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1. Introduction

The notion of R0 topological spaces is introduced by Shanin [15] in 1943. Later, Davis [4]

rediscovered it and studied some properties of this weak separation axiom. Several topologists

(e.g. [6, 10, 13]) further investigated properties of R0 topological spaces and many interesting

results have been obtained in various contexts. In the same paper, Davis also introduced the

notion of R1 topological spaces which are independent of both T0 and T1 but strictly weaker

than T2. A subset A of a space (X ,τ) is said to be regular open (resp. regular closed) [16] if

A = Int(Cl(A)) (resp. A = Cl(Int(A))). A is said to be δ-open [18] if for each x ∈ A, there

exists a regular open set G such that x ∈ G ⊂ A. The complement of a δ-open set is said to be

δ-closed. A point x ∈ X is called a δ-cluster point of A if Int(Cl(U))∩A 6= ; for each open set

U containing x . The set of all δ-cluster points of A is called the δ-closure of A and is denoted

by Clδ(A) [18]. The set δ-interior of A [18] is the union of all regular open sets of X contained

in A and is denoted by Intδ(A). A is δ-open if Intδ(A) = A. The collection of all δ-open sets of

(X ,τ) is denoted by δO(X ) and forms a topology τδ.
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An ideal I on a topological space (X ,I ) is a nonempty collection of subsets of X which

satisfies the following conditions: A ∈ I and B ⊂ A implies B ∈ I ; A ∈ I and B ∈ I implies

A∪ B ∈ I . Applications to various fields were further investigated by Jankovic and Hamlett

[11]; Dontchev [5]; Mukherjee et al. [12]; Arenas et al. [3]; Nasef and Mahmoud [14], etc.

Given a topological space (X ,I ) with an ideal I on X and if ℘(X ) is the set of all subsets of

X , a set operator (.)∗ : ℘(X ) → ℘(X ), called a local function [11, 17] of A with respect to τ

and I is defined as follows: for A⊆ X ,

A∗(I ,τ) =
�

x ∈ X | U ∩ A /∈ I for every U ∈ τ(x)
	

where τ(x) = {U ∈ τ | x ∈ U}. Furthermore Cl∗(A) = A∪ A∗(I ,τ) defines a Kuratowski clo-

sure operator for the topology τ∗. When there is no chance for confusion, we will simply write

A∗ for A∗(I ,τ). X ∗ is often a proper subset of X . By a space, we always mean a topological

space (X ,τ)with no separation properties assumed. If A⊂ X , Cl(A) and Int(A)will denote the

closure and interior of A in (X ,τ), respectively. A subset A of a topological space (X ,τ) is said

to be e-open [9] if A⊂ Int(δCl(A))∪ Cl(δInt(A)). The notion of e-open sets has been study

extensively in recent years by many topologists. In this paper, we use the notion of e-I -open

sets to introduce and define some new weak separation axioms. Also we study some of their

basic properties. Additionally, we investigate the relationship and implications of these axioms

among themselves and with other known axioms.

2. Preliminaries

A subset A of an ideal topological space (X ,τ,I ) is said to be e-I -open [2] if

A⊂ Cl(δInt I(A))∪ Int(δClI(A)).

The complement of an e-I -open set is called an e-I -closed set [2]. The intersection of all

e-I -closed sets containing A is called the e-I -closure of A and is denoted by Cl∗e (A). The e-

I -interior of A is defined by the union of all e-I -open sets contained in A and is denoted by

Int∗e (A). The family of all e-I -open (resp. e-I -closed) sets of (X ,τ,I ) containing a point

x ∈ X is denoted by EIO(X , x) (resp. EI C(X , x)). A subset U of X is called an e-I -

neighborhood of a point x ∈ X if there exists an e-I -open set V of (X ,τ,I ) such that x ∈
V ⊂ U . A function f : (X ,τ,I )→ (Y,σ) is said to be e-I -continuous if f −1(V ) ∈ EIO(X ) for

every open set V of Y .

Definition 1. A topological space (X ,τ) is said to be:

(i) R0 [4] if every open set contains the closure of each of its singletons.

(ii) R1 [4] if for x, y in X with Cl({x}) 6= Cl({y}), there exist disjoint open sets U and V such

that Cl({x}) ⊂ U and Cl({y} ⊂ V .

Definition 2. A topological space (X ,τ) is said to be:

(i) e-T1 [7, 8] if for each pair of distinct points x and y in X , there exist e-open sets U and V

containing x and y, respectively, such that y /∈ U and x /∈ V .
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(ii) e-T2 [7, 8] if for each pair of distinct points x and y in X , there exist disjoint e-open sets

U and V such that x ∈ U and y ∈ V .

