EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 11, No. 2, 2018, 449-456
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Almost prime ideal in gamma near ring

Waheed Ahmad Khan ${ }^{1}$, Adnan Muhammad ${ }^{1}$, Abdelghani Taouti ${ }^{2, *}$, Jameel Maki ${ }^{3}$
${ }^{1}$ University of Education Lahore, Attock Campus, Pakistan
${ }^{2}$ ETS-Maths and NS Engineering Division, HCT, University City P.O. Box 7947, Sharjah, United Arab Emirates
${ }^{3}$ Department of Mathematics, R.I.T Dubai. P. O. Box 341055, Dubai, United Arab Emirates

Abstract

In this manuscript we introduce the notion of almost prime ideals in Γ-near-rings along with few of their characterizations. We also present the interesting relations among almost prime, prime and primary ideal in Γ-nearrings.

2010 Mathematics Subject Classifications: 13A05, 13A18, 12J20
Key Words and Phrases: Γ-near-rings, prime ideals, almost prime ideals.

1. Introduction and Preliminaries

Recently, the generalization of prime ideal i.e., almost prime ideal in commutative rings has been introduced and discussed by Srikant M. Bhatwadekar and Pramod K. Sharma (See [3]). Following [3], an ideal I of a ring R is said to be an almost prime if for all $a, b \in R$ implies $a b \in I-I^{2}$ either $a \in I$ or $b \in I$. All prime and idempotent ideals are almost prime [3]. It has been proved that every almost prime ideal in a noetherian domain R is primary [3]. Further to this, almost primary ideals in rings have been introduced by A. K. Jabbar and C. A. Ahmed in [12], a proper ideal A of a ring R is an almost primary ideal if for $a, b \in R$ such that $a b \in A-A^{2}$, then $a \in A$ or $b \in A$, for some positive integer n [12]. In [12], authors have also discussed several characterizations of almost primary ideals. It is evident that primary ideals, almost prime ideals and idempotent ideals of a ring R are almost primary ideals, but the converse is not true in each case. Notion of weakly prime element (author called it a prime) was introduced by Steven Galovich while studying the property of unique factorization of rings with zero divisors [10]. Following [10], let $r \neq 0$ be in R than r is prime if, whenever r divides $a b$ where $a b \neq 0$, then r divides a or r divides b. Author established the fundamental results: (i) In [10], author also

