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Abstract. It is a known fact that in the application of a continuous linear multistep method, the
global error at a particular point is influenced by the accumulation of local truncation errors at each
step from the initial point and thereby reduces the accuracy of the approximated result. Hence, by
controlling the growth of local errors it is expected that the accuracy of the approximations should
improve. In this paper therefore, a method is derived for the bound on the local truncation error
of continuous implicit hybrid one step method for the solution of initial value problems of second
order ordinary differential equations by means of the generalized Lagrange form of the Taylor’s
remainder and the mean value theorem.
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1. Introduction

An important property associated with the numerical solutions of the initial value
problems of ordinary differential equations (ODEs), is the global error of computation.
The size of this error on the interval of interest makes the effort put into developing the
numerical method worthwhile or futile. If the global error is small, the numerical solution
is considered to be accurate, and other properties of the solution become less important.

The requirement of a small global error will guarantee that the dynamics of the ap-
proximate solution is similar to that of the exact solution and facilitate step size control
using the global error estimate, (Orel,2010).

The relationship between the local and the global errors and possible ways of control-
ling the global error directly has attracted a lot of interest. A number of researchers have
studied this situation for different numerical methods; for instance, Highhman(1993), Dor-
mund et al.(1994), Calvo et al.(1996) and Stuart(1997) all studied the connection between
local truncation error and global error for Runge-Kutta methods while Lambert(1979),
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Onumayi et al.(1999) as well as Kulikov and Shindin(2004) were concerned with estimates
of these errors for multistep methods.

It is a well known that in the application of a linear multistep method at any given
point, say x;, the global error would usually be an accumulation of the local errors com-
mitted at each step from the initial point up to the reference point. This is usually a
function of the problem to be solved, the numerical method adopted and step size se-
lected, (Orel,2010). However, while it may be possible to control the local errors and step
size during the implementation of the linear multistep method, it may not be possible to
do the same for the global error directly.

The aim of this paper is to derive a method for a bound on the local truncation error,
at each step of application, of a continuous implicit hybrid one step method(CIHOSM)
as a means of managing the magnitude of the global error of computation. The result
presented in this paper, extends an earlier result by Lambert(1979) for special second
order initial value problems to the general case.

The paper is organized as follows: in Section 2 the CIHOSM is introduced. The main
result is presented in Section 3. The error bound method derived in Section 3 is applied
on the CIHOSM proposed in Anake and Adoghe(2013) for the solution of a simple electric
circuit problem using different step sizes in Section 4. Finally in section 5, conclusions are
presented.

2. The Continuous Implicit Hybrid One Step method

Consider the general form of the continuous implicit hybrid one step method proposed
by Anake and Adoghe(2013):

1 r
y(@) = Y, Oyt + 0D B0 fari + Y Buy () futwy | (1)

jl=r—1r 7=0 i’=1

where Qy/ ﬁl,} and 3; are continuous in t €; y,4; is the numerical approximation of the

exact solution at the grid point zpyj, and foij = f(Zntj, Yntjs Y, +j). The subscript,
vy € (0,1), V j/ is a rational number representing the ;" off-grid point.
We note that by using off-grid points, the method mimics a continuous implicit mul-

tistep method and solves directly ordinary differential equations of the form:

y' = f(z,y,9)
y(a) = no, (2)
y'(a) =m

where z € [a,b], a,b € and f is continuously differentiable with respect to its arguments.
Ordinary differential equations such as (2) are important in many application areas (see,
Chapra and Canale(2010), Anake(2011)).

The following definition and theorem are useful results needed for the derivation in the
next section.
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Definition 1 ([Anake, 2011, p.61] Local Truncation Error). The local truncation error at
Zntk of the numerical method (2) is defined to be the operator L[y(xy);h| given by:

k
Lly(zn)ih] = [ogy(an + jh) — h*By" (xn + jh)] (3)
=0

when y(x,) is the theoretical solution of the initial value problem (2) at x,.

In what follows, we shall assume that in the application of the method (1) to yield
Yn+k, NO previous truncation errors have been made. Furthermore, we shall assume the
theoretical solution y(x) possesses p+2 continuous derivatives, so that the local truncation
error has the value;

L[y(zn); h] = Cprah? 2yP 2 (2,) + O(WPH?) (4)
where p and C)p42 are taken to be the order and error constant of method (1) respectively.

Theorem 1 ([Huang,2001,p.2] Generalized Mean Value Theorem). If ¢ is continuous
and v is integrable on an interval containing a and x, and ¥ does not change sign in the
interval [a, x], then there exists a point ¢ between a and x such that

/%wwwwzmo/%wﬁ. (5)

We note that the asymptotic method (4) can only predict the behaviour of the error in
the limit as h — 0. Furthermore, our knowledge of the order p and error constant C)42 of
the method is not sufficient to deduce a bound for the magnitude of the local truncation
error when h is fixed, since the magnitude of the term O(h?*3) is unknown.

3. Main Result

We present the main result as a proposition as follows.

