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1. Introduction

In recent years, many authors studied common fixed points of mappings having dif-
ferent contractive conditions. This area has variety of important applications in applied
mathematics and sciences.

In 1976, Jungck [17] proved a common fixed point theorem for commuting maps under
the assumption that one of maps must be continuous.

In 1982, the concept of weak commutativity for a pair of self maps was introduced by
Sessa [47]. He also proved that weakly commuting pairs of maps in a metric space are
commuting, but the converse need not be true. Later, Jungck [18] introduced the notion
of compatible mappings in order to generalize the concepts of weak commutativity and
showed that weak commuting maps are compatible, but the reverse implication may not
hold.
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In 1996, Jungck [20] defined a pair of self mappings to be weakly compatible if they
commute at their coincidence points.

Therefore, we have one way implication namely, Commuting maps = Weakly Commut-
ing maps = Compatible maps = Weakly Compatible maps. Recently, various authors
have introduced a coincidence points results for various classes of mappings on metric
spaces. For more details on coincidence point theory and related results, see [19, 21, 43].

However, the study of common fixed points of non-compatible mappings has recently
been initiated by Pant [44].

In 2002, Amari and El Moutawakil [1] defined a new property called (E.A) property
which generalizes the concept of non-compatible mappings and they proved some common
fixed point theorem.

Yan et al. [48] gave the idea of (¢, 1))-contractions and proved a fixed point theorem
of a contraction mapping in a complete metric space endowed with a partial order by
using altering distance functions [22]. Different authors used (¢, ¥)-contractions to obtain
common fixed point results in different spaces. Some of the works on (¢, 1)-contractions
are given in [4, 5, 8, 10, 26, 27, 42, 23, 41].

Mustafa and Sims [28] introduced a new generalizations of a metric space by assigning
to every (z,y,2z) € X x X x X a real number and is named as a G-metric space. In 2008,
Mustafa et al. [29] obtained some fixed point results in G-metric spaces for mappings satis-
fying different contractive conditions. After that several fixed point results were obtained.
Among these works, we mention ([6],[7],[11],[14],[15], [16],[24]-[40]). In 2014, Aghajani et
al. [2] introduced a new generalization of a metric space. They combined the definition
of a G-metric and a b-metric and generated a new definition called a Gp-metric space.
They also pointed out that the class of Gp-metric spaces is effectively larger than that of
G-metric spaces. Note that a G-metric space becomes a particular case of a Gp-metric
space when s = 1. Further, they showed that every Gp-metric space is equivalent to a
b-metric space topologically.

In the current work, we will obtain a unique common fixed point result in G- metric
spaces involving (¢, 1)-contractions and using the (E.A) property. Also, an example to
illustrate the main result is given.

2. Preliminaries

First, we present some definitions from the literature.

Definition 1. ([13]) Let X be a nonempty set and s > 1 be a given real number. A
function d : X x X — [0,00) is called a b-metric provided that, for all a,b,c € X, the
following conditions are satisfied:

(B1) d(a,b) =0 if and only if a = b;

(B2) d(a,b) =d(b,a);

(B3) d(a,c) < sld(a,b) +d(b,c)].

The pair (X,d) is called a b-metric space with parameter s.

The following definition was given by Mustafa and Sims [28]
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Definition 2. ([28]) Let X be a nonempty set and G : X x X x X — [0,00) satisfies:

(G1) G(a,b,c)=01ifa=b=c;

(G2) G(a,a,b) >0 for all a,b € X with a # b;

(G3) G(abb)<G(abc)forallabcesztha;éc

(G4) G(a,b,c) = G(b,c,a) = G(c,a,b) =--- (symmetry in a,b,c);
(G5) (abc)<G(add)—i—G(dbc)forallabcdeX

Then function G is called a G-metric on X, and the pair (X, G) is called a G-metric space.
As a combination of the two above definitions, Aghajani et al. [2] (see also [3]) introduced
the following.

Definition 3. (/2/) Let X be a nonempty set and s > 1 be a given real number. Suppose
that a mapping G, : X x X x X — [0,00) satisfies:
(Gh1) Gb(m y,2) =0if v =y =z

(Gy2) Gp(z,z,y) >0 for all x,y € X with x # y;

(Gp3) b(:r v,y) < Gyp(x,y, 2) for all z,y,z € X with x # z;

(Gvd) Gp(z,y,2) = Gp(p{z,y, z}) where p is a permutation of x,y, z (symmetry);
(Gpd)  Gp(z,y,2) < s(Gp(z,a,a) + Gyla,y, z)) for all x,y,z,a € X.

