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1. Introduction

In 1998, Jungck and Rhoades [1] introduced the notion of weakly compatible mappings
as follows:

Let X be a nonempty set. Two mappings f, g : X → X are said to be weakly compatible
if fx = gx implies fgx = gfx for any x ∈ X.

In 2011, Sintunavarat and Kumam [4] introduced a new relax condition is called the
(CLRg)-property as follows:
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Suppose that (X, d) is a metric space and f, g : X → X be two mappings. The
mappings f and g are said to satisfy the common limit in the range of g (shortly, (CLRg)-
property) if there exists a sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = gx

for some x ∈ X. The importance of (CLRg)-property ensures that one does not require
the closeness of range subspaces

On the other hand, in 2010, Chistyakov [2] introduced the notion of a modular metric
space which is a new generalization of a metric space. In the same way, Mongkolkeha et
al. [3] proved the existence of fixed point theorems for contraction mappings as following:

Let ω be a metric modular on X and Xω be a modular metric space induced by ω. If
Xω is a complete modular metric space and T : Xω → Xω be a mapping such there exists
k ∈ [0, 1) with

ωλ(Tx, Ty) ≤ kωλ(x, y)

for all x, y ∈ Xω and λ > 0, then T has a unique fixed point in Xω.
Currently Aydi et al. [5] established some coincidence and common fixed point results

for three self-mappings on a partially ordered cone metric space satisfying a contractive
condition and proved an existence theorem of a common solution of integral equations.
In the same way, Shatanawi et al.[6] studied some new real generalizations on coincidence
points for weakly decreasing mappings satisfying a weakly contractive condition in an
ordered metric space. Many author studies in modular metric spaces [11, 12, 13, 14, 15,
16, 17].

In this paper, we study and prove the existence of some coincidence point theorems
for generalized contraction mappings in modular metric spaces and give some applications
on integral equations for our main results.

2. Preliminaries

In this section, we give some definitions and their properties for our main results.

Definition 1. [7] Let (X, d) be a metric space. Two mappings f : X → X and g : X → X
are said to satisfy the (E.A)-property if there exist a sequences {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t ∈ X.

Next, we introduce the notion of a modular metric space as follows:

Definition 2. Let X be a linear space over R with θ ∈ X as its zero element. A functional
ρ : X → [0,+∞] is called a modular on X if, for all x, y, z ∈ X, the following conditions
hold:

(M1) ρ(x) = 0 if and only if x = θ;
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(M2) ρ(x) = ρ(−x);
(M3) ρ(αx+ βy) ≤ ρ(x) + ρ(y) whenever α, β ≥ 0 and α+ β = 1.

The linear subspace Xρ :=
{
x ∈ X : lim

λ→∞
ρ(λx) = 0

}
is called a modular space.

Definition 3. [2] Let X be a nonempty set.
(1) A function ω : (0,∞) ×X ×X → [0,∞] is called a metric modular on X if, for

all x, y, z ∈ X, the following conditions hold:

(MM1) ωλ(x, y) = 0 for all λ > 0 if and only if x = y;
(MM2) ωλ(x, y) = ωλ(y, x) for all λ > 0;
(MM3) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0.

(2) If, instead of the condition (MM1), we have the following condition:

(MM1′) ωλ(x, x) = 0 for all λ > 0,

then ω is called a (metric) pseudo-modular on X.

Remark 1. A modular ω on a set X, the function 0 < λ 7→ ωλ(x, y) ∈ [0,∞] for all
x, y ∈ X, is a non-increasing on (0,∞). In fact, if 0 < µ < λ, then the conditions (MM3),
(MM1′) and (MM2) imply

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y). (1)

It follows that, at each point λ > 0, the right limit ωλ+0(x, y) := lim
ε→+0

ωλ+ε(x, y) and

the left limit ωλ−0(x, y) := lim
ε→+0

ωλ−ε(x, y) exist in [0,∞] and the following two inequalities

hold:
ωλ+0(x, y) ≤ ωλ(x, y) ≤ ωλ−0(x, y). (2)

for all x, y ∈ X. We know that, if x0 ∈ X, the set Xω = {x ∈ X : lim
λ→∞

ωλ(x, x0) = 0} is a

metric space, which is called a modular space, whose metric is given by

d0ω(x, y) = inf{λ > 0 : ωλλ(x, y) ≤ λ}

for all x, y ∈ Xω. Also, it follows that, if X is a real linear space, ρ : X → [0,∞] and

ωλ(x, y) = ρ
(x− y

λ

)
for all λ > 0 and x, y ∈ X, then ρ is a modular on X if and only if ω is a metric modular
on X (see [2]).