Proposition 1. Given the operator L, of order p and error constant Cpyo, for h fized,
the local truncation error takes the form:

L[y(wn); h] = CppahPT?yP 2 (xy, + €R), 0<E<k (6)
and
Lly(an)i ] < 2QY (7
where
@—m%ﬂ—ﬂéﬂmmd (s0)
and
Y = max [y(o)]. (3h)

z€la,b]
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Proof. Define the generalized form of the Lagrange remainder R,11 after p 4+ 2 terms
in a Taylor expansion of a sufficiently differentiable function G(z) about x = a as;

1 h
Rpst = 7 /O (h— 2PHGEP) (g 4 2) da. )

Then we can now write the Taylor expansions of y(z,, + jh) about x,, truncated after
P+ 2 terms as

ih)2 ih )P+l
2! (p+1)! (10)
Jh
by [ G P e+
- Jo

and in the same manner, the Taylor expansion of 4" (z, + jh) about z,, truncated after p
terms may now be written as

. 2 . p*l
y® (o + 7h) = 5D (@) + jhy® + Ug')y<4>(xn) P Eﬁmy@m
R (11)
+M /0 (jh — 2P~ Ly (2, + 2)dz.
Making z = th, (10) and (11) respectively become
ih 2 ih p+1
Y@ + jh) = y(zn) + ihyV + 02')y<2> () 4 + %ywn
het e p+1,,(p+2) 12
+(p+1)‘/0 (j—t)P "y (xp + th)dt
and 2 -
v (@ + jh) =y (@n) + jhy® + (‘72,)y(4)(a:n) +o4 89)1)' (p+1)
pp-l i o (13)
+(p_1)!/0 (j — )Pty (x,, + th)dt.

Then, using (12) and (13) in (3) yields after a little algebraic computation

hp+2 E K
Lly(zn); h] =
g p! /JZ;

[<p 1) ey (= O — B — 0y (e + th) b (14)

s, ifs>0
G 1S 20, 15
* {0, if s < 0. (15)
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Suppose the method is consistent, that is p > 1, also define the function F(¢):

Pﬁ)—}jﬁp+n%MJ—wT*—p@u—wﬁ* (16)
=0

such that F'(¢) is a polynomial in each partition of the interval [0, k] and independent of
the theoretical solution y(x). Then, (14) can be written in terms of F(¢) as follows:

p+2
Cly(en):h] ="

* ()
o /OF(t)y (25 + th) dt. (17)

Furthermore, assume that F'(¢) does not change sign in the interval [0, k], then by Theorem
3.2, (17) becomes

1 k
Lly(xy,); h] = hp“;! (/0 F(t) dt) y P2 (z, +€h), 0<&<k. (18)

Assume y(z) = P2, such that all derivatives of zP2 of order greater than p -+ 2 vanish
identically. Then, by (18) and the expansion of the operator £ we have;

1 k
Cpia = — / Pt) dt. (19)
b Jo
Thus, (19) becomes
Lly(z,); h] = WPF2C, 0yt (2, + €R), 0<E<k (20)
which is the desired form. Hence,

\Lly(20); h]| = [WPT2Cpyoy P (2, + £D)|

< [WPT2)|Ca max @) ()]
z€]a,

|Lly(xn): B| < HPF2QY. (21)

4. Application of the Bound
Suppose the continuous implicit hybrid one step method proposed in Anake and
Adoghe (2013), by evaluating (1) at the point x,1, given as follows:
B2
Yokt = ot Yy s+ o5 | 18Fust +2095, 4 +4F, 08 + 145, 2 = 6F,01 + fa) - (22)
is implemented for the solution of the initial value problem:

1
L¢"+ Rq + ai= E(t), q(0)=0,¢'(0)=0
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with exact solution: 3 3
q(t) = 1 Zeflot(cos 10t + sin 10¢t),

where L = 1,C = 0.005, E(t) = 150 and R = 20. According to Anake and Adoghe(2013),
application of the convergent method, of order p = 6, at the first grid point z,.1 yields
the local error constant Cj1o = —m.

To apply (21), we will need to find @, Y and choose a suitable step size. Thus, we
checked that (19) is satisfied and the result of our computation agrees with the error

constant reported by Anake and Adoghe (2013) as follows:

1 /1 221
—C = |= Ft)dt| =
Q= [Cpeal = | /O (1) dt] = 53535000000

F(t) = ;((2 ﬂf): —2@ _t>:+(1 —t)7+> - 10100(18(1 —t)i+209<;1 _t>i

+4<§ —t>i+14<§ —t>i —6<; —t>i+ (0—t)5+>.

By (17) given that p = 6, Y is obtained as follows:

y P2 = ¢®) (1) = 1200000000e % (cos 10¢ + sin 10t). (23)
Hence,
Y = max |yP?(z)| = 75351. (24)
z€[0,1]

The bound on the application of the method (22) at the point z,4; obtained for
different values of the step size h is shown in the table below:

Table 1: Different values of h and the corresponding bound

h hPt2QY
0.003125 6.4108x 1024
0.01 7.0487x10~20
0.03 4.6247x10716
0.05 2.7534x10~ 14
0.10 7.0487x10~12

5. Conclusion

A method for the bound on the local truncation error has been derived in this paper.
The method has been applied to the continuous implicit hybrid one step method proposed
by Anake and Adoghe (2013) and bounds were obtained, in the application of the method
at the point z,1, on the local truncation error for different values of h. It is observed
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that the magnitude of the bound computed reduces as h — 0. This indicates that the size
of the global error reduces with decrease in the step size and consequently, the accuracy
of the approximation theoretically improves.
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