Definition 3. An ideal topological space (X ,τ,I ) is said to be:

(i) e-I -T1 [1] if for each pair of distinct points x and y in X , there exist e-I -open sets U and

V of X , such that x ∈ U and y /∈ U, y ∈ V and x /∈ V .

(ii) e-I -T2 [1] if for each pair of distinct points x and y in X , there exist disjoint e-I -open sets

U and V in X such that x ∈ U and y ∈ V .

3. On e-I -R0 Spaces

Definition 4. Let (X ,τ,I ) be an ideal topological space and A ⊂ X . Then the e-I -kernel of A,

denoted by IeKer(A), is defined to be the set IeKer(A) = ∩{G ∈ EIO(X )|A⊂ G}.

Lemma 1. Let (X ,τ,I ) be an ideal topological space and x , y ∈ X . Then, y ∈ IeKer({x}) if

and only if x ∈ Cl∗e ({y}).

Proof. Suppose that y /∈ IeKer({x}). Then there exists U ∈ EIO(X , x) such that y /∈ U .

Therefore, we have x /∈ Cl∗e ({y}). The proof of the converse case can be done similarly.

Lemma 2. Let (X ,τ,I ) be an ideal topological space and S a subset of X . Then,

IeKer(S) = {x ∈ X |Cl∗e ({x})∩ S 6= ;}.

Proof. Let x ∈ IeKer(S). Suppose that Cl∗e ({x})∩S = ;. Hence x /∈ X\Cl∗e ({x})which is an

e-I -open set containing S. Since x /∈ IeKer(S), this is a contradiction. Hence Cl∗e ({x})∩S 6= ;.
Conversely, suppose that Cl∗e ({x}) ∩ S 6= ;. Next, let x ∈ X such that Cl∗e ({x}) ∩ S 6= ; and

suppose that x /∈ IeKer(S). Then, there exists an e-I -open set U containing S and x /∈ U . Let

y ∈ Cl∗e ({x})∩ S. Hence, U is an e-I -neighborhood of y which does not contains x . By this

contradiction x ∈ IeKer(S) and hence the claim.

Definition 5. An ideal topological space (X ,τ,I ) is called an e-I -R0 space if every e-I -open set

contains the e-I -closure of each of its singletons.

Definition 6. An ideal topological space (X ,τ,I ) is said to be e-I -T0 if for each pair of distinct

points x and y in X , there exists an e-I -open set U such that x ∈ U and y /∈ U, or there exists

an e-I -open set V such that y ∈ V and x /∈ V .

Theorem 1. Let (X ,τ,I ) be an ideal topological space. Then X is e-I -T1 if and only if it is

e-I -T0 and e-I -R0.

Proof. Let X be an e-I -T1 space. By the definition of an e-I -T1 space, it is an e-I -T0 and

e-I -R0 space.

Conversely, let X be an e-I -T0 and e-I -R0 space. Let x , y be any two distinct points of

X . Since X is e-I -T0, then there exists an e-I -open set U such that x ∈ U and y /∈ U or
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there exists an e-I -open set V such that y ∈ V and x /∈ V . Let x ∈ U and y /∈ U . Since X

is e-I -R0, then Cl∗e (x) ⊂ U . We have y /∈ U and then y /∈ Cl∗e (x). We obtain y ∈ X\Cl∗e (x).

Take S = X\Cl∗e (x). Thus, U and S are e-I -open sets containing x and y , respectively, such

that y /∈ U and x /∈ S. Hence, X is e-I -T1.

Remark 1. Since an ideal topological space (X ,τ,I ) is e-I -T1 if and only if the singletons are

e-I -closed, it is clear that every e-I -T1 space e-I -R0. But the converse is not true in general.

Example 1. Let X = {a, b, c}with a topologyτ= {;, X , {a}, {b, c}} andI = {O , {c}, {b}, {b, c}}.
Since e-I -open={φ, X , {a}, {b, c}}. It is clear that every e-I -open set contains the e-I -closure

of each of its singletons so the ideal topological space is e-I -R0, but none of e-I -T0 and e-I -T1.

Remark 2. The following example and Example 1 show that the notions e-I -T0-ness and

e-I -R0-ness are independent.

Example 2. Let X = {a, b, c} with a topology τ = {;, X , {a}} and I = {O , {a}}. Now, we

determine e-I -open={φ, X , {a}}. Then (X ,τ,I ) is e-I -T0 but it is not e-I -R0.