Example 1. [8] The following indexed objects ω are simple examples of a modular on a
set X. Let λ > 0 and x, y ∈ X. Then we have

(1) ωλ(x, y) =∞ if λ ≤ d(x, y), and ωλ(x, y) = 0 if λ > d(x, y);

(2) ωλ(x, y) =∞ if λ < d(x, y), and ωλ(x, y) = 0 if λ ≥ d(x, y).
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Definition 4. [3] Let Xω be a modular metric space.
(1) The sequence {xn} in Xω is said to be ω-convergent to a point x ∈ Xω if ωλ(xn, x)→

0 as n→∞ for all λ > 0;
(2) The sequence {xn} in Xω is called an ω-Cauchy sequence if ωλ(xm, xn) → 0 as

m,n→∞ for all λ > 0;
(3) A subset C of Xω is said to be ω-closed if the limit of a convergent sequence {xn}

of C always belongs to C;
(4) A subset C of Xω is said to be ω-complete if any ω-Cauchy sequence {xn} in C is

ω-convergent to a point is in C;
(5) A subset C of Xω is said to be ω-bounded if, for all λ > 0, δω(C) = sup{ωλ(x, y) :

x, y ∈ C} <∞.

Definition 5. Let Xω be a modular metric space and f, g : X → X be two mappings.
The mappings f and g are said to satisfy the common limit in the range of g (shortly,
(CLRg)-property) if

lim
n→∞

fxn = lim
n→∞

gxn = gx

for some x ∈ Xω.

Definition 6. [9] Let Xω be a modular metric space. We say that ω satisfies the ∆2-
condition if, for any sequence {xn} ⊂ Xω and x ∈ Xw, there exists a number λ > 0,
possibly depending on {xn} and x, such that lim

n→∞
ωλ(xn, x) = 0 for some λ > 0 implies

lim
n→∞

ωλ(xn, x) = 0 for all λ > 0.

Note that, in this paper, we suppose that ω is a modular on X and satisfies the
∆2-condition on X.

3. Fixed point results for the contractive condition

Lemma 1. Let f and g be weakly compatible self-mappings of a set Xω. If f and g have
a unique coincidence point, that is, t = fx = gx, then t is the common fixed point of f
and g.

Theorem 1. Let Xω be a modular metric space and f, g : Xω → Xω be weakly compatible
mappings such that f(Xω) ⊂ g(Xω) and g(Xω) is a ω-complete subspace of Xω. Suppose

there exists number a ∈ [0,
1

4
) for all x, y ∈ Xω and λ > 0 such that

(a) there exists x0, x1 ∈ Xω such that ωλ(fx0, gx1) <∞;

(b) ωλ(fx, fy) ≤ a[ωλ(fx, gy) + ω2λ(fy, gx) + ωλ(fx, gx) + ωλ(fy, gy)].

Then f and g have a coincidence point.
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Proof. Let x0 be an arbitrary point in Xω. Since f(Xω) ⊂ g(Xω), there exists a
sequence {xn} in Xω such that

gxn = fxn−1

for all n ≥ 1. Now, setting x = xn and y = xn+1 in (b), we have

ωλ(fxn, fxn+1) ≤ a[ωλ(fxn, fxn) + ω2λ(fxn+1, fxn−1) + ωλ(gxn+1, gxn) + ωλ(fxn+1, fxn)]

= a[ω2λ(fxn+1, fxn−1) + ωλ(gxn+1, gxn) + ωλ(fxn+1, fxn)]

for all λ > 0. On the other hand, we have

ω2λ(fxn+1, fxn−1) ≤ ωλ(fxn+1, fxn) + ωλ(fxn, fxn−1)

= ωλ(fxn+1, fxn) + ωλ(gxn+1, gxn)

and so

ωλ(fxn, fxn+1) ≤ a[ωλ(fxn+1, fxn)+ωλ(gxn+1, gxn)+ωλ(gxn+1, gxn)+ωλ(fxn+1, fxn)].