[^0]showed that every irreducible is a prime, (ii) every irreducible in R is a zero divisor [10], (iii) every irreducible element of R is nilpotent, and (iv) every nonunit in R is nilpotent. Consequently the author declared the unique maximal ideal consists of nonunit elements [10]. In [1], authors declare that (which was named prime by Galovich in [10]) a nonzero nonunit $p \in R$ is weakly prime if $p \mid a b \neq 0$ implies $p \mid a$ or $p \mid b$. Consequently, an ideal I of a commutative ring R is called a weakly prime if $0 \neq a b \in I$ implies $a \in I$ or $b \in I$, and also p is weakly prime iff (p) is weakly prime [1]. Following [2], P is weakly prime ideal if and only if $0 \neq A B \subseteq P, A$ and B ideals of R, implies $A \subseteq P$ or $B \subseteq P$. Further to this, every weakly prime ideal is an almost prime ideal.
We call an algebraic system N with two binary operation " + " and "." (right) near-ring if it is a group (not necessarily abelian) under addition, and N is associative group under multiplication and distribution of multiplication over addition on the right holds i.e., for any $x, y, z \in N$, it satisfies that $(x+y) z=(x z)+(y z)[15]$. Likewise, a left near-ring can be defined by replacing the right distributive law by the equivalent left distributive law. Suppose N is a left near-ring with binary operation " + " and "." then a subset I is said to be an ideal if (i) $(I,+)$ is a normal subgroup of a ($N,+$), (ii) For each $n \in N$, $i \in I, n_{i} \in I$ i.e., $N I \subseteq I$, and (iii) $\left(n_{1}+i\right) n_{2} n_{1} n_{2} \in I$ for each $n_{1}, n_{2} \in N$ and $i \in I$. But A. Frohlich [9] showed that for d.g. near-rings the third condition is equivalent to in $\in I$ i.e., $I N \subseteq I$. Hence a subset I is a right (left) ideal if I satisfies the first and third (second) conditions. A proper ideal P of a near ring N is prime if for ideals A and B of $N, A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. An ideal P of a near-ring N is a completely prime (prime ideal of type-2) if for all $x, y \in N, x y \in P$ implies $x \in P$ or $y \in P$. Almost prime ideals in near rings have been endorsed by B. Elavarasan (see [8]). A proper ideal P of a near ring N is said to be almost prime if for any ideals A and B of N such that $A B \subseteq P$ and $A B \nsubseteq P^{2}$, we have $A \subseteq P$ or $B \subseteq P[8]$. The author established few relationships between almost prime and prime ideals [8]. Weakly prime ideals in near rings have been introduced by P. Dheena and B. Elavarasan [6], a proper ideal P of near ring N is said to be weakly prime if $0 \neq A B \subseteq P, A$ and B are ideals of N, implies $A \subseteq P$ or $B \subseteq P$. Clearly, every prime ideal is weakly prime and $\{0\}$ is always weakly prime ideal of a near ring N. Also every prime ideal is a weakly prime, and a weakly prime ideal is an almost prime ideal. An ideal I of a near ring N is said to be a completely prime ideal if $x, y \in N$, $x y \in I$ implies $x \in I$ or $y \in I$ [11]. Similarly, an ideal of a near ring N is said to be primary ideal of N if $x, y \in N, x y \in I$ implies $x \in I$ or $y^{m} \in I$ for some $m \in Z$. An ideal I of a near ring N is called a completely semiprime ideal of a near ring N if $y^{2} \in I$ implies $y \in I$ for all $y \in N$ [11]. Further to this, almost prime ideals in near rings have been endorsed by B. Elavarasan (see [8]). A proper ideal P of a near ring N is said to be almost prime if for any ideals A and B of N such that $A B \subseteq P$ and $A B \nsubseteq P^{2}$, we have $A \subseteq P$ or $B \subseteq P[8]$. The author established few relationships between almost prime and prime ideals [8]. Number of ideals in near ring have been introduced and discussed such as completely prime, primary, completely primary and so on. Following [11], an ideal I of a near ring N is said to be a completely prime ideal if $x, y \in N, x y \in I$ implies $x \in I$ or $y \in I$ [11]. Similarly, an ideal of a near ring N is said to be primary ideal of N if $x, y \in N$, $x y \in I$ implies $x \in I$ or $y^{m} \in I$ for some $m \in Z$. An ideal I of a near ring N is called a
completely semiprime ideal of a near ring N if $y^{2} \in I$ implies $y \in I$ for all $y \in N$ [11].
The ideal theory is the most important part of algebra, different types of ideals in rings have been discussed in the literature. A right (left) ideal of a Γ-ring M is an additive subgroup I of M such that $I \Gamma M \subseteq I(M \Gamma I \subseteq I)$. If I is both a right and a left ideal, then we say that I is an ideal or a two-sided ideal of M. In rings, an ideal P is prime ideal if and only if A and B are ideals in M such that $A B \subseteq P$, then $A \subseteq P$ or $B \subseteq P$ [13]. The prime ideals of the $\Gamma_{n, m}$-ring $M_{m, n}$ are the sets $P_{m, n}$ corresponding to the prime ideals P of the Γ-ring $M[13]$. If P is an ideal in a Γ-ring M then, (i) Ideal P is a prime ideal of M, (ii) If $a, b \in M$ and $a \Gamma M \Gamma b \subseteq P$ then either $a \in P$ or $b \in P$, (iii) If ideal generated by $\langle a\rangle$ and $\langle b\rangle$ are called principal ideals in M and $\langle a\rangle \Gamma\langle b\rangle \subseteq P$, then $a \in P$ or $b \in P$, (iv) If U and V are right ideals in M with $U \Gamma V \subseteq P$, then $U \subseteq P$ or $V \subseteq P$, (v) If U and V are left ideals in M with $U \Gamma V \subseteq P$, either $U \subseteq P$ or $V \subseteq P$ [16].
Γ-near rings were introduced by Satyanarayana Bhavanari (see [14], [15]). A subset A of a Γ-near-ring M is called a left (resp. right) ideal of M if $(A,+)$ is a normal divisor of $(M,+), u \alpha(x+v)-u \alpha v \in A$ (resp. $x \alpha u \in A$) for all $x \in A, \alpha \in \Gamma$ and $u, v \in M$. An ideal P of Γ-near ring $\left(M,+,(.)_{\Gamma}\right)$ is called prime, if for every two ideals I, J of M, $I \Gamma J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$. An ideal P of a Γ-near-ring N is called a completely primary ideal if for $a, b \in N$ and $\gamma \in \Gamma$ such that $a \gamma b \in P$ implies that $a \in P$ or $b \in P$, for some positive integer $n[17]$. If an ideal I of Γ-near-ring M is maximal, then it is prime or $M \Gamma M=I[7]$. If $\left(M,+,(.)_{\Gamma}\right)$ is a Γ-near-ring such that for any $\gamma \in \Gamma$ there is an element which is Γ-unit, then every maximal ideal I of M is prime [7]. For every ideal I of Γ-nearring M exists prime minimal ideal of $I[7]$. In this note first we introduce the notion of almost prime ideals in Γ-near-rings along with few of their characterizations. Finally, we present the interesting relations of an almost prime with the prime and primary ideal in Γ-near-rings.