Then Gy is called a generalized b-metric ( named as a Gp-metric) on X, and the pair
(X, Gy) is called a Gp-metric space.

Note that every G-metric space is a Gyp-metric space, but the converse need not to be
true as its clear from the following example.

Example 1. ([46]) Let X={1, 2, 3, 4}. Define Gp : X x X x X — [0,00) by

Go(1,1,1) = Gp(2,2,2) = G,,(3 3,3) = Gy(4,4,4) = 0,

Gy(1,1,2) = Gp(1,2,2) = Gy(1,1,3) = Gy(1,3,3) = Gp(1,1,4) = Gy(1,4,4) = 1,
Gb(2,2,3) = Gp(2,3,3) = Gp(2,4,4) = Gy(2,2,4) = 2,

Gy(3,4,4) = Gy(3,3,4) = 3,

Gy(1,2,3) =4, Gp(1,3,4) = 5, Gp(1,2,4) = 6, Gy(2,3,4) = 7.
FEvidently, the above is a Gy-metric on X with s = %, but not a G-metric. In fact, the
rectangle inequality is violated, for instant 7= Gp(2,3,4) % Gp(2,1,1)+Gp(1,3,4) = 1+5.

The following example can be founded in [45].

Example 2. Let (X,G) be a G-metric space. Take Gy(z,y,2) = GP(z,y,2), where p > 1
is a real number. Note that Gy is a Gy-metric with s = 2P71. In general (X,Gy) is
not necessary a G-metric space. For instant, let X = R and the G-metric be defined by
G(z,y,2) = %(|$—y|+|y—z|+|$—z|) for all z,y,z € R. Then Gy(z,y, 2) = G*(x,y,2) =
sz =yl + |y — 2| + |z — 2])? is a Gy-metric on R with s = 2271 = 2, but it is not a
G-metric on R.

Example 3. (/2]) Let X = R. Take the Gy-metric defined by
Gb(xay7 Z) = max{|x - y|27 ’y - 2’27 ‘Z - I”Q}, v T,Y,%2 € X.

Then (X, Gyp) is a complete Gy-metric space with s = 2, but not a G-metric.
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Proposition 1. ([2]) Let X be a Gy-metric space. Then for each x,y,z,a € X, it follows
that

(1) If Gy(x,y,2) =0, thenx =y = z,

(2) Gy(x,y,2) < s(Gy(z,2,y) + Gp(z, T, 2)),
(3) Gb(x,y,y) < 23Gb(y7xax);

(4) Gp(z,y, 2) < s(Gp(z,a,2) + Gp(a,y, 2)).

Definition 4. ([2]) Let X be a Gy-metric space. A sequence {x,,} in X is said to be:
(1) Gy-Cauchy sequence if for each € > 0, there exists a positive integer ng such that for
all m,yn,l > ng, Gp(Tn, Tm, 1) < €
(2) Gy-convergent to a point x € X if for each € > 0, there exists a positive integer ng
such that, for all m,n > ng, Gp(Tpn, Tm,x) < €.

Proposition 2. (/2, 9]) Let X be a Gy-metric space. The following are equivalent:
(1) {zn} is Gp-convergent to x;
(2) Gy(xpn, Tn,z) — 0 as n — 0o;
(3) Gp(xp,x,2) = 0 as n — oco.

Definition 5. (/2]) A Gy-metric space X is called Gy-complete if every Gy-Cauchy se-
quence is Gp-convergent in X.

The following definition was given by Jungck [19].

Definition 6. ([19]) Two maps f and g are said to be weakly compatible if they commute
at their coincidence points, that is if f(z) = g(x) for some x € X, then f(g(x)) = g(f(z)).

The following definition was introduced by Amari and El Moutawakil [1] in 2002.

Definition 7. ([1]) Two self mappings S and T' of a metric space (X, d) are said to satisfy
an (E.A) property if there exists a sequence {x,} in X such that

lim Sz, = lim Tx, =r for some r e X.
n—oo n—oo

This concept was extended to G-metric spaces in [24]. The following lemma is useful
in the proof of our main result.