This implies that

ωλ(fxn, fxn+1) ≤
2a

1− 2a
ωλ(gxn, gxn+1)

for all n ∈ N, where α =
2a

1− 2a
< 1. By induction, we have

ωλ(fxn, fxn+1) ≤ αnωλ(gx0, gx1) (3)

for all n ∈ N. By (a), it follows that {fxn} is a ω-Cauchy sequence. Since g(Xω) is
ω-complete, there exists u, v ∈ Xω such that u = g(v) and fxn → u as n → ∞. Since ω
satisfy the ∆2-condition on X, we have lim

n→∞
ωλ(fxn, u) = 0 for all λ > 0 and hence

lim
n→∞

ωλ(fxn, u) = lim
n→∞

ωλ(gxn, u) = 0 (4)

for all λ > 0. Letting x = xn and y = v in (b), we have

ωλ(fxn, fv) ≤ a[ωλ(fxn, gv) + ω2λ(fv, gxn) + ωλ(fxn, gxn) + ωλ(fv, gv)]

≤ a[ωλ(fxn, gv) + ω2λ(fv, fxn) + ωλ(fxn, gxn) + ωλ(fv, gv)]

and, by Remark 1, since the function λ 7→ ωλ(x, y) is non-increasing, we have

ωλ(fxn, fv) ≤ a[ωλ(fxn, gv) + ωλ(fv, fxn) + ωλ(fxn, gxn) + ωλ(fv, gv)].

By (b), letting n→∞ in the above inequality, we have

ωλ(fv, gv) ≤ [ωλ(fv, gv) + ωλ(fv, fv) + ωλ(fv, gv) + ωλ(fv, gv)].

Thus (1− 4k)ωλ(fv, gv) ≤ 0 for all λ > 0 and so

gv = fv = u,

which proves that g and f have a coincidence point.

Now, we generalize Theorem 1 by using (CLRg)-property for weakly compatible map-
pings as follows:
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Theorem 2. Let Xω be a modular metric space and f, g : Xω → Xω be weakly compatible
mappings such that f(Xω) ⊂ g(Xω). Suppose there exists a number a ∈ [0, 14) for all
x, y ∈ Xω and λ > 0 such that

(a) there exists x0, x1 ∈ Xω such that ωλ(fx0, gx1) <∞;

(b) ωλ(fx, fy) ≤ a[ωλ(fx, gy) + ω2λ(fy, gx) + ωλ(fx, gx) + ωλ(fy, gy)].

If f and g satisfy the (CLRg)-property, then f and g have a unique common fixed point.

Proof. Since f and g satisfy the (CLRg)-property, there exists a sequence {xn} in Xω

such that lim
n→∞

fxn = lim
n−→∞

gxn = gx for some x ∈ Xω. From (b), we have

ωλ(fxn, fx) ≤ a[ωλ(fxn, gx) + ω2λ(fx, gxn) + ωλ(fxn, gxn) + ωλ(fx, gx)]

for all n ≥ 1. Letting n → ∞, we have gx = fx. Let t = fx = gx. Since f and g are
weakly compatible mappings, fgx = gfx implies that ft = fgx = gfx = gt.

Now, we claim that ft = t. From (b), we have

ωλ(ft, t) = ωλ(ft, fx)

≤ a[ωλ(ft, gx) + ω2λ(fx, gt) + ωλ(ft, gt) + ωλ(fx, gx)]

= a[ωλ(ft, gx) + ω2λ(fx, gt)]

= a[ωλ(ft, t) + ω2λ(t, ft)]

and, by Remark 1, since the function λ 7→ ωλ(x, y) is non-increasing, we have

ωλ(ft, t) ≤ a[ωλ(ft, t) + ωλ(t, ft)].

This implies that (1 − 2a)ωλ(ft, t) ≤ 0 for all λ > 0, that is, ωλ(ft, t) = 0 and so
ft = t = gt. Thus t is a common fixed point of f and g.

For the uniqueness of the common fixed point, we suppose that u is another common
fixed point in Xω such that fu = gu. From (b), we have

ωλ(gu, gt) = ωλ(fu, ft)

≤ a[ωλ(fu, gt) + ω2λ(ft, gu) + ωλ(fu, gu) + ωλ(ft, gt)]

= a[ωλ(fu, gt) + ω2λ(ft, gu)]

= a[ωλ(gu, gt) + ω2λ(gt, gu)]

and, by Remark 1, since the function λ 7→ ωλ(x, y) is non-increasing, we have

ωλ(gu, gt) ≤ a[ωλ(gu, gt) + ωλ(gt, gu)].

