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Abstract. Let Z be a complete set of Sylow subgroups of a finite group G, that is, for each prime
p dividing the order of G, Z contains exactly one and only one Sylow p-subgroup of G, say Gp.
Let C be a nonempty subset of G. A subgroup H of G is said to be C-Z-permutable (conjugate-
Z-permutable) subgroup of G if there exists some x ∈ C such that HxGp = GpH

x, for all Gp ∈ Z.
We investigate the structure of the finite group G under the assumption that certain subgroups of
prime power orders of G are C-Z-permutable subgroups of G.
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1. Introduction

Throughout this article only finite groups are considered. We use conventional no-
tions and notation, as in Doerk and Hawkes [2]. In addtion, π(G) denotes the set of
distinct primes dividing |G| and Gp is a Sylow p-subgroup of the group G for some prime
p ∈ π(G). Two subgroups H and K of a group G are said to be permutable if HK = KH,
that is, HK is a subgroup of G. Recall that a subgroup H of a group G is S-permutable
(or S-quasinormal) in G if H permutes with every Sylow subgroup of G. This concept
was introduced by Kegel [7] in 1962.

Recently, in 2003, Asaad and Heliel [1] introduced the concept of Z-permutability which
generalizes S-permutability as follows: Let Z be a complete set of Sylow subgroups of a
group G. A subgroup H of G is said to be Z-permutable in G if H permutes with every
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member in Z.
More recently, in 2013, Heliel and Al-Gafri [4] generalized the concept of Z-permutability
by introducing a new subgroup embedding property, namely, the conjugate-Z-permutability.
Let C be a nonempty subset of a group G and Z be a complete set of Sylow subgroups of
G. A subgroup H of G is said to be C-Z-permutable subgroup of G if there exists some
x ∈ C such that HxGp = GpH

x, for all Gp ∈ Z. Remark 1.2 and Examples 1.3 and 1.4 in
[4] show that C-Z-permutability is a nontrivial generalization of Z-permutability.
This article may be viewed as a continuation of Heliel and Al-Gafri [4]. In fact, we extend
and improve the following theorem:

Theorem 1.1. [[4], Theorem 3.11] Let F be a saturated formation containing the class
of supersolvable groups U and let Z be a complete set of Sylow subgroups of a group G.
Then the following two statements are equivalent:

(a) G ∈ F.

(b) There is a normal subgroup H in G and a solvable normal subgroup C of F ∗(H)
such that G/H ∈ F, and the maximal subgroups of Gp ∩F ∗(H) are C-Z-permutable
subgroups of G, for all Gp ∈ Z, where F ∗(H) is the generalized Fitting subgroup of
H.

More precisely, we prove the following theorem:

Theorem 1.2. Let F be a saturated formation containing the class of supersolvable groups
U. Let Z be a complete set of Sylow subgroups of a group G and let C be a solvable normal
subgroup of G. Then the following two statements are equivalent:

(a) G ∈ F.

(b) There is a normal subgroup H in G such that G/H ∈ F and the maximal subgroups
of Gp ∩ F ∗(H) are C-Z-permutable subgroups of G, for all Gp ∈ Z.

Remark 1.3. Let S(F ∗(H)) denotes the solvable radical of F ∗(H), that is, S(F ∗(H)) is
the unique largest solvable normal subgroup of F ∗(H). In Theorem 1.1, C is a solvable
normal subgroup of F ∗(H). Therefore, C is contained in S(F ∗(H)). Since S(F ∗(H)) is
characteristic in F ∗(H) and F ∗(H) is normal in G, we have that S(F ∗(H)) is normal in
G. So, the maximal subgroups of Gp ∩ F ∗(H) are S(F ∗(H))-Z-permutable subgroups of
G, for all Gp ∈ Z, where S(F ∗(H)) is a solvable normal subgroup of G. Thus, Theorem
1.1 can be seen as an immediate consequence of Theorem 1.2.

2. Basic definitions and preliminaries

In this section, we list some definitions and known results from the literature that will
be used in the sequel.
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Let F be a saturated formation. Then the F-residual, denoted by GF, is the unique
smallest normal subgroup of G such that G/GF ∈ F. Throughout, U denotes the class of
supersolvable groups which is a saturated formations, see [[5], Satz 8.6, p. 713].

A normal subgroup N of a group G is an F-hypercentral subgroup of G provided N
possesses a chain of subgroups 1 = N0 E N1 E ... E Ns = N such that Ni+1/Ni is an
F-central chief factor of G, see [[2], p. 387]. The product of all F-hypercentral subgroups
of G is again an F-hypercentral subgroup, denoted by ZF(G), and called the F-hypercenter
of G, see [[2], IV, 6.8]. For the formation U, the U-hypercenter of a group G, denoted by
ZU(G), is the product of all normal subgroups N of G such that each chief factor of G
below N has prime order. For more details about saturated formations, see [[2], IV].