Lemma 1. ([45]) Let (X, Gy) be a Gy-metric space with s > 1. Suppose that {x,}, {yn}
and {zn} are Gy-convergent sequences to x, y and z, respectively. Then we have

(i)

1
*3Gb(l’,y,Z) < lim inf Gb(xnvynazn) < hmsup Gb(xnaynazn) < SSGb(fU’%Z)-
S n—00

n—00

(ii) If {zn} = c is constant, then

1
be(eT, Y, C) < hniinf Gb(xna Yn, C) < limsup Gb(xnv ync) < 82Gb($, Y, C)'

s2 n—»00
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(i1i) If {zn} = c and {y,} = b are constant, then

1
-Gp(z,b,¢c) < lirginf Gy(zp, b, c) <limsup Gy(xy, b, c) < sGp(z, b, c).
S n—o0

n—oo

In particular, if = y = z, then we have lim,,_,oc Gp(Zn, Yn, 2n) = 0.

3. Main results

We start this section with the following definition and lemma which will play a major
role in our main result.

Lemma 2. Let (X,Gy) be a Gy-metric space with s > 1. Suppose that {x,} is a Gp-
convergent sequence to x. Then for y € X we have

1
7Gb(y>$7x) < 11H_1>1Hf Gb(y7$n7xn) < hmsup Gb(ya xnal‘n) < SGb(y,$,$)-
S n—oo

n—0o0

Proof. Using the rectangle inequality for the Gp-metric, we obtain that
Gb(y,llf,l‘) < S[Gb(yvxnamn) +Gb(l‘n,l',$)] (1)

and
Gb(y,éﬂn,ﬂﬁn) < s[Gb(y,x,$) +Gb(xa$nvxn)]~ (2)

Taking the limit inferior as n — oo in (1) and the limit superior as n — oo in (2), the
proof is completed.

Definition 8. A mapping v : [0,00) — [0,00) is called a super-altering distance function
if the following properties are satisfied:

1. 1 is continuous and increasing.

2. (t)=0 if and only if t=0.

We denoted by W to be the set of all super-altering distance functions. Note that
the class of altering distance functions was defined in [22], where 1 is considered non-
decreasing (not necessarily increasing). Any super-altering distance function is of course
a function in the sense of [22].

In the following example, the given mapping is just an altering distance function, but
not in W.

Example 4. Let ¢ : [0,00) — [0,00) be such that
Y(t)=t if t€]0,1]
Y(t)=1 ift>1.

Theorem 1. Let (X,Gy) be a complete Gy-metric space and let f,g,h,R, S, T : X — X
be self mappings such that
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(i) (f,S) and (g, R) satisfy the (E.A) property;

(ii) f(X) € T(X), g(X) € S(X) and h(X) € R(X);

(iti) R(X) is a closed subspace of X;

(iv) (f,9), (g,R) and (h,T) are weakly compatible pairs of mappings;

(v)
1/)(52Gb(fx,gy, hz)) < 1/J(M(x,y, z)) — qﬁ(M(x,y, z)),VJU, y,z € X (3)

where P, o € ¥ and

M(xa Y, Z) = max {Gb(fxy SJJ, TZ), Gb(gyv Ry7 Ry)a

Gy(T 7T 7h ‘I’G ,S ’S
Gy(fa, f, hz), ST TZ 2)25 o(f,52,52)y

Then f,g,h, R, S and T have a unique common fixed point in X.

Proof. Since the pair (f,S) satisfies the (E.A) property, there exists a sequence {z,}
such that

lim fx, = lim Sz, = qi, for some ¢q; € X.
n—oo n—o0

As f(X) CT(X), there exists a sequence {z,} € X such that

frp, =Tz, and lim fz, = lim Tz, = lim Sz, = ¢. (4)

Again the pair (g, R) satisfies the (E.A) property, so there exists a sequence {y,} such
that
lim gy, = lim Ry, = g2, for some ¢2 € X. (5)
n—oo n—o0

But g(X) C S(X), so there exists a sequence {ay,} € X such that
gyn = Say,, and lim gy, = lim Sa, = lim Ry, = ¢o. (6)