This implies gu = gt. Thus, by Lemma 1, we have f and g have a unique common fixed
point.
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Theorem 3. Let Xω be a modular metric space and f, g : Xω → Xω be weakly compatible
mappings such that f(Xω) ⊂ g(Xω). Suppose that there exist a1, a2, a3, a4, a5 ∈ [0, 14) and
5∑
i=1

ai < 1 such that, for all x, y ∈ Xω and λ > 0,

(a) there exists x0, x1 ∈ Xω such that ωλ(fx0, gx1) <∞;

(b) ωλ(fx, fy) ≤ a1ωλ(fx, gx)+a2ωλ(fy, gy)+a3ωλ(fy, gx)+a4ωλ(fx, gy)+a5ωλ(gy, gx).

If f and g satisfy (CLRg)-property, then f and g have a unique common fixed point.

Proof. Since f and g satisfy the (CLRg)-property, there exists a sequence {xn} in Xω

such that lim
n→∞

fxn = lim
n−→∞

gxn = gx for some x ∈ Xω. From (b), we have

ωλ(fxn, fx) ≤ a1ωλ(fxn, gxn) + a2ωλ(fx, gx) + a3ωλ(fx, gxn)

+ a4ωλ(fxn, gx) + a5ωλ(gx, gxn)

for all n ≥ 1. By taking the limit n→∞, we have

ωλ(gx, fx) ≤ a1ωλ(gx, gx) + a2ωλ(fx, gx) + a3ωλ(fx, gx)

+ a4ωλ(gx, gx) + a5ωλ(gx, gx)

= (a2 + a3)ωλ(fx, gx).

This implies that (1−a2−a3)ωλ(fx, gx) ≤ 0 for all λ > 0, which is a contradiction. Thus
fx = gx. Now, let t = fx = gx. Since f and g are weakly compatible mappings, we have
fgx = gfx, which implies that ft = fgx = gfx = gt.

Now, we show that gt = t. Suppose ωλ(gt, t) > 0. Then, from (b), we have

ωλ(gt, t) = ωλ(ft, fx)

≤ a1ωλ(ft, gt) + a2ωλ(fx, gx) + a3ωλ(fx, gt)

+ a4ωλ(ft, gx) + a5ωλ(gx, gt)

≤ a3ωλ(t, gt) + a4ωλ(gt, t) + a5ωλ(t, gt)

= (a3 + a4 + a5)ωλ(gt, t).

This implies that (1 − a3 − a4 − a5)ωλ(gt, t) ≤ 0 for all λ > 0, which is a contradiction.
Thus t is a common fixed point of f and g.

For the uniqueness of the common fixed point, we suppose that u is another common
fixed point in Xω such that fu = gu. From (b), we have

ωλ(u, t) = ωλ(gu, gt)

= ωλ(fu, ft)

≤ a1ωλ(fu, gu) + a2ωλ(ft, gt) + a3ωλ(ft, gu)

+ a4ωλ(fu, gt) + a5ωλ(gt, gu)

≤ a3ωλ(ft, gu) + a4ωλ(gu, ft) + a5ωλ(ft, gu)

= (a3 + a4 + a5)ωλ(u, t).
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This implies that (1 − a3 − a4 − a5)ωλ(u, t) ≤ 0 for all λ > 0, which is a contradiction.
Thus ωλ(u, t) = 0 and so u = t. Hence f and g have a unique common fixed point.

By setting g = IXω , we deduce the following result of fixed point for one self-mapping
from Theorem 3.

Corollary 1. Let Xω be an ω-complete modular metric space and f : Xω → Xω such that,
for all λ > 0 and x, y ∈ Xω, ωλ(x0, fx0) <∞ and

ωλ(fx, fy) ≤ a1ωλ(fx, x) + a2ωλ(fy, y) + a3ωλ(fy, x) + a4ωλ(fx, y) + a5ωλ(x, y)

where a1, a2, a3, a4, a5 ∈ [0, 14) with
5∑
i=1

ai < 1. Then f has a unique fixed point z. Further,

for any x0 ∈ Xω, the Picard sequence {fxn} with an initial point x0 is ω-convergent to
the fixed point z.

Corollary 2. Let Xω be an ω-complete modular metric space and f : Xω → Xω such that,
for all λ > 0 and x, y ∈ Xω, ωλ(x0, fx0) <∞ and

ωλ(fx, fy) ≤ a1ωλ(fx, x) + a2ωλ(fy, y) + a3ωλ(x, y)

where a1, a2, a3 ∈ [0, 14) with 0 ≤ a1 + a2 + a3 < 1. Then f has a unique fixed point.

Corollary 3. Let Xω be an ω-complete modular metric space and f : Xω → Xω such that,
for all λ > 0 and x, y ∈ Xω, ωλ(x0, fx0) <∞ and

ωλ(fx, fy) ≤ aωλ(x, y)

where 0 ≤ a < 1. Then f has a unique fixed point.