2. Almost prime ideal in Γ-near-ring

In this section we introduce almost prime ideal in Γ-near-rings. Furthermore, we also present its implications with the some ideals, we start with the following definition.
Definition 1. Let M be Γ-near-ring and P be a prime ideal of M then P is almost prime ideal if $a, b \in R, a b \in P-P \Gamma P$, either $a \in P$ or $b \in P$.
Example 1. Suppose $Z_{8}=\{0,1,2,3,4,5,6,7\}$ and $\Gamma=\{0,2,4\}$. Let $P=2 Z_{8}=\{0,2,4\}$ be a prime ideal in Z_{8} and consider $P \Gamma P=\{0,6\}, P-P \Gamma P=\{2,4\}$. Here $2,3 \in Z_{8}$ and 2.2.3 $=4 \in P-P \Gamma P$ where $2 \in P$ and $3 \notin P$. Similarly we can check for other elements as well. Hence P is an almost prime ideal in Γ-near ring.
Example 2. Suppose R is a Γ-near ring of algebraic integers such that the integral closure of Z in C. Suppose that I be a radical ideal of R say $I \Gamma I=I$, if $\alpha \in I$ then $\beta \in R$ exist such that $\beta \Gamma \beta=\alpha$. Since $\beta \Gamma \beta=\alpha \in I, \beta \in I$ implies $I=I \Gamma I$.
Example 3. Consider the near ring $N=\{0,1,2,3\}$ and $\Gamma=\{0,2\}$ such that addition and multiplication defined as follow.

$$
\left(\begin{array}{ccccc}
+ & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 0 & 3 & 2 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 2 & 1 & 0
\end{array}\right)\left(\begin{array}{lllll}
\cdot & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 \\
2 & 0 & 2 & 0 & 2 \\
3 & 0 & 3 & 2 & 1
\end{array}\right)
$$