Now, we shall show that lim hz, = ¢1. From (3), (Gp3) and the fact that ¢ is an

n—oo
increasing mapping, we have

w(SGb<fxn7fxmhzn)) w(SQGbQmegyn;hzn))

<
< w(M(xnay'm Zn)) - ¢(M(xnyyn7 Zn)) (7)

where,

M(zn, Yn, 2n) = max {Gb(fl'nv Sy, Tzn), Go(gYn, Ryn, Ryn),

Gy(Tzp, Tzp, hzy) + Gy(fxn, STy, STy
Gy(fin, fan, i), C2L )23 o(f )
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= max {Gb(fl‘na Sy, f2n), Go(gYn, Ryn, Ryn),

Gb(fxna Fn, hzn), Gb(fxna fxnv hzn) ;_SGb(fl'm Stp, an) }

Taking lim sup,, ., and using (4) together with (6), we obtain

lim sup M (2, Yn, 2n) = limsup Gp(fxn, fon, hzy). (8)

n—oo n—oo

Taking again limsup,,_, ., in (7) and substituting (8), we get

¥ (limsup sGy(fn, frn, hz)) < ¥ (limsup s°Gy(f2n, gyn, hzn))
o < (hZSOZpr (fn, fon, hzy))
— ¢(h:n_i;.}M (Tns Yn, Zn))-
< ¢(limsup Gy(fzn, frn, hzn)). (9)

n—oo
Since s > 1 and being 1 is an increasing mapping, we deduce from (9) that

lim sup Gy(f 2, f2n, hzy) = 0, which implies that

n—00

le Go(fxn, frn, hzy) =0, (10)
and so by (8), we conclude that

lim M(xy, Yn, 2n) = 0. (11)

n—oo
Now, by (Gp4), (10) and (4), we have
Gb(hznv q1, QI) S S [Gb(hznv fxna fxn) + Gb(fxnv q1, QI)] — 0 as n — oo. (12)

Thus, lim Gy(hzn,q1,q1) = 0 which gives that lim hz, = ¢; as n — oco. Now, we shall
n—oo
prove that g1 = ¢o2. By applying (3) and using (Gp3), we find that

w(SQGb(fxmgynv hzn))
w(M(xmymzn)) - ¢(M(xn7ymzn))- (13)

V(sGo(fTn, gYn, 9yn)) <
<

Taking the limit as n — oo in (13) and recalling (11), we obtain
Jim Gy (fxn, gyn, gyn) = 0. (14)
Thus, by using (Gp4), (4) and (14),

Go(qi, Som, San) = Golq, 9Yn, GYn)



Z. Mustafa et al. / Eur. J. Pure Appl. Math, 11 (1) (2018), 90-109 97

< s[Gyqr, fan, fon) + Go(f2n, gYns gyn)] — 0 as n — oco.

This implies that lim,, o Say, = ¢1. On the other hand, from (6) we have lim Sa, = g,

n—oo
hence by uniqueness of limits, we obtain that ¢ = ¢o. Therefore

lim fx, = lim hz, = lim Tz, = lim Sz, = lim gy, = lim Sa, = lim Ry, =q

for some ¢ € X. Since R(X) is a closed subspace of X, there exists u € X such that
Ru = q. Now we shall prove that gu = q. Observe that

M(zp,u,2,) = max {Gb(fmn, Sy, Tzy,), Gy(gu, Ru, Ru),

Gy(Tzn, Tzp, hzyp) + Gy(fxn, Stpn, STp
Gl Frms faoms hzn), 24 )25 o(f )y

= max {Gb(facn, Sz, Tz,), Gy(gu, Ru, Ru),

Co(f@n, fn, hzn) + Go(fTn, Stn, Stn
Go(fan, fon, han), b(fn, f2 Z>25 b(fn, Sz 1:)}’

= Inax {Gb(fmnv ana TZTL)’ Gb(.gu> q, q)>

Gb(fxn, f.’L'n, hzn)7 Gb(fﬂf’na f-Tna hzn) ‘2:Gb(fxn, an7 an)

}- (16)

By taking limit superior as n — oo and taking into account (4), (6) and (15), then (16)
becomes
lim sup M (2, u, 2,,) = Gp(gu, g, q). (17)

n—oo

By the help of Lemma 2, we obtain that

1
ng(ngua Q) S hni)lnf Gb(guvfxn7fxn)