For any groupG, the generalized Fitting subgroup F ∗(G) is the unique maximal normal
quasinilpotent subgroup of G. In fact, F ∗(G) is an important characteristic subgroup of G
and it is a natural generalization of F (G). The basic properties of F ∗(G) can be found in
[[6], X 13]. We define F ∗1 (G) = F ∗(G) and F ∗i (G)/F ∗i−1(G) = F ∗(G/F ∗i−1(G)) for i > 1.
Since F ∗(G) 6= 1 when G 6= 1, there exists an integer n such that F ∗n(G) = G.

Let Z be a complete set of Sylow subgroups of a group G and let N be a normal sub-
group of G. We denote the following families of subgroups of G, G/N and N , respectively:

ZN = {GpN : Gp ∈ Z},
ZN/N = {GpN/N : Gp ∈ Z},
Z ∩N = {Gp ∩N : Gp ∈ Z}.

The following lemmas will be used in the sequel.

Lemma 2.1. Let Z be a complete set of Sylow subgroups of a group G, C be a nonempty
subset of G and N be a normal subgroup of G. Then:

(a) Z∩N and ZN/N are complete sets of Sylow subgroups of N and G/N , respectively.

(b) If U is C-Z-permutable subgroup of G, then UN/N is CN/N -ZN/N -permutable
subgroup of G/N .

(c) If U ≤ N, C ⊆ N and U is C-Z-permutable subgroup of G, then U is C-Z ∩ N -
permutable subgroup of N .

(d) Suppose that N ≤ U . Then U is C-Z-permutable subgroup of G if and only if U/N
is CN/N -ZN/N -permutable subgroup of G/N .

(e) If U is C-Z-permutable subgroup of G, then U ∩N is C-Z-permutable subgroup of

G.

Proof . For (a), see [[1], Lemma 2.1(a)]. For (b), (c) and (d); see [[4], Lemma 2.1].

(e) Let Gp be any member of Z. By hypothesis, there exists some x ∈ C such that
UxGp is a subgroup of G, that is, UxGp = GpU

x. Let K = Ux. It is clear that GpKN
is a subgroup of G as N is normal in G. Since Gp ∩ KN is a p-subgroup of KN and
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|KN : Gp ∩KN | = |GpKN : Gp| is a p′-number as Gp is a Sylow p-subgroup of GpKN , it
follows that Gp∩KN is a Sylow p-subgroup of KN . Also, Gp∩K is a p-subgroup of K and
|K : Gp ∩K| = |KGp : Gp| is a p′-number. Consequently, Gp∩K is a Sylow p-subgroup of
K. Therefore, Gp∩K∩N = (Gp∩K)∩ (K∩N) is a Sylow p-subgroup of K∩N as K∩N
is a normal subgroup of K. If M is a subgroup of G, let |M |p denotes the largest power

of p dividing the order of M . As |KN | = |K||N |
|K∩N | , then |KN |p =

|K|p|N |p
|K∩N |p

. Clearly, (Gp ∩K
)(Gp∩N) ≤ Gp as Gp∩N is a normal subgroup of Gp and so (Gp∩K)(Gp∩N) ≤ Gp∩KN .

Now |(Gp ∩K)(Gp ∩N)| =
|Gp∩K||Gp∩N |
|Gp∩K∩N | =

|K|p|N |p
|K∩N |p

= |KN |p = |Gp ∩ KN | and hence

(Gp ∩ K)(Gp ∩ N) = Gp ∩ KN . By [[2], Lemma 1.2, p. 2], Gp(K ∩ N) = GpK ∩ GpN
which is a subgroup of G as GpK and GpN are subgroups of G. So, we have x ∈ C such
that Gp(U ∩N)x = Gp(U

x ∩N) = Gp(K ∩N) is a subgroup of G, for all Gp ∈ Z. Thus,
U ∩N is C-Z-permutable subgroup of G.

Lemma 2.2. Let Z be a complete set of Sylow subgroups of a group G and C be a nonempty
subset of G. Assume that H is a normal subgroup of G such that the maximal subgroups
of Z ∩H are C-Z-permutable subgroups of G. Then for any nontrivial normal subgroup
N of G, the maximal subgroups of (ZN/N) ∩ (HN/N) are CN/N -ZN/N -permutable
subgroups of G/N .

