EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 11, No. 1, 2018, 238-243 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Beta G-Star Relation on Modules

Celil Nebiyev^{1,*}, Nurhan Sökmez¹

¹ Department of Mathematics, Ondokuz Mayıs University, Kurupelit-Atakum, Samsun, Turkey

Abstract. In this work, we say submodules X and Y of M are β_g^* equivalence, $X\beta_g^*Y$, if and only if Y + K = M for every $K \leq M$ such that X + K = M and X + T = M for every $T \leq M$ such that Y + T = M. It is proved that the β_g^* relation is an equivalent relation and has good behaviour with respect to addition of submodules and homomorphisms.

2010 Mathematics Subject Classifications: 16D10, 16D70

Key Words and Phrases: Small Submodules, Generalized Small Submodules, Supplemented Modules, G-Supplemented Modules

1. Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R-module. We will denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If L = M for every submodule L of M such that M = N + L, then N is called a small submodule of M and denoted by $N \ll M$. Let M be an R-module and $N \leq M$. N is called essential submodule of M and denoted by $N \triangleleft M$ in case $K \cap N \neq 0$ for every submodule $K \neq 0$. Let M be an R-module and K be a submodule of M. K is called a generalized small (briefly, g-small) submodule of M if for every essential submodule T of M with the property M = K + T implies that T = M, then we write $K \ll_q M$. (in [11], it is called an e-small submodule of M and denoted by $K \ll_e M$). It is clear that every small submodule is a generalized small submodule but the converse is not true generally. M is called a (generalized) hollow module if every proper submodule of M is (generalized) small in M. Here it is clear that every hollow module is generalized hollow module. Let M be an R-module and $U, V \leq M$. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement of U in M. M is called a supplemented module if every submodule of M has a supplement in M. Let M be an R-module and $U, V \leq M$. If M = U + V and M = U + T with $T \leq V$ implies that T = V, or equivalently, M = U + Vand $U \cap V \ll_q V$, then V is called a g-supplement of U in M. M is called g-supplemented

Email addresses: cnebiyev@omu.edu.tr (Celil Nebiyev), nozkan@omu.edu.tr (Nurhan Sökmez)

http://www.ejpam.com

238

© 2018 EJPAM All rights reserved.

 $^{^{*}}$ Corresponding author.

if every submodule of M has a g-supplement in M. Let M be an R-module and $U \leq M$. If for every $V \leq M$ such that M = U + V, U has a g-supplement V' with $V' \leq V$, we say U has ample g-supplements in M. If every submodule of M has ample g-supplements in M, then M is called an amply g-supplemented module. SocM indicates the socle of M (the sum of all simple submodules of M).

Lemma 1. Let M = U + V and $M = U \cap V + T$. Then $M = U + V \cap T = V + U \cap T$.

Proof. See [4, Lemma 1.24].

2. The β_q^* Relation

Definition 1. We define the relation β_g^* on the set of submodules of an R-module M by $X\beta_g^*Y$ if and only if Y + K = M for every $K \leq M$ such that X + K = M and X + T = M for every $T \leq M$ such that Y + T = M.

Proposition 1. Let M be an R-module and $X, Y \leq M$. If $X\beta^*Y$, then $X\beta^*_qY$.

Proof. Clear from definitions. (See [2]).

Lemma 2. The β_q^* relation is an equivalence relation.

Proof. The reflective and symmetric properties are clear. For transitive property, assume $X\beta_g^*Y$ and $Y\beta_g^*Z$. Let $K \leq M$ and X + K = M. Since $X\beta_g^*Y$, then Y + K = M, and since $Y\beta_g^*Z$, then Z + K = M. Let $T \leq M$ and Z + T = M. Since $Y\beta_g^*Z$, then Y + T = M, and since $X\beta_g^*Y$, then X + T = M. Hence $X\beta_g^*Z$.

Lemma 3. Let $X, Y \leq M$. The following statements are equivalent.

(i) $X\beta_q^*Y$.

(ii) For every $T \leq M$ such that X + Y + T = M, X + T = M and Y + T = M.

Proof. (i) \Longrightarrow (ii) Let $T \leq M$ and X + Y + T = M. Since $T \leq M$, then $Y + T \leq M$ and $X + T \leq M$. Then by $X\beta_g^*Y$, M = X + Y + T = X + X + T = X + T and M = X + Y + T = Y + Y + T = Y + T.