< limsup Gy(gu, fan, fon)
n—oo
< sGylgu, q,q). (18)
Also from (Gp3), we have
Gb(QU,fxn,fxn) < Gb(fxn,gu, hzn)' (19)

Thus, from (3), together with (17), (18), (19) and properties of ¢, we get that
¥(sGy(q, gu,q)) < w(linl_fupS?Gb(gu,fwn,fxn))
< ¢(limsup s*Gy(fzn, gu, hzy))
n—oo
lim sup ¢ (s2Gy(fn, gu, hz,))

n—oo

thS;p ¢(M($n, u, Zn)) - lﬂgf QZ)(M(xm u, Zn))a

IN
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= w(limsupM(wn,u, Zn)) - QZ)(hnrglO%fM(JUnvua Zn))a

n—o0

w(Gb((L qgu, Q)) - (b( lmgf M(‘TTM u, ZTL))7
< Y(Gp(g, 9u,q)). (20)

IN

Since s > 1 and % is increasing, the above inequality gives that Gy(q, gu,q) = 0, which
implies that gu = ¢. But g(X) C S(X), so there exists a point p € X such that gu =
Sp = q. We shall show that fp =¢q. Now

M(p7uvz’n) = maX{Gb(fpu Sp7 TZn),Gb(g’LL, RU, RU),

Gy(Tzn, Tz, hzn) + Go(fp, Sp, S
Gy(fp, fp, han), ol ;S o(fp, Sp p)},

= max{Gb(fp, q,Tzn)be(Q7 Q7Q)7

Gy(Tzn, T2n, h2n) + G .q,
Gb(fpv fp, hzn); b( 25) b(fp q Q)}

Gb(TZn’ T'zp, hzn) + Gb(fpu q, Q)

- maX{Gb(fpa anzn)7Gb(fp7 fp7 hzn)a 25 }(21)
< max {Gb(fp7 q, Tzn)) Gb(fp7 TZn, hzn)a Gb(fp7 Tzn’ hzn;:— Gb(fp’ z Tzn) }’
< max{Gb(fp, qJT’Zn)7Gb(fp7 Tzna hzn)} (22)

Now, taking the limit superior in (22) as n — oo and using Lemma 1, parts (2) and (3),
we obtain

limsup M (p, u, 2,) = limsupmax {Gb(fp7 ¢, Tzn), Go(fp, T2n, hzn)}

n—+00 n—+00
— max { limsup Gy(fp, ¢, T#n), lim 5up Gy (fp, Tm, him) }
n—00 n—00
< maX{SGb(fpv q, Q)752Gb(fpaq7Q)}
= S2Gb(fp’q> q) (23)

Now, taking the limit infimum in (21) as n — oo and using Lemma 1, parts (2) and (3),
we get

lin_1>infM(p, Uy zp) = lirginf max {Gb(fp, q,Tzn),Gp(fp, [, hzn),
Gb(TZn7 Tzrw hzn) + Gb(fPa q, Q) }
2s
= max { liIr_1>inf Gy(fp,q,Tzy), lirginf Gy(fp, fp, hzpn),

liminf,, oo Go(T'2n, T2p, hzy) + liminf,, o0 Go(fp, ¢, q) }
2s
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G
maX{%Gb(fp, 4,9), éGb(fp, . q), I%‘Lq)}

1 1
= maX{;Gb(fpa% q));Gb(fpv fpa Q)} (24)
Thus, from (3), (Gp3) and the fact that 1) and ¢ are increasing, we have

(*Gy(fp.a,q)) < Y (s*Gy(fp,q,hz))
= (s*Go(fp, gu, hzn))
¢(M(p,u, Zn)) - ¢(M(p7u7 Zn)) (25)

Therefore, by taking the limit superior in (25) as n — oo and using (23) and (24),

V(s*Gy(fp.q,q)) < cb(lim_fupM(p,u,zn))—¢(1inrgiong(p,u,zn)),

Y

IN

IN

U (s*Gy(fp 4,9)) — ¢(maX{%Gb(fp, 4:9), éGb(fp, fp.0)}),-
(26)
So,
qﬁ(maX{%Gb(fp, 4,9) éGb(fp, fp,a)}) =0,
or equivalently,
max{éGb(fp, ,9), %Gb(fp, fp,q)} =0,

which implies that Gy(fp,q,q9) = Guo(fp, fp,q) = 0. Hence fp = Sp = q. We conclude
that p is a coincidence point of f and S. Also

fp=Sp=gu=Ru=q. (27)