Lemma 3. Let (X ,τ,I ) be an ideal topological space. Then for any points x and y in X , the

following statements are equivalent:

(i) IeKer({x}) 6= IeKer({y}).

(ii) C l∗e ({x}) 6= Cl∗e ({y}).

Proof. (i)⇒ (ii): Let IeKer({x}) 6= IeKer({y}), then there exists a point k in X such that

k ∈ IeKer({x}) and k /∈ IeKer({y}). By Lemma 1, x ∈ Cl∗e ({x}) and y /∈ Cl∗e ({x}). Therefore,

Cl∗e ({x}) ⊂ Cl∗e (Cl∗e ({k})) = Cl∗e ({k}) and hence y /∈ Cl∗e ({x}). Hence Cl∗e ({x}) 6= Cl∗e ({y}).
By using IeKer({x}) 6= IeKer({y}), we obtain Cl∗e ({x}) 6= Cl∗e ({y}).
(ii)⇒ (i): Let Cl∗e ({x}) 6= Cl∗e ({y}), then there exists a point k in X such that k ∈ Cl∗e ({x})
and k /∈ Cl∗e ({y}) and then there exists an e-I -open set containing k and therefore x but not

y , namely, y /∈ IeKer({x}) and thus IeKer({x}) 6= IeKer({y}).

Proposition 1. For an ideal topological space (X ,τ,I ), the following properties are equivalent:

(i) (X ,τ,I ) is an e-I -R0 space,

(ii) For any K ∈ EI C(X ), x /∈ K implies K ⊂ U and x /∈ U for some U ∈ EIO(X ),

(iii) For any K ∈ EI C(X ), x /∈ K implies K ∩ Cl∗e ({x}) = ;,

(iv) For any distinct points x and y of X , either C l∗e ({x}) = Cl∗e ({y}) or

Cl∗e ({x})∩ Cl∗e ({y}) = ;.

Proof. (i) ⇒ (ii): Let K ∈ EI C(X ) and x /∈ K . Then by (i), Cl∗e ({x}) ⊂ X\K . Set

U = X\Cl∗e ({x}), then U ∈ EIO(X ), K ⊂ U and x /∈ U .

(ii) ⇒ (iii): Let K ∈ EI C(X ) and x /∈ K . There exists U ∈ EIO(X ) such that K ⊂ U and
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x /∈ U . Since U ∈ EIO(X ), U ∩ Cl∗e ({x}) = ; and K ∩ Cl∗e ({x}) = ;.
(iii) ⇒ (iv): Suppose that Cl∗e ({x}) 6= Cl∗e ({y}) for distinct points x , y ∈ X . There exists

k ∈ Cl∗e ({x}) such that k /∈ Cl∗e ({y}) (or k ∈ Cl∗e ({y}) such that k /∈ Cl∗e ({x}). There exists

V ∈ EIO(X ) such that y /∈ V and k ∈ V ; hence x ∈ V . Therefore, we have x /∈ Cl∗e ({y}). By

(iii), we obtain Cl∗e ({x})∩ Cl∗e ({y}) = ;. The proof for otherwise is similar.

(iv) ⇒ (i): Let V ∈ EIO(X , x). For each y /∈ V , x 6= y and x /∈ Cl∗e ({y}). This shows

that Cl∗e ({x}) 6= Cl∗e ({y}). By (iv), Cl∗e ({x}) ∩ Cl∗e ({y}) = ; for each y ∈ X\V and hence

Cl∗e ({x}) ∩ (∪y∈X\V Cl∗e ({y})) = ;. On the other hand, since V ∈ EIO(X ) and y ∈ X\V , we

have Cl∗e ({y}) ⊂ X\V and hence X\V = ∪y∈X\V Cl∗e ({y}). Therefore, we obtain

(X\V )∩ Cl∗e ({x}) = ; and Cl∗e ({x}) ⊂ V . This shows that (X ,τ,I ) is an e-I -R0 space.

Theorem 2. An ideal topological space (X ,τ,I ) is e-I -R0 space if and only if for any x and y

in X , C l∗e ({x}) 6= Cl∗e ({y}) implies C l∗e ({x})∩ Cl∗e ({y}) = ;.

Proof. Let (X ,τ,I ) is e-I -R0. By Proposition 1, we obtain the assertion. Conversely, let

V ∈ EIO(X ; x). We will show that Cl∗e ({x}) ⊂ V . Let y ∈ X\V . Then x 6= y and

x /∈ Cl∗e ({y}). This shows that Cl∗e ({x}) 6= Cl∗e ({y}). By assumption, Cl∗e ({x})∩Cl∗e ({y}) = ;.
Hence y /∈ Cl∗e ({x}) and therefore Cl∗e ({x}) ⊂ V .