Suppose $P=\{0,2\}=2 N$ be a prime ideal of N because for all $a, b \in N$ and $a \gamma b \in P$ implies $a \in P$ or $b \in P$. As $P \Gamma P=\{0\}$ then $P-P \Gamma P=\{2\}$, then for all $a, b \in N$ such that $a \gamma b \in P-P \Gamma P$ either $a \in P$ or $b \in P$ which is almost prime ideal.
Preposition 1. Every prime ideal in a Γ-near ring is almost prime ideal. Proof. Suppose P be a prime ideal of Γ-near ring but not an almost prime. Assume $a \gamma b \in P-P \Gamma P$, implies $a \gamma b \in P$. If $a \gamma b \notin P \Gamma P$ implies $a \in P$ or $b \in P$ then contradiction arise to our supposition. Hence P must be a prime.
Remark 1. If I is a maximal ideal of Γ-near-ring M then it is prime or $M \Gamma M=I$.
Supporting the above remark 1, we present the below example.
Example 4. Let $M=\{0,1,2,3\}$ is a Γ-near-ring where $\Gamma=\{0,2\}$ and ideal $I=2 M=$ $\{0,2\}$ that is maximal in M. Obviously I is prime ideal in M also $M \Gamma M=I$.
Lemma 1. Suppose N is a Γ-near-ring and for any $\gamma \in \Gamma$ there is an element which is Γ-unit then every maximal ideal I of M is prime.
Proof. If for one $\gamma \in \Gamma$ the element e is γ-one of M then $M \gamma M=\left\{m_{1} \gamma m_{2}: m_{1} ; m_{2} \in\right.$ $M\}=M$ since for any $m \in M, m=m \gamma e$. Because $M \neq I$ the equation is not true $M \Gamma M=I$. When $M=I$ or $M=0$ then equation is true so M is simple and $M \Gamma M \neq 0$, as a result M is prime.
Preposition 2. Suppose I be a P-primary ideal of a Γ-near ring such that $P \Gamma P=I \Gamma I$ implies I is an almost prime.
Proof. Suppose $a, b \in R, a \gamma b \in I-I \Gamma I, a \notin I$ and $b \notin I$. As $a \notin I$ and I is a P-primary ideal it implies that $b \in P$. Also $a \in P$ thus $a \gamma b \in P \Gamma P=I \Gamma I$, which is a contradiction.
Lemma 2. Suppose that R be a near integral domain and c be a nonzero nonunit element of R. If element c is other than prime element then there exist $a \notin R \Gamma c, b \notin R \Gamma c$ such that $a \gamma b \in R \Gamma c$ but $a \gamma b \notin R \Gamma c^{2}$.
Proof. Suppose an ideal $R c$ is not prime then there exist $a \notin R \Gamma c, b \notin R \Gamma c$ such that $a \gamma b \in R \Gamma c$. If the case $a \gamma b \in R \Gamma c^{2}$ then for $d=(b+c) \gamma \notin R \Gamma c$ and $a \gamma d \in R \Gamma c$. If $a \gamma d \in R \Gamma c^{2}$, implies $a \gamma c \in R \Gamma c^{2}$ as $a \gamma b \in R \Gamma c^{2}$ implies $a \in R \Gamma c$, a contradiction to our supposition. Hence the result follows.
Example 5. Let Z be a Γ-near ring and $\Gamma=\{0,1,2,3\}$ consider $c=6$ be an non prime element of Z then $Z \Gamma 6$ is non prime ideal because $3 \notin Z \Gamma 6$ and $4 \notin Z \Gamma 6$ but $12 \in Z \Gamma 6$ and $12 \notin Z \Gamma 6^{2}$.
In the below proposition, we reverse the situation occurring in lemma 2.
Preposition 3. Suppose that R be Γ-near integral domain and c be a nonzero nonunit element of R. If c is not a prime element then there exists $a \in R \Gamma c$ and $b \in R \Gamma c$ such that $a \gamma b \in R \Gamma c$ and $a \gamma b \in R \Gamma c^{2}$.
Proof. Suppose an ideal $R \Gamma c$ is not prime and consider $a \in R \Gamma c, b \in R \Gamma c$ such that $a \gamma b \in R \Gamma c$. If the case, $a \gamma b \notin R \Gamma c^{2}$ then for $d=(b+c) \in R \Gamma c$ and $a \gamma d \in R \Gamma c$. Consider $\left.a \gamma d \notin R \Gamma c^{2}\right)$ implies $a c \notin R \Gamma c^{2}$ and because $a \gamma b \notin R \Gamma c^{2}$ implies $a \notin R \Gamma c$, a contradiction
to our hypothesis. Hence the result is valid. Supporting the above lemma3 we present the below example.
Example 6. Let $Z_{8}=\{0,1,2,3,4,5,6,7\}$ and $\Gamma=\{0,2,4\}$ consider a non-prime element of Z_{8} i.e., $c=6$ implies $6 Z_{8}=\{0,2,4\}$. Consider $6,4 \in 6 Z_{8}$ such that 6.2.4 $=0 \in 6 Z_{8}$ and $c^{2}=6^{2}$ and $6^{2} Z_{8}=\{0,4\}$, hence $6.2 .4=0 \in 6^{2} Z_{8}$. Further we consider 6.4.4 $=4 \in 6^{2} Z$ and take $4,2 \in 6 Z^{8}$ then 4.2.2 $=0 \in 6 Z_{8}$, and again we get 4.2.2 $=0 \in 6^{2} Z_{8}$, similarly 4.4.2 $=0 \in 6 Z_{8}$ and 4.4.2 $=0 \in 6^{2} Z_{8}$.