Again, since h(X) C R(X), there exists w € X such that hw = Ru = ¢q. Now, we shall
show that Tw = hw. From the definition of M(x,y, z) and by the help of (27), we get

M(p,u,w) = max{Gb(fp,Sp,Tw),Gb(gujRu,RU),Gb(fp,fp,hw),
Gb(Twa va h’w) + Gb(fp7 SZ% Sp) }
2s ’
= maX{Gb(q,%Tw),Gb(q,q,q)7Gb(q,q,q),

Gy(Tw, Tw, q) + Gy(q,¢,9) }
2s ’

Gy(Tw, Tw,
= Inax {Gb(q7 q, Tw)) b(28q)}

Gb(TwaTw7Q)
25 < Gb

But, by part 3 of Proposition 1, we have
inequality becomes

(¢,q, Tw) and so the above

M (p,u,w) = Gp(q, q, Tw). (28)
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Thus, applying (3) for z = ¢,y = ¢ and z = Tw and using (Gp3), (28) and properties of
1), we obtain

¥(s*Gr(g, ¢, Tw))

V(s*Go(fp, gu, Tw))

(M (p,u,w)) — ¢(M(p, u,w)),

V(Gy(q, ¢, Tw)) — ¢(Go(g, ¢, Tw)). (29)

So, qu(Gb(q, q, Tw)) = 0, which implies that Gy(q, ¢, Tw) = 0. Hence Tw = g = hw and so
w is a coincidence point of A and 1. Therefore

¥(Gy(g, g, Tw))

IN

IN

fp=5Sp=gu=Ru=Tw=hw=q. (30)

Now, we shall show that ¢ is a common fixed point of f, g, h, R, S and T'. Since the pairs
(f,S), (g,R) and (h,T) are weakly compatible, the functions of each pair commute at
their coincidence point, that is

f(q)
R(q)
T(q) =

Using (30) and (31), we obtain

f(Sp) = S(fp) = S(a), }
(31)

R(gu) = g(Ru) = g(
T(hw) = h(Tw) = h

M(q,u,w) = max{Gy(fq,Sq,Tw),Gy(gu, Ru, Ru),Gy(fq, fq, hw),

Gb(Tw7 Twa hw) + Gb(fqa qu SQ) }
2s ’

= max {Gb(fqa Sq, Q), 07 Gb(fQ? fQ7 Q)7 0}7
= Gb(fQ7 f(L Q)

Also, from (3) and (G33), we get

V(s*Go(fa. fa,0)) < ¥(s*Gu(fa,gu.q))
= P(s*Go(fq, gu, hw))
< (Mg, u,w)) — ¢(M(q, u,w)),
= V(Go(fq, fa,q)) — d(Go(fa, fa.q)),
< »(Gy(fq, fa,9)). (32)

Since s2 > s > 1 and 4 is increasing, the inequality above yields that Gy(fq, fq,q) = 0
and so fq = q = Sq. We shall prove that g¢ = Rq = ¢q. As in the above, using (30) and
(31), we find that

M(p, q, w) = max {Gb(fpv Sp) Tw)u Gb(QQ: Rq: RQ)7 Gb(fp) fp7 h’/w)a

Gb(Twa va hw) + Gb(fpv Sp7 Sp) }
2s ’
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Gv(q,9,9) + Gp(q, q,
= maX{Gb(CLQa Q)va(RQ7RQa RQ)aGb(q7q7Q)> b(q g Q) 25 b(q 1 q>}7

= 0.