Now, we give some examples of the (CLRg)-property as follows:

Example 2. Let Xω = [0,∞) be a modular metric space. Define two mappings f, g :
Xω → Xω by fx = x+ 4 and gx = 5x for all x ∈ Xω, respectively. Now, we consider the
sequence {xn} defined by xn = {1 + 1

n} for each n ≥ 1. Since

lim
n→∞

fxn = lim
n→∞

gxn = 5 = g(1) ∈ Xω,

f and g satisfy the (CLRg)-property.

Example 3. The conclusion of Example 2 remains true if the self-mappings f and g is
defined on Xω by f(x) = x

4 and g(x) = x
2 for all x ∈ Xω, respectively. Let a sequence {xn}

be defined by xn = { 1n} in Xω. Since

lim
n→∞

fxn = lim
n→∞

gxn = 0 = g(0) ∈ Xω,

f and g satisfy the (CLRg)-property.
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4. Fixed point results for the strict contractive condition

Definition 7. Let (X,ω) be a modular metric space and (f, g) be a pair of self-mappings
on Xω. For any x, y ∈ Xω, consider the following sets:

Mf,g
0 (x, y) = {ωλ(gx, gy), ωλ(gx, fx), ωλ(gy, fy), ωλ(gx, fy), ωλ(gy, fx)},

Mf,g
1 (x, y) =

{
ωλ(gx, gy), ωλ(gx, fx), ωλ(gy, fy),

ωλ(gx, fy) + ωλ(gy, fx)

2

}
,

Mf,g
2 (x, y) =

{
ωλ(gx, gy),

ωλ(gx, fx) + ωλ(gy, fy)

2
,
ωλ(gx, fy) + ωλ(gy, fx)

2

}
.

and define the following conditions:
(C1) for any x, y ∈ Xω, there exists α0(x, y) ∈Mf,g

0 (x, y) such that

ωλ(fx, fy) < α0(x, y),

(C2) for any x, y ∈ Xω, there exists α1(x, y) ∈Mf,g
1 (x, y) such that

ωλ(fx, fy) < α1(x, y),

(C3) for any x, y ∈ Xω, there exists α2(x, y) ∈Mf,g
2 (x, y) such that

ωλ(fx, fy) < α2(x, y).

These conditions are called the strict contractive conditions.

Definition 8. Let (X,ω) be a modular metric space. Let f, g be self-mappings on Xω.
Then f is called a g-quasi-contraction if, for some constant a ∈ (0, 1), there exists α(x, y) ∈
Mf,g

0 (x, y) such that
ωλ(fx, fy) ≤ aα(x, y)

for all x, y ∈ Xω.

Theorem 4. Let Xω be a modular metric space and f, g : Xω → Xω are weakly compatible
mappings such that f(Xω) ⊂ g(Xω) satisfies the condition (C3) for all x, y ∈ Xω and
λ > 0. If f and g satisfy the (CLRg)-property, then f and g have a unique common fixed
point.

Proof. Since f and g satisfy the (CLRg)-property, there exists a sequence {xn} in Xω

such that lim
n→∞

fxn = lim
n−→∞

gxn = gx for some x ∈ Xω. From (C3), we have

ωλ(fxn, fx) < α2(xn, x),

where α2(xn, x) ∈Mf,g
2 (xn, x). Therefore, we have

Mf,g
2 (xn, x) =

{
ωλ(gxn, gx),

ωλ(gxn, fxn) + ωλ(gx, fx)

2
,
ωλ(gxn, fx) + ωλ(gx, fxn)

2

}
.
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Now, we show that fx = gx. Suppose that fx 6= gx. From (C3), we have the following
three cases:

Case 1. ωλ(fxn, fx) < α2(xn, x). Taking limit as n → ∞, we have ωλ(gx, fx) <
ωλ(gx, gx) = 0, which is a contradiction.

Case 2. ωλ(fxn, fx) <
ωλ(gxn, fxn) + ωλ(gx, fx)

2
. Taking limit as n→∞, we have

ωλ(gx, fx) <
ωλ(gx, gx) + ωλ(gx, fx)

2
=

1

2
ωλ(gx, fx),

which is a contradiction.