Theorem 1. Suppose N be a Γ-near-ring with identity and P be an almost prime ideal of N. If P is not prime then $P \Gamma P=P$.
Proof. Let us assume that $P \subseteq P \Gamma P$. We have to prove that P is prime. Let us suppose that two ideals A and B contained in N such that $A \Gamma B \subseteq P$. If $A \Gamma B \nsubseteq P \Gamma P$ then $A \nsubseteq P$ or $B \nsubseteq P$. We assume that $A \Gamma B \nsubseteq P \Gamma P$. Since $P \nsubseteq P \Gamma P$ as a result $p \in P$ such that $<p>\nsubseteq P \Gamma P$ hence $(A+<p>) \Gamma(B+N) \nsubseteq P \Gamma P$. Consider $(A+<p>) \Gamma(B+N) \nsubseteq P$, there exist an element $a \in A, b \in B, p_{0} \in\left\langle p>\right.$ and $q_{0} \in N$ such that $\left(a+p_{0}\right) \gamma\left(b+q_{0}\right) \notin P$ implies $a \gamma\left(b+q_{0}\right) \notin P$, but $a \gamma\left(b+q_{0}\right)=a \gamma\left(b+q_{0}\right)-a \gamma b+a \gamma b \in P$ as $A \Gamma B \subseteq P$, a contradiction. Hence $(A+\langle p\rangle) \Gamma(B+N) \subseteq P$ implies $A \subseteq P$.
Corollary 1. Consider N a Γ-near-ring having identity and containing an ideal P. If $P \Gamma P \neq P$ then P is prime if and only if P is almost prime.
Proposition 4. If $P \neq 0$ be a proper ideal of a Γ-near-ring N such that P is almost prime and $(P \Gamma P: P) \subseteq P$ then P is prime.
Proof. We suppose that P is not a prime ideal of N. Then there exist $x / P \Gamma P$ and $y \notin P$ such that $\langle x\rangle \Gamma<y\rangle \subseteq P$. If $\langle x\rangle \Gamma<y>\nsubseteq P \Gamma P$, then the result holds. Hence $<x\rangle \Gamma<y>\subseteq P \Gamma P$. Suppose $\langle x\rangle \Gamma(<y>+P) \subseteq P$. If $\langle x\rangle \Gamma(<y>+P) \nsubseteq P$ then we have $x \in P$ or $y \in P$, a contradiction to our assumption, or else $\langle x\rangle \Gamma(<y\rangle$ $+P) \subseteq P \Gamma P$. Thus $<x>\Gamma P \subseteq P \Gamma P$ implies $x \in(P \Gamma P: \Gamma: P) \subseteq P$.
Theorem 2. Suppose N be a Γ-near-ring and let P be an ideal of N. Then the following statements are equivalent:
i) If elements $a, b, c \in N$ with $a \gamma(\langle b\rangle+\langle c\rangle) \in P$ and $a \gamma(\langle b\rangle+\langle c\rangle) \nsubseteq P \Gamma P$ then $a \in P$ or b, c in P.
ii) If $x \in N-P$, then $(P: \Gamma:\langle x\rangle+\langle y\rangle)=P \cup(P \Gamma P: \Gamma:<x\rangle+\langle y\rangle)$ for some $y \in N$.
iii) If $x \in N P$, then $(P: \Gamma:\langle x\rangle+\langle y\rangle)=P$ or $(P: \Gamma:\langle x\rangle+\langle y\rangle)=(P \gamma P:$ $\Gamma:\langle x\rangle+\langle y\rangle$) for some $y \in N$.
iv) P is an almost prime.