Theorem 3. Let (X ,τ,I ) be an ideal topological space. Then the following properties are equiv-

alent:

(i) (X ,τ,I ) is an e-I -R0 space,

(ii) x ∈ Cl∗e ({y}) if and only if y ∈ Cl∗e ({x}) for any points x and y in X .

Proof. (i)⇒ (ii): Assume that (X ,τ,I ) is e-I -R0. Let x ∈ Cl∗e ({y}) and A ∈ EIO(X , y).

Now by hypothesis, x ∈ Cl∗e ({y}) ⊂ A and x ∈ A. Therefore, every e-I -open set containing y

contains x . Hence y ∈ Cl∗e ({x}).
(ii) ⇒ (i): Let U ∈ EIO(X , x). If y /∈ U , then x /∈ Cl∗e ({y}) and hence y /∈ Cl∗e ({x}). This

implies that Cl∗e ({x}) ⊂ U . Hence (X ,τ,I ) is e-I -R0

Theorem 4. For an ideal topological space (X ,τ,I ), the following properties are equivalent:

(i) (X ,τ,I ) is an e-I -R0 space;

(ii) For any nonempty set S of X and any G ∈ EIO(X ) such that S ∩ G 6= ;, there exists

K ∈ EI C(X ) such that S ∩ K 6= ; and K ⊂ G;

(iii) For any G ∈ EIO(X ), G = ∪{K ∈ EI C(X )|K ⊂ G};

(iv) For any K ∈ EI C(X ), K = ∩{G ∈ EIO(X )|K ⊂ G};

(v) For any x ∈ X , Cl∗e ({x}) ⊂ IeKer({x}).
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Proof. (i)⇒ (ii):Let S be a nonempty set of X and G ∈ EIO(X ) such that S∩G 6= ;. There

exists x ∈ S ∩ G. Since x ∈ G ∈ EIO(X ), it follows that Cl∗e ({x}) ⊂ G. Take K = Cl∗e ({x}),
then K ∈ EI C(X ), K ⊂ G and S ∩ K 6= ;.
(ii)⇒ (iii): Let G ∈ EIO(X ). We have G ⊃ ∪{K ∈ EI C(X )|K ⊂ G}. Let x be any point of G.

By (ii) there exists K ∈ EI C(X ) such that x ∈ K and K ⊂ G. Thus, we have

x ∈ K ⊂ ∪{K ∈ EI C(X )|K ⊂ G} and hence G = ∪{K ∈ EI C(X )|K ⊂ G}.
(iii)⇒ (iv): This is obvious.

(iv)⇒ (v): Let x be any point of X and y /∈ IeKer({x}). There exists V ∈ EIO(X ) such that

x ∈ V and y /∈ V ; hence Cl∗e ({y})∩ V = ;. By (iv), [∩{G ∈ EIO(X )|Cl∗e ({y}) ⊂ G}]∩ V = ;
and there exists G ∈ EIO(X ) such that x /∈ G and Cl∗e ({y}) ⊂ G. Hence, Cl∗e ({x}) ∩ G = ;
and y /∈ Cl∗e ({x}). Thus, Cl∗e ({x}) ⊂ IeKer({x}).
(v) ⇒ (i): Let G ∈ EIO(X ) and x ∈ G. Let y ∈ IeKer({x}). We have x ∈ Cl∗e ({y}) and

y ∈ G. It follows that IeKer({x}) ⊂ G. Thus, we obtain x ∈ Cl∗e ({x}) ⊂ IeKer({x}) ⊂ G. This

shows that (X ,τ,I ) is an e-I -R0 space.

Theorem 5. An ideal topological space (X ,τ,I ) is e-I -R0 if and only if for any pair of points x

and y in X , IeKer({x}) 6= IeKer({y}) implies IeKer({x})∩IeKer({y}) = ;.