Proof . See [[4], Lemma 2.2].

Lemma 2.3. Let G be a group. Then:

(a) F ∗(G) = F (G)E(G) and [F (G), E(G)] = 1, where E(G) is the layer subgroup of G.

(b) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is solvable, then F ∗(G) = F (G).

(c) CG(F ∗(G)) ≤ F (G).

(d) Suppose that N is a normal subgroup of G contained in Φ(G), then F ∗(G/N) =
F ∗(G)/N .

Proof . (a), (b) and (c) can be found in [[6], X 13]. For (d), see [[10], Lemma 2.3 (8)].

Lemma 2.4. Let Z be a complete set of Sylow subgroups of a group G and C be a nonempty

subset of G. Suppose that P is a normal p-subgroup of G, where p is a prime, and N

is a minimal normal subgroup of G with N ≤ P . If N is complemented in P and the

maximal subgroups of P are C-Z-permutable subgroups of G, then the order of N is p.

Proof . By hypothesis, there exists a subgroup H of P such that P = NH and N ∩H = 1.
Obviously, we have that N ≤ Gp ∈ Z. Let N/M be a chief factor of Gp. Then, the
order of N/M is p. Clearly, MH is a subgroup of P as M is normal in P . Since M∩
H = M ∩ (N ∩ H) = 1, then |P : MH| = |NH : MH| = |N : M | = p and hence MH
is a maximal subgroup of P . By hypothesis, MH is C-Z-permutable subgroup of G.
Therefore, M = M(H ∩ N) = MH ∩ N is C-Z-permutable subgroup of G by Lemma
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2.1(e). So, there exists some x ∈ C such that MxGq is a subgroup of G, for all Gq ∈ Z.

This implies that MGx−1

q is a subgroup of G, for all Gq ∈ Z. Assume that q 6= p. Since

M = M(N ∩ Gx−1

q ) = N ∩MGx−1

q and N ∩MGx−1

q is normal in MGx−1

q , it follows that

Gx−1

q ≤ NG(M). If q = p, then M is normal in Gp and so Gp ≤ NG(M). Therefore,
NG(M) = G and hence M is normal in G. But N is a minimal normal subgroup of G and
M is a maximal subgroup of N , thus M = 1 and the order of N is p.

Lemma 2.5. Let G be a group. Then:

(a) E(G), the layer subgroup of G, is a perfect quasinilpotent characteristic subgroup of
G.

(b) If M is a perfect quasinilpotent subnormal subgroup of G, then M ≤ E(G).

(c) If M is a solvable subgroup of G and E(G) ≤ NG(M), then [E(G),M ] = 1.

Proof . For (a), see [[6], Definition 13.14, p. 128]. For (b) and (c), see [[6], Theorem
13.15(a), p. 128 and Lemma 13.16(b), p. 128–129], respectively.

Lemma 2.6. Let Z be a complete set of Sylow subgroups of a group G and C be a solvable
normal subgroup of G. If p is the smallest prime dividing the order of G and the maximal
subgroups of Gp ∈ Z are C-Z-permutable subgroups of G, then G is p-nilpotent.

Proof . See [[4], Theorem 3.1].

Lemma 2.7. Let F be a saturated formation containing the class of supersolvable groups U,
Z be a complete set of Sylow subgroups of a group G and C be a solvable normal subgroup
of G. Then the following two statements are equivalent:

(a) G ∈ F.

(b) There is a normal subgroup H in G such that G/H ∈ F and the maximal subgroups

of Gp ∩H are C-Z-permutable subgroups of G, for all Gp ∈ Z.

Proof . See [[4], Theorem 3.2].

Lemma 2.8. Suppose that G is a finite non-abelian simple group. Then there exists an
odd prime r ∈ π (G) such that G has no Hall {2, r}-subgroup.

Proof . See [[8], Lemma 2.6].
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3. Results

First, we prove the following lemma:

Lemma 3.1. Let Z be a complete set of Sylow subgroups of a group G and C be a nonempty
subset of G. Suppose that P is a normal p-subgroup of G. If the maximal subgroups of
P are C-Z-permutable subgroups of G, then P ≤ ZU(G).

