{a_{1} a_{2}\left(s^{*} m\right)}{s_{1} s_{2} s_{4}{ }^{*}} \in S^{-1} N$ or $\frac{a_{1} a_{3} m}{s_{1} s_{3} s_{4}} \in S^{-1} N$ or $\frac{a_{2} a_{3} m}{s_{2} s_{3} s_{4}} \in S^{-1} N$.
(ii) Assume that $S^{-1} N$ is a classical 2-absorbing submodule of $S^{-1} M$ and $Z_{R}(M / N) \cap S=\emptyset$. Let $a, b, c \in R$ and $m \in M$ such that $a b c m \in N$. Then $\frac{a}{1} \frac{b}{1} \frac{c}{1} \frac{m}{1} \in S^{-1} N$. Therefore $\frac{a}{1} \frac{b}{1} \frac{m}{1} \in S^{-1} N$ or $\frac{a}{1} \frac{c}{1} \frac{m}{1} \in S^{-1} N$ or $\frac{b}{1} \frac{c}{1} \frac{m}{1} \in S^{-1} N$. We may assume that $\frac{a}{1} \frac{b}{1} \frac{m}{1} \in S^{-1} N$. So there exists $u \in S$ such that $u a b m \in N$. But $Z_{R}(M / N) \cap S=\emptyset$, whence $a b m \in N$. Consequently N is a classical 2-absorbing submodule of M.

Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module, for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module and each submodule of M is in the form of $N=N_{1} \times N_{2}$ for some submodules N_{1} of M_{1} and N_{2} of M_{2}.
Theorem 7. Let $R=R_{1} \times R_{2}$ be a decomposable ring and $M=M_{1} \times M_{2}$ be an R-module where M_{1} is an R_{1}-module and M_{2} is an R_{2}-module. Suppose that $N=N_{1} \times N_{2}$ is a proper submodule of M. Then the following conditions are equivalent:
(i) N is a classical 2-absorbing submodule of M;
(ii) Either $N_{1}=M_{1}$ and N_{2} is a classical 2-absorbing submodule of M_{2} or $N_{2}=M_{2}$ and N_{1} is a classical 2-absorbing submodule of M_{1} or N_{1}, N_{2} are classical prime submodules of M_{1}, M_{2}, respectively.

Proof. (i) \Rightarrow (ii) Suppose that N is a classical 2-absorbing submodule of M such that $N_{2}=M_{2}$. From our hypothesis, N is proper, so $N_{1} \neq M_{1}$. Set $M^{\prime}=\frac{M}{\{0\} \times M_{2}}$. Hence $N^{\prime}=\frac{N}{\{0\} \times M_{2}}$ is a classical 2 -absorbing submodule of M^{\prime} by Corollary 1. Also observe that $M^{\prime} \cong M_{1}$ and $N^{\prime} \cong N_{1}$. Thus N_{1} is a classical 2-absorbing submodule of M_{1}. Suppose that $N_{1} \neq M_{1}$ and $N_{2} \neq M_{2}$. We show that N_{1} is a classical prime submodule of M_{1}. Since $N_{2} \neq M_{2}$, there exists $m_{2} \in M_{2} \backslash N_{2}$. Let $a b m_{1} \in N_{1}$ for some $a, b \in R_{1}$ and $m_{1} \in M_{1}$. Thus

$$
(a, 1)(b, 1)(1,0)\left(m_{1}, m_{2}\right)=\left(a b m_{1}, 0\right) \in N=N_{1} \times N_{2} .
$$

So either $(a, 1)(1,0)\left(m_{1}, m_{2}\right)=\left(a m_{1}, 0\right) \in N$ or $(b, 1)(1,0)\left(m_{1}, m_{2}\right)=\left(b m_{1}, 0\right) \in N$. Hence either $a m_{1} \in N_{1}$ or $b m_{1} \in N_{1}$ which shows that N_{1} is a classical prime submodule of M_{1}. Similarly we can show that N_{2} is a classical prime submodule of M_{2}.
(ii) \Rightarrow (i) Suppose that $N=N_{1} \times M_{2}$ where N_{1} is a classical 2-absorbing (resp. classical prime) submodule of M_{1}. Then it is clear that N is a classical 2-absorbing (resp. classical prime) submodule of M. Now, assume that $N=N_{1} \times N_{2}$ where N_{1} and N_{2} are classical prime submodules of M_{1} and M_{2}, respectively. Hence $\left(N_{1} \times M_{2}\right) \cap\left(M_{1} \times N_{2}\right)=N_{1} \times N_{2}=N$ is a classical 2 -absorbing submodule of M, by Proposition 1.