Proof. Suppose that (X ,τ,I ) is an e-I -R0 space. Thus by Lemma 3, for any points x

and y in X if IeKer({x}) 6= IeKer({y}), then Cl∗e ({x}) 6= Cl∗e ({y}). Now we prove that

IeKer({x})∩IeKer({y}) = ;. Assume that z ∈ IeKer({x})∩IeKer({y}). By z ∈ IeKer({x})
and Lemma 1, it follows that x ∈ Cl∗e ({z}). Since x ∈ Cl∗e ({x}), by Theorem 2,

Cl∗e ({x}) = Cl∗e ({z}). Similarly, we have Cl∗e ({x}) = Cl∗e ({z}) = Cl∗e ({y}). This is a contradic-

tion. Therefore, we have IeKer({x})∩IeKer({y}) = ;. Conversely, let (X ,τ,I ) be an ideal

topological space such that for any points x and y in X , IeKer({x}) 6= IeKer({y}) implies

IeKer({x})∩IeKer({y}) = ;. If Cl∗e ({x}) 6= Cl∗e ({y}), then by Lemma 3,

IeKer({x}) 6= IeKer({y}). Hence, IeKer({x})∩IeKer({y}) = ; which implies

Cl∗e ({x}) ∩ Cl∗e ({y}) = ;. Because z ∈ Cl∗e ({x}) implies that x ∈ IeKer({z}) and therefore

IeKer({x}) ∩ IeKer({z}) 6= ;. By hypothesis, we have IeKer({x}) = IeKer({z}). Then

z ∈ Cl∗e ({x}) ∩ Cl∗e ({y}) implies that IeKer({x}) = IeKer({z}) = IeKer({y}). This is a

contradiction. Therefore, Cl∗e ({x}) ∩ Cl∗e ({y}) = ; and by Theorem 2 (X ,τ,I ) is an e-I -R0

space.

Theorem 6. For an ideal topological space (X ,τ,I ), the following properties are equivalent:

(i) (X ,τ,I ) is an e-I -R0 space,

(ii) If F is an e-I -closed subset of X , then F = IeKer(F),

(iii) If F is an e-I -closed subset of X and x ∈ F, then IeKer({x}) ⊂ F,

(iv) If x ∈ X , then IeKer({x}) ⊂ Cl∗e ({x}).

Proof. (i)⇒ (ii): Let F be an e-I -closed subset of X and x /∈ F . Thus X\F ∈ EIO(X x).

Since (X ,τ,I ) is e-I -R0, Cl∗e ({x}) ⊂ X\F . Since F ⊂ X \ Cl∗e ({x}), IeKer(F) ⊂ X − Cl∗e ({x})
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and x /∈ IeKer(F). Therefore, IeKer(F) = F .

(ii)⇒ (iii): In general, A ⊂ B implies IeKer(A) ⊂ IeKer(B). Therefore, it follows from (ii)

that IeKer({x}) ⊂ IeKer(F) = F .

(iii)⇒ (iv): Since x ∈ Cl∗e ({x}) and Cl∗e ({x}) is e-I -closed, by (iii) IeKer({x}) ⊂ Cl∗e ({x}).
(iv)⇒ (i): We show the implication by using Theorem 3. Let x ∈ Cl∗e ({y}). Then by Lemma 1

y ∈ IeKer({x}). By (iv), we obtain y ∈ IeKer({x}) ⊂ Cl∗e ({x}). Therefore, x ∈ Cl∗e ({y})
implies y ∈ Cl∗e ({x}). The converse is obvious and (X ,τ,I ) is an e-I -R0 space.

Corollary 1. For an ideal topological space (X ,τ,I ), the following properties are equivalent:

(i) (X ,τ,I ) is an e-I -R0 space,

(ii) C l∗e ({x}) = IeKer({x}) for all x ∈ X .

Proof. (i)⇒ (ii): Suppose that (X ,τ,I ) is an e-I -R0 space. By Theorem 4,

Cl∗e ({x}) ⊂ IeKer({x}) for each x ∈ X . By Theorem 6, IeKer({x}) ⊂ Cl∗e ({x}). This shows

that Cl∗e ({x}) = IeKer({x}).
(ii)⇒ (i): This is obvious by Theorem 6.

Corollary 2. Let (X ,τ,I ) be e-I -R0 and x ∈ X . If C l∗e ({x}) ∩ IeKer({x}) = {x}, then

IeKer({x}) = {x}.

Proof. The proof follows from Theorem 6 (iv).

Definition 7. A net {xλ}λ∈∧ is said to be e-I -convergent to a point x in X , if for any

U ∈ EIO(X , x), there exists λ0 ∈ ∧ such that xλ ∈ U for any λ ∈ ∧ such that λ ≥ λo.

Lemma 4. Let (X ,τ,I ) be an ideal topological space and let x and y be any two points in X

such that every net in X e-I -converging to y e-I -converges to x. Then x ∈ Cl∗e ({y}).

Proof. Suppose that xn = y for each n ∈ N . Then {xn}n∈N is a net in Cl∗e ({y}). Since

{xn}n∈N e-I -converges to y , then {xn}n∈N e-I -converges to x and this implies that

x ∈ Cl∗e ({y}).