 $(ii) \Longrightarrow (i)$ Let $K \trianglelefteq M$ and X + K = M. Then X + Y + K = M and by hypothesis, Y + K = M. Similarly we prove that for every $T \trianglelefteq M$ such that Y + T = M, X + T = M.

Proposition 2. Let $X, Y \leq M$. If $X\beta_g^*Y$, then $\frac{X+Y}{X} \ll_g \frac{M}{X}$ and $\frac{X+Y}{Y} \ll_g \frac{M}{Y}$.

Proof. Let $\frac{X+Y}{X} + \frac{T}{X} = \frac{M}{X}$ for $\frac{T}{X} \leq \frac{M}{X}$. Clearly, we can see that $T \leq M$. Since $\frac{X+Y}{X} + \frac{T}{X} = \frac{M}{X}$, then $\frac{M}{X} = \frac{X+Y}{X} + \frac{T}{X} = \frac{Y+T}{X}$ and Y + T = M. Then by $X\beta_g^*Y$, X + T = M, and since $X \leq T$, T = M. Hence $\frac{X+Y}{X} \ll_g \frac{M}{X}$. Similarly, we can prove that $\frac{X+Y}{Y} \ll_g \frac{M}{Y}$.

Remark 1. The converse of the Proposition 2 is not true in general. For example, consider the \mathbb{Z} -module $\mathbb{Z}\mathbb{Z}$ and let p and q be primes with $p \neq q$. Since $\frac{\mathbb{Z}}{\mathbb{Z}p}$ and $\frac{\mathbb{Z}}{\mathbb{Z}q}$ are simple, $\frac{\mathbb{Z}p + \mathbb{Z}q}{\mathbb{Z}p} = \frac{\mathbb{Z}}{\mathbb{Z}p} \ll_g \frac{\mathbb{Z}}{\mathbb{Z}q}$ and $\frac{\mathbb{Z}p + \mathbb{Z}q}{\mathbb{Z}q} = \frac{\mathbb{Z}}{\mathbb{Z}q} \ll_g \frac{\mathbb{Z}}{\mathbb{Z}q}$. But $\mathbb{Z}p\beta_g^*\mathbb{Z}q$ is not true.

Theorem 1. Let $X, Y \leq M$ such that $X \leq Y + A$ and $Y \leq X + B$, where $A, B \ll_g M$. Then $X\beta_q^*Y$.

Proof. Let $T \leq M$ and X+Y+T = M. Then (Y + A)+Y+T = M and A+Y+T = M. Since $T \leq M$, then $Y + T \leq M$. Then, by $A \ll_g M$, Y + T = M. Similarly, we can see that X + T = M.

Lemma 4. Let $X \leq M$. $X \ll_q M$ if and only if $X\beta_q^*0$.

Proof. (\Longrightarrow) Let $X \ll_g M$ and let X + 0 + T = X + T = M for $T \leq M$. Since $X \ll_g M$ and X + T = M, then 0 + T = T = M. Then, by Lemma 3 $X\beta_q^*0$.

(⇐) Let $X\beta_g^*0$. Let X + T = M for $T \leq M$. Since $X\beta_g^*0$, then T = 0 + T = M. Hence $X \ll_g M$.

Corollary 1. Let $X, Y \leq M$ and $X\beta_a^*Y$. If $X \ll_g M$, then $Y \ll_g M$.

Proof. Since $X \ll_g M$, then by Lemma 4, $X\beta_g^*0$, and since $X\beta_g^*Y$, then by Lemma 2, $Y\beta_q^*0$. Then, by Lemma 4, $Y \ll_g M$.

Corollary 2. Let M be an R-module. Then M is generalized hollow if and only if $X\beta_g^*0$ for every proper submodule X of M.

Proof. Clear from Lemma 4.

Corollary 3. Let M be an R-module. Then M is generalized hollow if and only if $X\beta_g^*Y$ for every proper submodules X, Y of M.

Proof. Clear from Lemma 4.

Remark 2. Let M be a nonzero semisimple R-module. Since M have no proper essential submodules, $M \ll_{g} M$ and by Lemma 4, $M\beta_{a}^{*}0$. But $M\beta^{*}0$ is not true.

Corollary 4. Let M be an R-module. Then $SocM\beta_a^*0$.

Lemma 5. Let $X_1, X_2, Y_1, Y_2 \leq M$ such that $X_1 \beta_a^* Y_1$ and $X_2 \beta_a^* Y_2$. Then $(X_1 + X_2) \beta_a^* (Y_1 + Y_2)$.