Lemma 1. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a decomposable ring and $M=M_{1} \times M_{2} \times \cdots \times M_{n}$ be an R-module where for every $1 \leq i \leq n, M_{i}$ is an R_{i}-module, respectively. A proper submodule N of M is a classical prime submodule of M if and only if $N=\times_{i=1}^{n} N_{i}$ such that for some $k \in\{1,2, \ldots, n\}$, N_{k} is a classical prime submodule of M_{k}, and $N_{i}=M_{i}$ for every $i \in\{1,2, \ldots, n\} \backslash\{k\}$.

Proof. (\Rightarrow) Let N be a classical prime submodule of M. We know $N=\times{ }_{i=1}^{n} N_{i}$ where for every $1 \leq i \leq n, N_{i}$ is a submodule of M_{i}, respectively. Assume that N_{r} is a proper submodule of M_{r} and N_{s} is a proper submodule of M_{s} for some $1 \leq r<s \leq n$. So, there are $m_{r} \in M_{r} \backslash N_{r}$ and $m_{s} \in M_{s} \backslash N_{s}$. Since

$$
\begin{gathered}
(0, \ldots, 0, \overbrace{1_{R_{r}}}^{r \text {-th }}, 0, \ldots, 0)(0, \ldots, 0, \overbrace{1_{R_{s}}}^{s \text {-th }}, 0, \ldots, 0)(0, \ldots, 0, \overbrace{m_{r}}^{r \text {-th }}, 0, \ldots, 0, \overbrace{m_{s}}^{s \text {-th }}, 0, \ldots, 0) \\
=(0, \ldots, 0) \in N
\end{gathered}
$$

then either

$$
\begin{gathered}
(0, \ldots, 0, \overbrace{1_{R_{r}}}^{r \text {-th }}, 0, \ldots, 0)(0, \ldots, 0, \overbrace{m_{r}}^{r \text {-th }}, 0, \ldots, 0, \overbrace{m_{s}}^{r \text {-th }}, 0, \ldots, 0) \\
=(0, \ldots, 0, \overbrace{m_{r}}^{r \text { th }}, 0, \ldots, 0) \in N
\end{gathered}
$$

or

$$
\begin{gathered}
(0, \ldots, 0, \overbrace{1_{R_{s}}}^{s \text {-th }}, 0, \ldots, 0)(0, \ldots, 0, \overbrace{m_{r}}^{r \text {-th }}, 0, \ldots, 0, \overbrace{m_{s}}^{s \text {-th }}, 0, \ldots, 0) \\
=(0, \ldots, 0, \overbrace{m_{s}}^{s \text {-th }}, 0, \ldots, 0) \in N
\end{gathered}
$$

which is a contradiction. Hence exactly one of the N_{i} 's is proper, say N_{k}. Now, we show that N_{k} is a classical prime submodule of M_{k}. Let $a b m_{k} \in N_{k}$ for some $a, b \in R_{k}$ and $m_{k} \in M_{k}$. Therefore

$$
\begin{gathered}
(0, \ldots, 0, \overbrace{a}^{k \text {-th }}, 0, \ldots, 0)(0, \ldots, 0, \overbrace{\overbrace{b}^{k}}^{k \text {-th }}, 0, \ldots, 0)(0, \ldots, 0, \overbrace{m_{k}}^{k \text {-th }}, 0, \ldots, 0) \\
=(0, \ldots, 0, \overbrace{a b m_{k}}^{k \text { th }}, 0, \ldots, 0) \in N,
\end{gathered}
$$

and so

$$
(0, \ldots, 0, \overbrace{a}^{k \text {-th }}, 0, \ldots, 0)(0, \ldots, 0, \overbrace{m_{k}}^{k \text {-th }}, 0, \ldots, 0)=(0, \ldots, 0, \overbrace{m_{k}}^{k \text {-th }}, 0, \ldots, 0) \in N
$$

or

$$
(0, \ldots, 0, \overbrace{b}^{k \text {-th }}, 0, \ldots, 0)(0, \ldots, 0, \overbrace{m_{k}}^{k \text {-th }}, 0, \ldots, 0)=(0, \ldots, 0, \overbrace{b m_{k}}^{k \text {-th }}, 0, \ldots, 0) \in N .
$$

Thus $a m_{k} \in N_{k}$ or $b m_{k} \in N_{k}$ which implies that N_{k} is a classical prime submodule of M_{k}. (\Leftarrow) Is easy.