Proof . Assume that the result is false and let G be a counterexample of minimal order.
If Φ(P ) 6= 1, then the maximal subgroups of P/Φ(P ) are CΦ(P )/Φ(P )-ZΦ(P )/Φ(P )-
permutable subgroups of G/Φ(P ) by Lemma 2.1(d). Then, by the minimal choice of
G, P/Φ(P ) ≤ ZU(G/Φ(P )). Hence, by [[11], Theorem 7.19, p. 39], P ≤ ZU(G), a
contradiction. Thus, we may assume that, Φ(P ) = 1 and so P is elementary abelian
p-group. Let N be a minimal normal subgroup of G contained in P . Since N ∩Φ(P ) = 1
as Φ(P ) = 1, it follows, by [[2], Theorem 9.2(f), p. 30], that N is complemented in
P . The hypothesis and Lemma 2.4 imply that the order of N is p. If N = P , then
P ≤ ZU(G) by the definition of ZU(G), a contradiction. So, we may assume that N 6= P .
It is easy to see that Φ(P/N) = 1. Let M/N be a maximal subgroup of P/N . Then M
is a maximal subgroup of P as |P : M | = |P/N : M/N | = p. By hypothesis and Lemma
2.1(b), M/N is CN/N -ZN/N -permutable subgroup of G/N . So, the maximal subgroups
of P/N are CN/N -ZN/N -permutable subgroups of G/N . Therefore, P/N ≤ ZU(G/N)
by the minimal choice of G. But ZU(G/N) = ZU(G)/N by [[11], Lemma 7.1(ii), p. 30],
then P ≤ ZU(G), a contradiction completing the proof of the lemma.

Now we can prove:
Theorem 3.2. Let F be a saturated formation containing the class of supersolvable groups
U, Z be a complete set of Sylow subgroups of a group G and C be a solvable normal
subgroup of G. Then the following two statements are equivalent:

(a) G ∈ F.

(b) There is a normal subgroup H in G such that G/H ∈ F, F ∗(H) = F (H) and the

maximal subgroups of the Sylow subgroups of F (H) are C-Z-permutable subgroups

of G, for all Gp ∈ Z.

Proof . We need only to prove (b)⇒ (a).
Let P be any Sylow p-subgroup of F (H). Clearly, P is normal in G. The hypothesis

and Lemma 3.1 imply that P ≤ ZU(G). Since this is true for any Sylow p-subgroup
of F (G), we have that F (H) ≤ ZU(G). Note that [GU, F (H)] ≤ [GU, ZU(G)] = 1 by
[[2], Theorem 6.10, p. 390] and hence GU ≤ CG(F (H)). Therefore, G/CG(F (H)) is
an epimorphic image of G/GU ∈ U ⊆ F and so G/CG(F (H)) ∈ U ⊆ F. Consequently,
G/CH(F (H)) = G/ (CG(F (H)) ∩H) ∈ F as G/CG(F (H)) ∈ F and G/H ∈ F. But
CH(F (H)) ≤ F (H) holds by Lemma 2.3(c) and the fact that F ∗(H) = F (H), then
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G/F (H) is an epimorphic image of G/CH(F (H)), thus G/F (H) ∈ F. Applying Lemma
2.7 yields G ∈ F. This comletes the proof of the theorem.

The following lemma is a criterion for the solvability of finite groups:

Lemma 3.3. Let G be a group. Then the following two statements are equivalent:

(a) G is solvable.

(b) G has a complete set Z of Sylow subgroups such that Gp ∈ Z is Z-permutable subgroup

of G, where p is the smallest prime dividing the order of G.

Proof . (a)⇒ (b). Since G is solvable, then G has a Sylow basis S by [9, Theorem 9.3.11,
p. 229]. Let p be the smallest prime dividing the order of G and let Gp be the Sylow
p-subgroup of G in S. By the definition of the Sylow basis S, we have that GpGq is a
subgroup of G, for all Gq ∈ S, where q is a prime. Thus we can take Z = S and we have
Gp is Z-permutable subgroup of G.

(b)⇒ (a). Assume that the result is false and let G be a counterexample of minimal
order. By Feit-Thompson Theorem [3], we may assume that p = 2. Since G2 ∈ Z is
Z-permutable subgroup of G, it follows that G2Gq is a subgroup of G, for every odd prime
q dividing the order of G, where Gq ∈ Z. Therefore, G is not simple by Lemma 2.8. Let
N be a nontrivial proper normal subgroup of G. Clearly, G2 ∩N and G2N/N are Sylow
2-subgroups of N and G/N , respectively. By Lemma 2.1(e), G2 ∩ N is Z-permutable
subgroup of G. Therefore, G2 ∩N is Z ∩N -permutable subgroup of N by Lemma 2.1(c).
Also, G2N/N is ZN/N -permutable subgroup of G/N by Lemma 2.1(b). If 2 divides the
order of N , then N is solvable by the minimal choice of G and if 2 does not divide the
order of N , then N is solvable by Feit-Thompson Theorem [3]. The same argument holds
for G/N , thus G/N is solvable. Since N and G/N are solvable, we have that G is solvable,
a contradiction completing the proof of the lemma.