Proof. Let $X_1 + X_2 + K = M$ for $K \leq M$. Since $K \leq M$, then $X_2 + K \leq M$. Then, by $X_1\beta_g^*Y_1, Y_1 + X_2 + K = M$. Since $K \leq M$, then $Y_1 + K \leq M$. Then, by $X_2\beta_g^*Y_2, Y_1 + Y_2 + K = M$. Similarly, we can see that $X_1 + X_2 + T = M$ for every $T \leq M$ such that $Y_1 + Y_2 + T = M$.

Corollary 5. Let $X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n \leq M$ and $X_i \beta_g^* Y_i$ for every i = 1, 2, ..., n. Then $X_1 + X_2 + ... + X_n \beta_g^* Y_1 + Y_2 + ... + Y_n$.

Proof. Clear from Lemma 5.

Corollary 6. Let $X_1, X_2, ..., X_n, Y \leq M$ and $X_i \beta_g^* Y$ for every i = 1, 2, ..., n. Then $X_1 + X_2 + ... + X_n \beta_g^* Y$.

Proof. Clear from Lemma 5.

Lemma 6. Let $f : M \longrightarrow N$ be an R-module epimorphism and $X, Y \leq M$. If $X\beta_g^*Y$, then $f(X)\beta_a^*f(Y)$.

Proof. Let f(X) + f(Y) + T = N for $T \leq N$. Then $X + Y + f^{-1}(T) = M$. Since $T \leq N$, then we can see that $f^{-1}(T) \leq M$. Then, by Lemma 3, $X + f^{-1}(T) = M$ and $Y + f^{-1}(T) = M$. Since $X + f^{-1}(T) = M$ and $Y + f^{-1}(T) = M$, then f(X) + T = N and f(Y) + T = N. Hence, by Lemma 3, $f(X) \beta_q^* f(Y)$.

Corollary 7. Let $X, Y, Z \leq M$. If $X\beta_g^*Y$, then $\frac{X+Z}{Z}\beta_g^*\frac{Y+Z}{Z}$.

Proof. Clear from Lemma 6.

Corollary 8. Let M be an R-module, A be a direct summand of M and $X, Y \leq A$. If $X\beta_q^*Y$ in M, then $X\beta_q^*Y$ in A also holds.

Proof. Clear from Lemma 6.

Proposition 3. Let $X, Y \leq M$. If $X\beta_g^*Y$ and Y is an essential maximal submodule of M, then $X \leq Y$.

Proof. Assume $X \nleq Y$. Then, because Y is an essential maximal submodule of M, X + Y = M and since $X\beta_q^*Y$, Y = Y + Y = M. This contradicts maximality of Y.

Definition 2. Let M be an R-module and $U, V \leq M$. If U + V = M and $U \cap V \ll_g M$, then V is called a weak g-supplement of U in M. If every submodule of M has a weak g-supplement in M, then M is called a weakly g-supplemented module. (See [8])

Proposition 4. Let $X\beta_a^*Y$ in M.

(i) If X has an essential g-supplement V in M, then V is also a g-supplement of Y in M.

(ii) If X has an essential weak g-supplement V in M, then V is also a weak g-supplement of Y in M.

Proof. (i) Since M = X + V and $V \leq M$, then by $X\beta_g^*Y$, Y + V = M. Let M = Y + T with $T \leq V$. Since $T \leq V$ and $V \leq M$, then we can see that $T \leq M$. Then by $X\beta_g^*Y$, X + T = M. Since X + T = M and $T \leq V$, then T = V. Hence V is a g-supplement of Y in M.

(*ii*) Since M = X + V and $V \leq M$, then by $X\beta_g^*Y$, Y + V = M. Let $Y \cap V + T = M$ with $T \leq M$. Since M = Y + V and $M = Y \cap V + T$, then by Lemma 1, $M = Y + V \cap T$.

Since $V \leq M$ and $T \leq M$, then $V \cap T \leq M$. Then by $X\beta_g^*Y$, $X + V \cap T = M$. Since M = V + T and $M = X + V \cap T$, then by Lemma 1, $X \cap V + T = M$. Because $X \cap V + T = M$ and $T \leq M$ and $X \cap V \ll_g M$, then T = M. Hence $Y \cap V \ll_g M$ and V is a weak g-supplement of Y in M.

Proposition 5. Let M be an amply g-supplemented module and $X, Y \leq M$. If g-supplements of X and Y in M is the same, then $X\beta_q^*Y$.