Proof. (i) implies (ii) Consider $t \in(P: \Gamma:\langle x\rangle+\langle y\rangle)$ for some $x \in N-P, \gamma \in \Gamma$ and $y \in N$. After that $t \Gamma(\langle x\rangle+\langle y\rangle) \subseteq P$. If $t \Gamma(\langle x\rangle+\langle y\rangle) \subseteq P \Gamma P$ subsequently $t^{2} \Gamma(P \Gamma P: \Gamma:<x\rangle+\langle y>)$. If $t \Gamma(<x\rangle+\langle y>\nsubseteq P \Gamma P$, then $t \in P$ by assumption. (ii) implies (iii) holds from the truth that if union of two ideal is an ideal then it is equal to one of them.(iii) implies (iv) Imagine A and B be ideals of N such that $A \Gamma B \subseteq P$. Assume $A \nsubseteq P$ and $B \nsubseteq P$ implies $a \in A$ and $b \in B$ exist with $a, b \notin P$. Now we say that $A \Gamma B \nsubseteq P \Gamma P$ and consider $b_{1} \in B$. In that case $A \Gamma\left(+<b_{1}>\right) \nsubseteq P$ which implies $A \subseteq\left(P: \Gamma:+\left\langle b_{1}\right\rangle\right)$. Then by supposition $\left.A \subseteq(<b\rangle+\left\langle b_{1}\right\rangle\right) \Gamma P \Gamma P$ implies $A \Gamma b_{1} \subseteq P \Gamma P$. Consequently $A B \subseteq P \Gamma P$ and therefore P is an almost prime ideal of N.
(iv) implies (i) is obvious.

Theorem 3. Suppose N_{1}, N_{2} be any two Γ-near-rings with identity and let P be a proper ideal of N_{1}. Then P is almost prime if and only if $\left(P \times N_{2}\right)$ is an almost prime ideal of $N_{1} \times N_{2}$.
Proof. Suppose P be an almost prime ideal of N_{1} and consider $\left(A_{1} \times B_{1}\right)$ and $\left(A_{2} \times B_{2}\right)$ be ideals of $N_{1} \times N_{2}$ such that $\left(A_{1} \times B_{1}\right) \Gamma\left(A_{2} \times B_{2}\right) \subseteq\left(P \times N_{2}\right)$ and $\left(A_{1} \times B_{1}\right) \Gamma\left(A_{2} \times B_{2}\right) \nsubseteq$ $\left(P \times N_{2}\right) \Gamma\left(P \times N_{2}\right)$. In this case $\left(A_{1} \Gamma A_{2} \times B_{1} \Gamma B_{2}\right) \subseteq\left(P \times N_{2}\right)$ and $\left(A_{1} \Gamma A_{2} \times B_{1} \Gamma B_{2}\right) \nsubseteq$ $(P \Gamma P \times N \Gamma N)$,therefore $A_{1} \Gamma A_{2} \times P$ and $A_{1} \Gamma A_{2} \nsubseteq P \Gamma P$ implies $A_{1} \subseteq P$ or $A_{2} \subseteq P$. Conversely, assume that $\left(P \times N_{2}\right)$ is an almost prime ideal of $N_{1} \times N_{2}$ and consider I and J be ideals of N_{1} such that $I \Gamma J \subseteq P$ and $I \Gamma J \nsubseteq P \Gamma P$. Then $\left(I \times N_{2}\right) \Gamma\left(J \times N_{2}\right) \subseteq\left(P \times N_{2}\right)$ and $\left(I \times N_{2}\right) \Gamma\left(J \times N_{2}\right) \nsubseteq\left(P \times N_{2}\right) \Gamma\left(P \times N_{2}\right)$. By hypothesis, we have $\left(I \times N_{2}\right) \subseteq\left(P \times N_{2}\right)$ or $\left(J \times N_{2}\right) \subseteq\left(P \times N_{2}\right)$. Thus $I \subseteq P$ or $J \subseteq P$.
Lemma 3. If $c \neq 0$ is a nonunit element in Γ-near integral domain R then ideal $R \Gamma c$ is prime if and only if $R \Gamma c$ is an almost prime.
Proof. Let $c \neq 0$ is a nonunit element in an Γ-near integral domain R. Assume that ideal $R \Gamma c$ is an almost prime we need to prove that $R \Gamma c$ is prime. As we know that ideal $R \Gamma c$ is an almost prime for some $a, b \in R$ and $a \gamma b \in R \Gamma c-R \Gamma c \Gamma R \Gamma c$ implies either $a \in R \Gamma c$ or $b \in R \Gamma c$ where $a \gamma b \notin R \Gamma c \Gamma R \Gamma c$ implies $a \gamma b \in R \Gamma c$. Hence $R \Gamma c$ is a prime ideal. Conversely, suppose that ideal $R \Gamma c$ is prime and we use a result that every prime ideal is almost prime then $R \Gamma c$ is almost prime ideal which is immediate from Lemma 2.
Lemma 4. Suppose I be an almost prime ideal in a Γ-near integral domain R. Then the below statements hold.
(i) If element b is a zero divisor in R / I, in that case $b \Gamma I \subseteq I \Gamma I$.
(ii) If for any ideal J of R such that $I \subseteq J$ where J consists of zero divisors on R / I then $J \Gamma I=I \Gamma I$.
(iii) If I is an invertible ideal then I is prime.