Theorem 7. For an ideal topological space (X ,τ,I ), the following properties are equivalent:

(i) (X ,τ,I ) is an e-I -R0 space,

(ii) If x , y ∈ X , then y ∈ Cl∗e ({x}) if and only if every net in X e-I -converging to y e-I -

converges to x.

Proof. (i) ⇒ (ii): Let x , y ∈ X such that y ∈ Cl∗e ({x}). Suppose that {xα}α∈N be a net

in X such that {xα}α∈N e-I -converges to y . Since y ∈ Cl∗e ({x}), by Theorem 2 we have

Cl∗e ({x}) = Cl∗e ({y}). Therefore x ∈ Cl∗e ({y}). This means that {xα}α∈N e-I -converges to

x . Conversely, let x , y ∈ X such that every net in X e-I -converging to y e-I converges to

x . Then x ∈ Cl∗e ({y}) by Lemma 4. By Theorem 2, we have Cl∗e ({x}) = Cl∗e ({y}). Therefore
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y ∈ Cl∗e ({x}).
(ii)⇒ (i): Assume that x and y are any two points of X such that Cl∗e ({x}) ∩ Cl∗e ({y}) 6= ;.
Let z ∈ Cl∗e ({x}) ∩ Cl∗e ({y}). So there exists a net {xα}α∈N in Cl∗e ({x}) such that {xα}α∈N

e-I -converges to z. Since z ∈ Cl∗e ({y}), then {xα}α∈N e-I -converges to y . It follows that

y ∈ Cl∗e ({x}). By the same token we obtain x ∈ Cl∗e ({y}). Therefore Cl∗e ({x}) = Cl∗e ({y}) and

by Theorem 2 (X ,τ,I ) is an e-I -R0 space.

4. On e-I -R1 Spaces

Definition 8. An ideal topological space (X ,τ,I ) is said to be e-I -R1 if for x, y in X with

Cl∗e ({x}) 6= Cl∗e ({y}), there exist disjoint e-I -open sets U and V such that Cl∗e ({x}) is a subset

of U and Cl∗e ({y}) is a subset of V .

Proposition 2. If (X ,τ,I ) is e-I -R1, then it is e-I -R0.

Proof. Let U ∈ EIO(X , x). If y /∈ U , since x /∈ Cl∗e ({y}), we have Cl∗e ({x}) 6= Cl∗e ({y}).
So, there exists an e-I -open set Vy such that Cl∗e ({y}) ⊂ Vy and x /∈ Vy , which implies

y /∈ Cl∗e ({x}). Thus Cl∗e ({x}) ⊂ U . Therefore (X ,τ,I ) is e-I -R0.

Theorem 8. An ideal topological space (X ,τ,I ) is e-I -R1 if and only if for x , y ∈ X ,

IeKer({x}) 6= IeKer({y}), there exist disjoint e-I -open sets U and V such that Cl∗e ({x}) ⊂ U

and Cl∗e ({y}) ⊂ V .

Proof. It follows from Lemma 3.

Remark 3. In the following diagram we denote by arrows the implications between the separation

axioms which we have introduced and discussed in this paper and examples show that no other

implications hold between them:

R1
//

��

R0

��

e-I -R1

��

// e-I -R0

��

e-R1
// e-R0

Example 3. Let X = {a, b, c}, τ= {φ, {a}, {b}, {a, b}, {b, c}, X } and I = {φ, {b}}.
EIO = {φ, {a}, {b}, {a, b}, {b, c}, X }. Then (X ,τ,I ) is e-I -R0 but not R0 and e-I -R1.

Example 4. Let X = {a, b, c} with a topology τ = {φ, X , {a}, {b}, {a, b}} and I = {φ, {a}}.
Since EIO = {φ, X , {a}, {b}, {a, b}, {a, c}, {b, c}}. Then (X ,τ,I ) is e-I -R0 but not R0.

Example 5. Let X = {a, b, c} with a topology τ = {φ, X , {a, b}} and I = {φ, {c}}. Since

EIO = {φ, X , {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Then (X ,τ,I ) is e-I -R1 but not R1.
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Example 6. Let X = {a, b, c} with a topology τ= {φ, X , {a}, {a, b}} and

I = {φ, {a}, {b}, {a, b}}. Since EIO = {φ, X , {a}{a, b}, {a, c}} and

e-open sets is {φ, X , {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Then (X ,τ,I ) is e-R0 but not e-I -Ro.