Theorem 8. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}(2 \leq n<\infty)$ be a decomposable ring and $M=M_{1} \times M_{2} \times \cdots \times M_{n}$ be an R-module where for every $1 \leq i \leq n, M_{i}$ is an R_{i}-module, respectively. For a proper submodule N of M the following conditions are equivalent:
(i) N is a classical 2-absorbing submodule of M;
(ii) Either $N=\times_{t=1}^{n} N_{t}$ such that for some $k \in\{1,2, \ldots, n\}, N_{k}$ is a classical 2-absorbing submodule of M_{k}, and $N_{t}=M_{t}$ for every $t \in\{1,2, \ldots, n\} \backslash\{k\}$ or $N=\times_{t=1}^{n} N_{t}$ such that for some $k, m \in\{1,2, \ldots, n\}, N_{k}$ is a classical prime submodule of M_{k}, N_{m} is a classical prime submodule of M_{m}, and $N_{t}=M_{t}$ for every $t \in\{1,2, \ldots, n\} \backslash\{k, m\}$.

Proof. We argue induction on n. For $n=2$ the result holds by Theorem 7. Then let $3 \leq n<\infty$ and suppose that the result is valid when $K=M_{1} \times \cdots \times M_{n-1}$. We show that the result holds when $M=K \times M_{n}$. By Theorem 7, N is a classical 2-absorbing submodule of M if and only if either $N=L \times M_{n}$ for some classical 2-absorbing submodule L of K or $N=K \times L_{n}$ for some classical 2-absorbing submodule L_{n} of M_{n} or $N=L \times L_{n}$ for some classical prime submodule L of K and some classical prime submodule L_{n} of M_{n}. Notice that by Lemma 1, a proper submodule L of K is a classical prime submodule of K if and only if $L=\times_{t=1}^{n-1} N_{t}$ such that for some $k \in\{1,2, \ldots, n-1\}, N_{k}$ is a classical prime submodule of M_{k}, and $N_{t}=M_{t}$ for every $t \in\{1,2, \ldots, n-1\} \backslash\{k\}$. Consequently we reach the claim.

References

[1] R. Ameri. On the prime submodules of multiplication modules, International Journal of Mathematics and Mathematical Sciences, 27, 1715-1724. 2003.
[2] D. F. Anderson and A. Badawi. On n-absorbing ideals of commutative rings, Comunications in Algebra, 39, 1646-1672. 2011.
[3] A. Azizi. On prime and weakly prime submodules, Vietnam Journal of Mathematics, 36(3), 315-325. 2008.
[4] A. Azizi. Weakly prime submodules and prime submodules, Glasgow Mathematical Journal, 48, 343-346. 2006.
[5] A. Badawi. On 2-absorbing ideals of commutative rings, Bulletin of the Australian Mathematical Society, 75, 417-429. 2007.
[6] A. Badawi, Ü. Tekir, and E. Yetkin. On 2-absorbing primary ideals in commutative rings, Bulletin of the Korean Mathematical Society, 51(4), 1163-1173. 2014.
[7] A. Badawi, E. Yetkin, and Ü. Tekir. On weakly 2-absorbing primary ideals of commutative rings, Journal of the Korean Mathematical Society, 52(1), 97-111. 2015.
[8] A. Badawi and A. Yousefian Darani. On weakly 2-absorbing ideals of commutative rings, Houston Journal of Mathematics, 39, 441-452. 2013.
[9] M. Behboodi. A generalization of Bear's lower nilradical for modules, Journal of Algebra and its Applications, 6(2), 337-353. 2007.
[10] M. Behboodi. On weakly prime radical of modules and semi-compatible modules, Acta Mathematical Hungarica, 113(3), 239-250. 2006.
[11] M. Behboodi and H. Koohy. Weakly prime modules, Vietnam Journal of Mathematics, 32(2), 185-195. 2004.
[12] M. Behboodi and S. H. Shojaee. On chains of classical prime submodules and dimension theory of modules, Bulletin of the Iranian Mathematical Society, 36(1), 149-166. 2010.
[13] A. Y. Darani and F. Soheilnia. 2-absorbing and weakly 2-absorbing submodules, Thai Journal of Mathematics, 9(3), 577-584. 2011.
[14] A. Y. Darani and F. Soheilnia. On n-absorbing submodules, Mathematical Communications, 17, 547-557. 2012.
[15] Sh. Payrovi and S. Babaei. On 2-absorbing submodules, Algebra Colloquium, 19, 913-920. 2012.
[16] P. Quartararo and H. S. Butts. Finite unions of ideals and modules, Proceedings of the American Mathematical Society, 52, 91-96. 1975.
[17] R.Y. Sharp. Steps in commutative algebra, Second edition, Cambridge University Press, Cambridge, 2000.

[^0]: *Corresponding author.