Applying (3),
¢(S2Gb(fp,gq,h'UJ)) < w(M(p>Q7w)) _d)(M(pa Q7w))7
= ¢(0) — ¢(0) = 0. (33)

Consequently, Gy(fp, g9q, hw) = Gp(q, 9q,q) = 0 and so gg = q. Hence gqg = Rq = q. Now
we shall prove that hq = Tq = ¢. Similarly, using (30) and (31), we obtain that

M(p,u,q) = max{Gy(fp,Sp,Tq),Gy(gu, Ru, Ru),Gy(fp, fp, hq),
Gb(Tqv Tq7 hQ) + Gb(fp7 Sp> Sp)

2s s
Tq, Tq,T
= max {Gy(q,9,T9), Gv(¢,4,9), Gb(q, ¢, hg), T, T §i+Gb(q’q’ Q)},
max{Gs(q, ¢, Tq),0,Gu(q, ¢, Tq), 0}
= Gi(q,4,Tq).
By specifying z = z = ¢ and y = v in (3) and using (27),
U(s°Gy(a:0:Tq)) = ¢(s°Go(fa, gu, hq))

< P(M(p,u,q)) — d(M(p,u,q)),
= w(Gb(q>Q>Tq ) ¢(Gb(q7Q7Tq)))a
< ¢(Gh(g,: 4, Tq))). (34)

Again, s? > s > 1 and 4 is increasing, so Gy(q,q,Tq) = 0, that is, Tq = ¢ = Rq. Thus
fa=5S¢=99=Rqg=hqg=Tq=q.

Then ¢ is a common fixed point of f, g, h, R, S and T.

Now, we shall prove that the obtained fixed point is unique. Suppose that v is another
common fixed point of f,g,h, R, S and T, that is fv = gv = hv = Rv = Sv = Tv = v.
Then

M(q,q,v) = max{Gy(fq,Sq,Tv),Gs(9q, Rq, Rq), Gy (fq, fq, hv),

Gb(TU7 TUa hU) + Gb(va Sqa SQ) }
2s ’

= max {Gs(q,q,v),0,Gs(q,q,v),0},
- Gb(Q? q, ?}).

From (3) we have that

U(s*Go(g,q,v)) = ¥(s*Go(fq. 99, hv))
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< sz)(M((Lq’U)) _QS(M(ch.IaU)))
= ¥(Gy(q,4,v))) — ¢(Go(q,q,v))),
< P(Gylg,q,v))). (35)

Again, since s> > s > 1 and being 1/ is increasing, the above inequality implies that

Gy(q,q,v) = 0 and so ¢ = v. That is, ¢ is the unique common fixed point for f, g, h, S, R
and 7.

The following result is an immediate consequence of Theorem 1 by taking ¢(t) = t.

Corollary 1. Let (X, Gyp) be a complete Gy-metric space and let f,g,h, R, S, T : X — X
be self mappings such that
(1) (f,S) and (g, R) satisfy the (E.A) property;

(2) f(X) S T(X), g(X) € S(X) and h(X) € R(X);

(3) R(X) is a closed subspace of X ;

4) (f,9), (g,R) and (h,T) are weakly compatible pairs of mappings;

(5) ¥ (s 2Gb(fa? gy, hz)) < (M(z,y,2)) — M(z,y,2) for all x,y,z € X where i) € ¥

and

M(.’L‘, Y, Z) = max {Gb(f[L‘, Sya TZ), Gb(gy7 Ry, Ry)7

Go(T2, Tz hz) + Gy(fz, 52,5
Go(fa, fr, h2), y(T2,Tz 2)28 o(fx, Sz x)}.

Then f,qg,h, R, S and T have a unique common fixed point in X.

As in the above corollary, the following result follows from Theorem 1 by taking 1(t) =
t.

Corollary 2. Let (X,Gyp) be a complete Gy-metric space and let f,g,h, R, S, T : X — X
be self mappings such that
(1) (f,S) and (g, R) satisfy the (E.A) property;

(2) f(X) C T(X), g(X) € S(X) and h(X) C R(X);

(3) R(X) is a closed subspace of X ;

(4) (f,9),(g,R) and (h,T) are weakly compatible pairs of mappings;

(5) 2Gb(fx gy, hz) < M(z,y,2) —¢(M(z,y,2)) for each z,y,z € X where ¢ € VU and

M(l‘, Y, Z) = max {Gb(fl'a Sy’ TZ)? Gb(gy7 Ry, Ry)a

Gy(T2,T2 hz) + Gy(fw, Sz, S
Gy(fz, fz, hz), p(T2, Tz 2)28 o(fx, Sx x)}'

Then f,g,h, R, S and T have a unique common fized point in X.