Theorem 9. The following properties are equivalent:

(i) (X ,τ,I ) is e-I -R1,

(ii) for each x , y ∈ X one of the following holds:

• If U is e-I -open, then x ∈ U if and only if y ∈ U,

• there exist disjoint e-I -open sets U and V such that x ∈ U and y ∈ V .

(iii) If x , y ∈ X such that Cl∗e ({x}) 6= Cl∗e ({y}), then there exist e-I -closed sets F1 and F2 such

that x ∈ F1, y /∈ F1, y ∈ F2, x /∈ F2, and X = F1 ∪ F2.

Proof. (i) ⇒ (ii): Let x , y ∈ X . Then Cl∗e ({x}) = Cl∗e ({y}) or Cl∗e ({x}) 6= Cl∗e ({y}). If

Cl∗e ({x}) = Cl∗e ({y}) and U is e-I -open, then x ∈ U implies y ∈ Cl∗e ({x}) ⊂ U and y ∈ U

implies x ∈ Cl∗e ({y}) ⊂ U . Thus consider the case that Cl∗e ({x}) 6= Cl∗e ({y}). Then there exist

disjoint e-I -open sets U and V such that x ∈ Cl∗e ({x}) ⊂ U and y ∈ Cl∗e ({y}) ⊂ V .

(ii)⇒ (iii): Let x , y ∈ X such that Cl∗e ({x}) 6= Cl∗e ({y}). Then x /∈ Cl∗e ({y}) or y /∈ Cl∗e ({x}),
say x /∈ Cl∗e ({y}). Then there exists an e-I -open set A such that x ∈ A and y /∈ A, which

implies there exist disjoint e-I -open sets U and V such that x ∈ U and y ∈ V . Then F1 = X\V
and F2 = X\U are e-I -closed sets such that x ∈ F1, y /∈ F1, y ∈ F2, x /∈ F2, and X = F1 ∪ F2.

(iii)⇒ (i): First, we show that (X ,τ,I ) is e-I -R0. Let U be e-I -open and let x ∈ U . Suppose

that Cl∗e ({x}) 6⊂ U . Let y ∈ Cl∗e ({x}) ∩ (X\U). Then Cl∗e ({x}) 6= Cl∗e ({y}) and there exist

F1, F2 ∈ EI C(X ) such that x ∈ F1, y ∈ F2, y /∈ F1, x /∈ F2, and X = F1 ∪ F2. Then

y ∈ F2\F1 = X\F1, which is e-I -open, and x /∈ X\F1, which is a contradiction. Hence,

(X ,τ,I ) is e-I -R0. To show X to be e-I -R1 assume that a, b ∈ X such that

Cl∗e ({a}) 6= Cl∗e ({b}). Then there exist P1, P2 ∈ EI C(X ) such that a ∈ P1, b /∈ P1, a /∈ P2,

b ∈ P2 and X = P1 ∪ P2. Thus a ∈ P1\P2 and b ∈ P2\P1, which are e-I -open. This implies

Cl∗e ({a}) ⊂ P1\P2 = X − P2 ∈ EIO(X ) and Cl∗e ({b}) ⊂ P2\P1. Thus, (X ,τ,I ) is e-I -R1.

Theorem 10. The following properties are equivalent:

(i) (X ,τ,I ) is e-I -T2,

(ii) (X ,τ,I ) is e-I -R1 and e-I -T1,

(iii) (X ,τ,I ) is e-I -R1 and e-I -T0.

Proof. (i) ⇒ (ii): Since (X ,τ,I ) is e-I -T1, then it is e-I -T1. If x , y ∈ X such that

Cl∗e ({x}) 6= Cl∗e ({y}), then x 6= y and there exist disjoint e-I -open sets U and V such that

x ∈ U and y ∈ V . Therefore, Cl∗e ({x}) = {x} ⊂ U and Cl∗e ({y}) = {y} ⊂ V . Hence (X ,τ,I ) is

e-I -R1.

(ii)⇒ (iii): Since (X ,τ,I ) is e-I -T1, then (X ,τ,I ) is e-I -T0.
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(iii) ⇒ (i): Since (X ,τ,I ) is e-I -R1, then (X ,τ,I ) is e-I -R0 and e-I -T0 and hence by

Theorem 1 (X ,τ,I ) is e-I -T1. Let x , y ∈ X such that x 6= y . Since

Cl∗e ({x}) = {x} 6= {y} = Cl∗e ({y}), then there exist disjoint e-I -open sets U and V such that

x ∈ U and y ∈ V . Hence, (X ,τ,I ) is e-I -T2.