Proof of Theorem 1.2. We need only to prove (b)⇒ (a) as (a)⇒ (b) is true withH =
1.

Let E(G) be the layer subgroup of G. Since C is a solvable normal subgroup of G, it
follows, by Lemma 2.5(c), that [E(G), C] = 1 and so C ≤ CG(E(G)). By Lemma 2.3(a), we
have that F ∗(H) = F (H)E(H). Moreover, E(H) is a perfect quasinilpotent characteristic
subgroup of H by Lemma 2.5(a). Now E(H) char H and H is normal in G, then E(H) is
normal in G. Note that E(H) ≤ E(G) by Lemma 2.5(b), and hence C ≤ CG(E(H)). Now
we will show that E(H) is solvable. By Feit-Thompson Theorem [3], we may assume that
2 divides the order of E(H). Clearly, Z ∩ E(H) is a complete set of Sylow subgroups of
E(H) by Lemma 2.1(a). Let U be a maximal subgroup of G2∩F ∗(H), where G2 ∈ Z. The
hypothesis and Lemma 2.1(e) imply that U ∩E(H) is C-Z-permutable subgroup of G. So,
there exists some x ∈ C such that (U ∩E(H))xGq is a subgroup of G, for all Gq ∈ Z. But
(U ∩ E(H))x = U ∩ E(H) as x ∈ C ≤ CG(E(H)) ≤ CG(U ∩ E(H)), then (U ∩ E(H))Gq
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is a subgroup of G, for all Gq ∈ Z. Therefore, U ∩ E(H) is Z-permutable subgroup of G.
By Lemma 2.1(c), U ∩ E(H) is Z ∩ E(H)-permutable subgroup of E(H). Suppose that
G2 ∩ E(H) = G2 ∩ F ∗(H). By the hypothesis and the previous arguments, the maximal
subgroups of G2 ∩ E(H) are Z ∩ E(H)-permutable subgroups of E(H). Consequently,
E(H) is 2-nilpotent by Lemma 2.6, where C = 1 in this case. So, E(H) = (G2∩E(H))K,
where K is a normal Hall 2′-subgroup of E(H). Because K is solvable by Feit-Thompson
Theorem [3] and G/K ∼= G2 ∩ E(H) is solvable, it follows that E(H) is solvable. Thus,
we may assume that G2 ∩ E(H) is a proper subgroup of G2 ∩ F ∗(H). Then we can
choose U to be a maximal subgroup of G2 ∩F ∗(H) such that G2 ∩E(H) ≤ U . Therefore,
G2 ∩E(H) = U ∩E(H) as G2 ∩E(H) is a Sylow 2-subgroup of E(H). Now we have that
G2∩E(H) = U ∩E(H), as we proved in the beginning, is Z∩E(H)-permutable subgroup
of E(H). This implies that E(H) is solvable by Lemma 3.3. So, in either case, E(H) is
solvable. But E(H) is perfect, then E(H) = 1 and therefore F ∗(H) = F (H). Applying
Theorem 3.2 yields G ∈ F. This completes the proof of the theorem.

The next theorem is an improvement of Theorem 3.12 in [4]:

Theorem 3.4. Let F be a saturated formation containing the class of supersolvable groups
U, Z be a complete set of Sylow subgroups of a group G and C be a solvable normal
subgroup of G. Then the following two statements are equivalent:

(a) G ∈ F.

(b) There is a normal subgroup H in G such that G/H ∈ F and the maximal subgroups

of Gp∩F ∗n(H) are C-Z-permutable subgroups of G, for all Gp ∈ Z, for some positive

integer n.

Proof . We need only to prove (b)⇒ (a) as (a)⇒ (b) is true with H = 1.

If n = 1, then G ∈ F by Theorem 1.2. So, we may assume that n > 1. Let
K = F ∗n−1(H). It is clear that (G/K)/(H/K) ∼= G/H ∈ F. By Lemma 2.2, the
maximal subgroups of (ZK/K) ∩ (F ∗n(H)/K) = (ZK/K) ∩ F ∗(H/K) are CK/K-ZK/K-
permutable subgroups of G/K. Hence, G/K ∈ F by Theorem 1.2. Thus G/F ∗n(H) ∼=
(G/K)/(F ∗n(H)/K) ∈ F and the maximal subgroups of Gp ∩ F ∗n(H) are C-Z-permutable
subgroups of G, for all Gp ∈ Z. Applying Lemma 2.7 yields G ∈ F. This completes the
proof of the theorem.
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