By specifying ¥ (t) = t and ¢(t) = % with k£ > 1 in Theorem 1, we get the following
corollary.
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Corollary 3. Let (X,Gyp) be a complete Gy-metric space and let f,g,h, R, S, T : X — X
are self mappings such that

(1) (f,S) and (g, R) satisfy the (E.A) property;

(2) f(X) CT(X), g(X) C S(X) and h(X) C R(X);

(3) R(X) is a closed subspace of X ;

4) (f,S),(g,R) and (h,T) are weakly compatible pairs of mappings;

(5) ¥ (s*Gy(fx, gy, hz)) < %M(:p,y, z) for each z,y,z € X where k is a positive
integer and

M(l’, Y, Z) = max {Gb(fxv Sy7 TZ)? Gb(gy7 Ry7 Ry)a

Gy(Tz, Tz, hz) + Gp(fx, Sz, Sz
Gl f, 1), L Gl 55.50)y

Then f,g,h, R, S and T have a unique common fized point in X.
By taking f = g and R = S in Theorem 1, we get the following result.

Corollary 4. Let (X,Gy) be a complete Gy-metric space and let f,g,h, R, S, T : X — X
be self mappings such that
(1) (g,S) satisfies the (E.A) property;

(2) 9(X) CT(X), g(X) € S(X) and h(X) € S(X);

(3) S(X) is a closed subspace of X ;

(4) (g9,5) and (h,T) are weakly compatible pairs of mappings;

(5) ( ¥ (s2Gy(gz, gy, hz)) < 1/)(M(:E,y, z)) - qS(M(x,y, z)) for each x,y,z € X where

¢ €V and

M(.’IJ, Y, Z) = max {Gb(gl', Sy7 TZ)? Gb(gy7 Syv Sy)a

Gp(Tz,Tz,hz) 4+ Gy(gz, Sz, Sx

Then g,h, S and T have a unique common fized point in X.
The following example is to illustrate Theorem 1.

Example 5. Let X = [0,00) and G : X x X x X — [0,00) be the complete G-metric
which is defined by

G(S{?,y,Z):{ O, zfx:y:z,

max{z,y,z}, otherwise.

Define the Gy metric by
Gb(fL‘, Y, Z) = (G(.T, Y, Z))Q'

Then it is clear that (X, Gy) is a complete Gy-metric with s = 2. Also, define the mappings

f,9,h, R, S and T by
T x

fl':gzvg( ) 36 h( ) @7
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and

—,S8(z) = g, and T(x) = g

for all x € X. Further, define ¥(t) = 4/t and ¢(t) = ¥ for all t € [0,00). Then
f,9,h, R, S and T have a unique common fized point.

Proof.

(1) (f,S) and (g, R) satisfy the (E.A) property with z,, = .

(2) f(X)CT(X),g9(X)CS(X)and h(X) C R(X). In fact, f(X) = g(z) = S(x) =
R(z) =T(X) =[0,00).

(3) R(X)=10,00) is a closed subspace of X.

4) (f,S),(g,R) and (h,T) are weakly compatible pairs of mappings. In fact, the
only coincident point for f and R is 0 and f(R(0)) = R(f(0)) = 0. Similarly for the other
two pairs.

(5) We shall show that the above mappings satisfy the contractive condition (3). On
one hand, we observe that

Tz Yy =z

U(s°Cy(fx,gy,hz)) = ¢(4(max{3—2,%,4—8 )?)
= plmax{(55)% (5% (55"
= wlmax{(3 ), (GO, ()]

= dmax{(p)% () 5D
r, Yy =z
= 4maX{(E)’E7ﬂ
- max{%,%y,% (36)

On the other hand,

M(z,y,z) = max
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and so,

(s*Gy(fz, gy, h2))

I
B
o
i
AN

11y 11z 11 /, =z T
< il VAV BN Gl
= max{ 60 3\ +(4)}

= 1/}(M(.T,y, Z)) qb(M(:Uaya Z))

Therefore, all conditions of Theorem 1 are satisfied, and x = 0 is the unique common fixed
point of f,g,h, R, S and T.

4. Conclusion

As it known well, a G-metric space satisfies all conditions of the notion of a Gp-metric
space when s = 1. But, if s > 1, the converse need not be true. Hence, the observed
common fixed point results for six mappings of this paper, can be re-stated in the setting
of G-metric spaces by taking s = 1.
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