Proof. Let X + K = M with $K \leq M$. Since M is amply g-supplemented, there exists a g-supplement K' of X with $K' \leq K$. By hypothesis, K' is a g-supplement of Y in M. Then Y + K' = M and since $K' \leq K$, Y + K = M. Similarly, we can see that X + T = M for every $T \leq M$ such that Y + T = M.

Proposition 6. Let M be weakly g-supplemented module and $X, Y \leq M$. If weak g-supplements of X and Y in M is the same, then $X\beta_a^*Y$.

Proof. Let X + K = M with $K \leq M$. Since M is weakly g-supplemented, by [8, Proposition 1] there exists a weak g-supplement K' of X with $K' \leq K$. By hypothesis, K' is a weak g-supplement of Y in M. Then Y + K' = M and since $K' \leq K$, Y + K = M. Similarly, we can see that X + T = M for every $T \leq M$ such that Y + T = M.

Proposition 7. Let M be an R-module, $X \leq Y \leq M$ and C be an essential weak g-supplement of X in M. If $X\beta_q^*Y$, then $Y \cap C \ll_g M$.

Proof. Since $X\beta_g^*Y$ and C is an essential weak g-supplement of X in M, then by Proposition 4, C is also a weak g-supplement of Y in M. Hence $Y \cap C \ll_g M$.

Lemma 7. Let M be an R-module, $X \leq Y \leq M$ and C be a weak g-supplement of X in M. If $Y \cap C \ll_g M$, then $X\beta_q^*Y$.

Proof. Let Y + T = M with $T \leq M$. Since C is a weak g-supplement of X in M, C + X = M. Since $X \leq Y$, by Modular Law, $Y = Y \cap M = Y \cap (C + X) = Y \cap C + X$. Then $M = Y + T = Y \cap C + X + T$ and since $Y \cap C \ll_g M$ and $X + T \leq M$, X + T = M. If X + K = M with $K \leq M$, Y + K = M also holds since $X \leq Y$. Hence $X\beta_q^*Y$.

Proposition 8. Let $M = M_1 \oplus M_2$ and $M_1 \leq X \leq M$. If $X \cap M_2 \ll_g M$, then $X \beta_g^* M_1$.

Proof. Clear from Lemma 7.

Proposition 9. Let M be an R-module. If every submodule of M equivalent to an essential weak g-supplement in M by β_q^* relation, then M is weakly g-supplemented.

Proof. Let $X \leq M$. By hypothesis, there exists an essential weak g-supplement V in M such that $X\beta_g^*V$. Let V be a weak g-supplement of U in M. By hypothesis, there exists an essential weak g-supplement Y in M such that $U\beta_g^*Y$. Since V is an essential weak g-supplement of U in M, by Proposition 4, V is a weak g-supplement of Y in M. Then Y is an essential weak g-supplement of V in M and since $X\beta_g^*V$, by Proposition 4, Y is a weak g-supplement of X in M. Hence M is weakly g-supplemented.

References

- [1] Frank W. Anderson and Kent R. Fuller. *Rings and Categories of Modules (Graduate Texts in Mathematics)*. Springer, 1998.
- [2] G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan. Goldie*supplemented modules. *Glasgow Mathematical Journal*, 52A:41–52, 2010.
- [3] F. Çallıalp and Ü. Tekir. Degişmeli Halkalar ve Modüller. Birsen Yayınevi, İstanbul, 2009.
- [4] John Clark, Christian Lomp, N. Vanaja, and Robert Wisbauer. Lifting Modules: Supplements and Projectivity in Module Theory (Frontiers in Mathematics). Birkhäuser, Basel, 2006 edition, 8 2006.
- [5] F. Kasch. Modules and Rings. Academic Press, New York, 1982.
- [6] B. Koşar, C. Nebiyev, and N. Sökmez. G-supplemented modules. Ukrainian Mathematical Journal, 67(6):861–864, 2015.
- [7] C. Nebiyev and H. H. Ökten. Beta star relation on lattices. *Miskolc Mathematical Notes*, 2017. (accepted).
- [8] C. Nebiyev and H. H. Ökten. Weakly g-supplemented modules. European Journal of Pure and Applied Mathematics, 10(3):521–528, 2017.
- [9] N. Sökmez, B. Koşar, and C. Nebiyev. Genelleştirilmiş küçük alt modüller. In XIII. Ulusal Matematik Sempozyumu, Kayseri, 2010. Erciyes Üniversitesi.
- [10] R. Wisbauer. Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia, 1991.
- [11] D. X. Zhou and X. R. Zhang. Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics, 35:1051–1062, 2011.