Case 3. ωλ(fxn, fx) <
ωλ(gxn, fx) + ωλ(gx, fxn)

2
. Taking limit as n→∞, we have

ωλ(gx, fx) <
ωλ(gx, fx) + ωλ(gx, gx)

2
=

1

2
ωλ(gx, fx),

which is a contradiction. Hence gx = fx in all the cases. Let t = fx = gx. Since f and g
are weakly compatible mappings, fgx = gfx, which implies that ft = fgx = gfx = gt.

Now, we show that ft = t. Suppose that ft 6= t. From (C3), we have

ωλ(ft, t) = ωλ(ft, fx) < α2(t, x),

where α2(t, x) ∈Mf,g
2 (t, x). Therefore, we have

Mf,g
2 (t, x) =

{
ωλ(gt, gx),

ωλ(gt, ft) + ωλ(gx, fx)

2
,
ωλ(gt, fx) + ωλ(gx, ft)

2

}
= {ωλ(ft, t), 0, ωλ(ft, t)}.

So, we have only two possible cases:
Case 4. ωλ(ft, t) < ωλ(ft, t), which is a contradiction.
Case 5. ωλ(ft, t) < 0, which is a contradiction.
Hence ft = t = gt. Therefor, t is a common fixed point of f and g.
For the uniqueness of the common fixed point, we suppose that u is another common

fixed point in Xω such that fu = gu. From (C3), we have

ωλ(t, u) = ωλ(gt, gu) = ωλ(ft, fu) < α2(t, u),

where α2(t, u) ∈Mf,g
2 (t, u). Therefore, we have

Mf,g
2 (t, u) =

{
ωλ(gt, gu),

ωλ(gt, ft) + ωλ(gu, fu)

2
,
ωλ(gt, fu) + ωλ(gu, ft)

2

}
= {ωλ(gt, gu), 0, ωλ(gt, gu)}.

So, we have only two possible cases.
Case 6. ωλ(gu, gt) < ωλ(gu, gt), which is a contradiction.
Case 7. ωλ(gu, gt) < 0, which is a contradiction.
Hence gu = gt. implies u = t and so f and g have a unique common fixed point.
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Theorem 5. Let Xω be a modular metric space and f, g : Xω → Xω be weakly compatible
mappings such that f is the g-quasi-contraction for all x, y ∈ Xω and λ > 0. If f and g
satisfy (CLRg)-property, then f and g have a unique common fixed point.

Proof. Since f and g satisfy the (CLRg)-property, there exists a sequence {xn} in Xω

such that lim
n→∞

fxn = lim
n−→∞

gxn = gx for some x ∈ Xω. Since f is the g-quasi-contraction,

we have
ωλ(fxn, fx) ≤ aα0(xn, x),

where α0(xn, x) ∈Mf,g
0 (xn, x). Therefore, we have

Mf,g
0 (xn, x) = {ωλ(gxn, gx), ωλ(gx, fx), ωλ(gxn, fxn), ωλ(gxn, fx), ωλ(gx, fxn)}.

Now, we have the following five cases:
Case 1. ωλ(fxn, fx) ≤ aωλ(gxn, gx). Taking the limit as n→∞, we have gx = fx.
Case 2. ωλ(fxn, fx) ≤ aωλ(gxn, fxn). Taking the limit as n→∞, we have gx = fx.
Case 3. ωλ(fxn, fx) ≤ aωλ(gx, fx). Taking the limit as n→∞, we have gx = fx.
Case 4. ωλ(fxn, fx) ≤ aωλ(gx, fxn). Taking the limit as n→∞, we have gx = fx.
Case 5. ωλ(fxn, fx) ≤ aωλ(gx, fxn). Taking the limit as n→∞, we have gx = fx.
Hence, in all the possible cases, gx = fx. Now, let t = fx = gx. Since f and g are

weakly compatible mappings, it follows that fgx = gfx, which implies that ft = fgx =
gfx = gt.

Now, we claim that ft = t. Since f is the g-quasi-contraction, we have

ωλ(ft, t) = ωλ(ft, fx) ≤ aα0(t, x),

where α0(t, x) ∈Mf,g
0 (t, x). Therefore, we have

Mf,g
0 (t, x) = {ωλ(gt, gx), ωλ(gt, ft), ωλ(gx, fx), ωλ(gt, fx), ωλ(gx, ft)}

= {ωλ(ft, t), 0, 0, ωλ(ft, t), ωλ(t, ft)}.

Now, we have two cases.

Case 6. ωλ(ft, t) ≤ aωλ(ft, t). This implies ft = t.
Case 7. ωλ(ft, t) ≤ 0. This implies ft = t.