In view of Definition 3, it follows that

Theorem 11. An ideal topological space (X ,τ,I ) is e-I -T2 if and only if for x , y ∈ X such that

x 6= y, there exist e-I -closed sets F1 and F2 such that x ∈ F1, y /∈ F1, y ∈ F2, x /∈ F2, and

X = F1 ∪ F2.

Remark 4. Let {xλ}λ∈λ be a net in (X ,τ,I ) and eI l im({xλ}λ∈λ) denote {x ∈ X : I −
converges to x}.

Theorem 12. The following properties are equivalent:

(i) (X ,τ,I ) is e-I -R1,

(ii) for x , y ∈ X Cl∗e ({x}) = Cl∗e ({y}), whenever there exists a net {xλ}λ∈A such that

x , y ∈ eI l im({xλ}λ∈A),

(iii) (X ,τ,I ) is e-I -R0, and for every e-I -convergent net {xλ}λ∈A in X ,

eI l im({xλ}λ∈A) = Cl∗e ({x}) for some x ∈ X .

Proof. (i)⇒ (ii): Let x , y ∈ X such that there exists a net {xλ}λ∈A in X such that

x , y ∈ eI l im({xλ}λ∈A). Then, by Theorem 9, (a) if U is e-I -open, then x ∈ U if and only if

y ∈ U or (b) there exist disjoint e-I -open sets U and V such that x ∈ U and y ∈ V . Since

x , y ∈ eI l im({xλ}λ∈A), then (a) is satisfied, and we obtain Cl∗e ({x}) = Cl∗e ({y}).
(ii)⇒ (iii): Let U ∈ EIO(X , x). Let y /∈ U . For each n ∈ N let xn = x . Then {xn}n∈N e-I -

converges to x and since Cl∗e ({x}) 6= Cl∗e ({y}), by (ii) {xn} does not e-I -converge to y and

there exists A ∈ EIO(X ) such that y ∈ A and x /∈ A. Thus, y /∈ Cl∗e ({x}) and Cl∗e ({x}) ⊂ U .

Hence (X ,τ,I ) is e-I -R0. Let {xλ}λ∈A be an e-I -convergent net in X . Let x ∈ X such that

{xλ}λ∈A e-I -converges to x . If y ∈ Cl∗e ({x}), then {xλ}λ∈A e-I -converges to y , which implies

Cl∗e ({x}) ⊂ eI l im({xλ}λ∈A). Let y ∈ eI l im({xλ}λ∈A), then x , y ∈ eI l im({xλ}λ∈A), which

implies y ∈ Cl∗e ({y}) = Cl∗e ({x}). Hence eI l im({xλ}λ∈A) = Cl∗e ({x}).
(iii)⇒ (i): Assume that (X ,τ,I ) is not e-I -R1. Then there exist x , y ∈ X such that

Cl∗e ({x}) 6= Cl∗e ({y}) and every e-I -open set containing Cl∗e ({x}) intersects every e-I -open set

containing Cl∗e ({y}). Since (X ,τ,I ) is e-I -R0, then every e-I -open set containing x contains

Cl∗e ({x}) and every e-I -open set containing y contains Cl∗e ({y}), which implies that every

e-I -open set containing x intersects every e-I -open set containing y . Let

Dx = {U ⊂ X |U ∈ EIO(X , x)}. Let≥x be the binary relation on Dx defined by U1 ≥x U2 if and

only if U1 ⊂ U2. Then, clearly (Dx ,≥x) is a directed set. Let Dy = {U ⊂ X |U ∈ EIO(X , y)}
and let ≥y be the binary relation on Dy defined by U1 ≥y U2 if and only if U1 ⊂ U2. Then,

(Dx ,≥y) is also a directed set. Let D = {(U1, U2)|U1 ∈ Dx and U2 ∈ Dy} and let≥ be the binary

relation on D defined by (U1, U2)≥ (V1, V2) if and only if U1 ≥x V1 and U2 ≥y V2. Then, (D,≥)
is a directed set. For each (U1, U2) ∈ D, let x(U1,U2)

∈ (U1, U2).
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Then {x(U1,U2)
}(U1,U2)

∈ D is a net in X that e-I -converges to both x and y . Thus, there exists

z ∈ X such that eI l im({x(U1,U2)
}(U1,U2)∈D) = Cl∗e ({z}), which implies x , y ∈ Cl∗e ({z}). Since

{Cl∗e ({w}) : w ∈ X } is a decomposition of X , then Cl∗e ({x}) = Cl∗e ({z}) = Cl∗e ({y}), which is a

contradiction. Hence (X ,τ,I ) is e-I -R1.
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