Hence ft = t = gt and so t is a common fixed point of f and g.

For the uniqueness of the common fixed point t, we suppose that u is another common
fixed point in Xω such that fu = gu. Since f is the g-quasi-contraction, we have

ωλ(gt, gu) = ωλ(ft, fu) ≤ aα0(t, u),

where α0(t, u) ∈Mf,g
0 (t, u). Therefore, we have

Mf,g
0 (t, u) = {ωλ(gt, gu), ωλ(gt, ft), ωλ(gu, fu), ωλ(gt, fu), ωλ(gu, ft)}

= {ωλ(ft, fu), 0, 0, ωλ(ft, fu), ωλ(fu, ft)}
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So, we have only two possible cases.

Case 8. ωλ(ft, fu) ≤ aωλ(ft, fu). This implies ft = fu.
Case 9. ωλ(ft, fu) ≤ 0. This implies ft = fu.

Therefore, f and g have a unique common fixed point.

Example 4. Let Xω = (0, 1] with ωλ(x, y) =
1

λ
|x−y| for all λ > 0. Consider the functions

f and g defined by

fx =


4

5
, if x ∈ (0,

4

5
],

1

5
, if x ∈ (

4

5
, 1].

gx =


1− x

4
, if x ∈ (0,

4

5
],

9

10
, if x ∈ (

4

5
, 1].

Choosing a sequences {xn} = {4

5
− 1

n
}, we can see that f and g enjoy the (CLRg)-property

lim
n→∞

fxn = lim
n→∞

gxn =
4

5
= g(

4

5
).

Also,

f(
4

5
) = g(

4

5
) implies fg(

4

5
) = gf(

4

5
),

which shows that f and g are weakly compatible.

Case 1. For each x, y ∈ (0,
4

5
], we have

ωλ(fx, fy) =
1

λ
|fx− fy|

=
1

λ
|4
5
− 4

5
|

and

Mf,g
0 (x, y) = {ωλ(gx, gy), ωλ(gx, fx), ωλ(gy, fy), ωλ(gx, fy), ωλ(gy, fx)}

= { 1

λ
|gx− gy|, 1

λ
|gx− fx|, 1

λ
|gy − fy|, 1

λ
|gx− fy|, 1

λ
|gy − fx|}

= { 1

λ
|1− x

4
− (1− y

4
)|, 1

λ
|1− x

4
− 4

5
|, 1

λ
|1− y

4
− 4

5
|,

1

λ
|1− x

4
− 4

5
|, 1

λ
|1− y

4
− 4

5
|}.

Thus, we obtain ωλ(fx, fy) ≤ aα0(x, y), where a ∈ (0, 1).
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Case 2. For x ∈ (0,
4

5
] and y ∈ (

4

5
, 1] we have

ωλ(fx, fy) =
1

λ
|fx− fy|

=
1

λ
|4
5
− 1

5
|

and

Mf,g
0 (x, y) = {ωλ(gx, gy), ωλ(gx, fx), ωλ(gy, fy), ωλ(gx, fy), ωλ(gy, fx)}

= { 1

λ
|gx− gy|, 1

λ
|gx− fx|, 1

λ
|gy − fy|, 1

λ
|gx− fy|, 1

λ
|gy − fx|}

= { 1

λ
|1− x

4
− 9

10
|, 1

λ
|1− x

4
− 4

5
|, 1

λ
| 9

10
− 1

5
|,

1

λ
|1− x

4
− 1

5
|, 1

λ
| 9

10
− 4

5
|}.

Thus, we obtain ωλ(fx, fy) ≤ aα0(x, y), where a ∈ (0, 1).

Case 3. For x ∈ (
4

5
, 1] and y ∈ (0,

4

5
], we have

ωλ(fx, fy) =
1

λ
|fx− fy|

=
1

λ
|1
5
− 4

5
|

and

Mf,g
0 (x, y) = {ωλ(gx, gy), ωλ(gx, fx), ωλ(gy, fy), ωλ(gx, fy), ωλ(gy, fx)}

= { 1

λ
|gx− gy|, 1

λ
|gx− fx|, 1

λ
|gy − fy|, 1

λ
|gx− fy|, 1

λ
|gy − fx|}

= { 1

λ
| 9

10
− (1− y

4
)|, 1

λ
| 9

10
− 1

5
|, 1

λ
|1− y

4
− 4

5
|,

1

λ
| 9

10
− 4

5
|, 1

λ
|1− y

4
− 1

5
|}.

Thus, we obtain ωλ(fx, fy) ≤ aα0(x, y), where a ∈ (0, 1).

Case 4. For each x, y ∈ (
4

5
, 1], we have

ωλ(fx, fy) =
1

λ
|fx− fy|

=
1

λ
|1
5
− 1

5
|
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and

Mf,g
0 (x, y) = {ωλ(gx, gy), ωλ(gx, fx), ωλ(gy, fy), ωλ(gx, fy), ωλ(gy, fx)}

= { 1

λ
|gx− gy|, 1

λ
|gx− fx|, 1

λ
|gy − fy|, 1

λ
|gx− fy|, 1

λ
|gy − fx|}

= { 1

λ
| 9

10
− 1

5
|, 1

λ
| 9

10
− 1

5
|, 1

λ
| 9

10
− 1

5
|,

1

λ
| 9

10
− 1

5
|, 1

λ
|1− 9

10
− 1

5
|}.

Thus, we obtain ωλ(fx, fy) ≤ aα0(x, y), where a ∈ (0, 1).

Therefore, f and g satisfy all conditions of Theorem 5 are satisfied and x =
4

5
is the

unique common fixed point of f and g.

5. Some applications to Fredholm integral equations

The purpose of this section is to show the existence and uniqueness of a solution of
Fredholm integral equations in modular metric spaces with a function space (C(I,R), ωλ)
and a contraction by using our main results.

Consider the integral equation:

fx(t)− µ
∫ r

0
K(t, s)hx(s)ds = g(t), (5)

where x : I → R is an unknown function, g : I → R and h, f : R → R are two functions,
µ is a parameter. The kernel K of the integral equation is defined by I × R → R, where
I = [0, r].

Theorem 6. Let K, f, g, h be continuous. Suppose that C ∈ R is such that, for all t, s ∈ I,

|K(t, s)| ≤ C

and, for each x ∈ (C(I,R), ωλ), there exists y ∈ (C(I,R), ωλ) such that

(fy)(t) = g(t) + µ

∫ r

0
K(t, s)hx(s)ds

for all r ∈ C(I,R). If f is injective, there exists L ∈ R such that, for all x, y ∈ R,

|hx− hy| ≤ L|fx− fy|

and {fx : x ∈ (C(I,R), ωλ)} is complete, then, for any µ ∈
(
− 1

CrL ,
1

CrL

)
, there exists

w ∈ (C(I,R), ωλ) such that, for any x0 ∈ (C(I,R), ωλ),

fw(t) = lim
x→∞

fxn(t) = lim
x→∞

[
g(t) + µ

∫ r

0
K(t, s)hxn−1(s)ds

]
(6)

and w is the unique solution of the equation (5).
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Proof. Let Xω = Yω = (C(I,R), ωλ) and define d(x, y) = maxt∈I |x(t) − y(t)| for all
x, y ∈ Xω. Let T, S ∈ Xω → Xω be the mappings defined as follows:

(Tx)(t) = g(t) + µ

∫ r

0
K(t, s)(hx)(s)ds, Sx = fx.

Then, by the assumptions, S(Xω) = {Sx : x ∈ Xω} is complete. Let x∗ ∈ T (Xω) for
any x ∈ Xω and x∗(t) = Tx(t). By the assumptions, there exists y ∈ Xω such that
Tx(t) = fy(t) and hence T (Xω) ⊆ S(Xω). Since

ωλ(Tx, Ty) = |µ|
∣∣∣ ∫ r

0
[K(t, s)(hx)(s)ds]−

∫ r

0
[K(t, s)(hy)(s)ds]

∣∣∣
≤ |µ|

∫ r

0
c|(hx)(s)− (hy)(s)|ds

≤ L|µ|C
∫ r

0
|(fx)(s)− (fy)(s)|ds

≤ L|µ|C
∫ r

0
|(Sx)(s)− (Sy)(s)|ds

≤
(

sup
t∈I
|(Sx)(t)− (Sy)(t)|

)
L|µ|C

∫ r

0
ds

≤ L|µ|Crd(Sx, Sy).

Therefore, for any µ ∈
(
− 1

CrL ,
1

CrL

)
, there exists a unique w ∈ Xω such that

fw(t) = lim
x→∞

Sxn(t) = lim
x→∞

Txn−1(t) = T (w)(t), x0 ∈ Xω

for all t ∈ I, which is the unique solution of the equation (5). So, S and T have a
coincidence point in Xω. Moreover, if either T or S is injective, then S and T have a
unique coincidence point in Xω.
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