Proof. (i) Let us suppose that there is an element $c \in I$ such that $b \gamma c \in I$. If $b \in I$ then obviously $b \Gamma I \subseteq I \Gamma I$, so let $b \in I$. Since we have $b \notin I, c \notin I$ and $b \gamma c \in I$. Furthermore I is an almost prime and $b \gamma c \in I \Gamma I$. Also, for any $x \in I, x+c \notin I$ and $b \gamma(x+c) \in I$. Thus, as I is almost prime, $b \gamma(x+c) \in I \Gamma I$. As a result $b \gamma c \in I \Gamma I, b \gamma x \in I \Gamma I$. Therefore $b \Gamma I \subseteq I \Gamma I$. (ii) This is obvious from (i). (iii) Let $x \gamma y \in I$ and $x \in I$. Then from (i) $y \Gamma I \subseteq I \Gamma I$. Since I is invertible it is immediate that $y \in I$. Thus I is a prime ideal.
Lemma 5. Let $S^{-1} I$ is an almost prime in the ring $S^{-1} R$, where R be a Γ-near integral domain. Then I be an almost prime ideal in R and S be a multiplicatively closed subset of R disjoint from I.
Proof. Suppose for $x, y \in R$ and $s, t \in S, x \gamma y / s \gamma t \in S^{-1}(I-I \Gamma I)$. Then there exists $u, w \in S$ such that $u \gamma x \gamma y \in I$ and $w \gamma x \gamma y \notin I \Gamma I$. Therefore, $u \gamma x \gamma y \in I-I \Gamma I$. Since I is almost prime so $u \gamma x \in I$ or $y \in I$. Therefore, either $x / s \in S^{-1} I$ or $y / t \in S^{-1} I$ implies $S^{-1} I$ is an almost prime ideal.

REFERENCES

References

[1] A. G. Agargn, D. D. Anderson, and S. Valdes-Leon, Unique factorization rings with zero divisors, communication in algebra, 27 (4), 1967-1974.
[2] D. D. Anderson, and E. Smith, Weakly prime ideals, Houston Journal of Mathematics, 29(4), 2003, 831-840.
[3] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, communication in Algebra, 33 (1), 43-49, 2005.
[4] S. Bhavanari, A note on -near-rings, Indian J. Math., 41, 427 - 433, 1999.
[5] S. Bhavanari, Contributions to near-ring theory, VDM Verlag Dr Mullar, Germany, 2010 (ISBN: 978-3-639-22417-7).
[6] P. Dheena and B. Elavarasan, Weakly prime ideals in Near-Rings, Tamsui Oxford journal of information and Mathematical Sciences, 29 (1), 55-59, 2013.
[7] E. Domi, Prime ideals and bi - ideals in gamma near- rings, 1st international symposium on computing in informatics and Mathematics (ISCIM 2011), in collabaration between EPOKA university and "Aleksandr Moisiu" university of Durrs on June 2-4 2011, 480-485, Tirana- Durres, Albania.
[8] B. Elavarasan, Generalizations of prime ideals in near-rings, Int. J. Open problems compt. Math., Vol. 4 (4), 47-53, Dec., 2011.
[9] A. Frohlich, Distributively generated near-rings, Proc. London Math. Soc. 3 (8), 76108, 1958.
[10] S. Galovich, Unique factorization rings with zero divisors, Mathematics magazine, 51 (5), 276-283, Nov., 1978.
[11] N. J. Groenewald," The completely prime radical in near rings", Acta Math. Hung, Vol.33, 301-305, 19888.
[12] A. K. Jabbar and C. A. Ahmed, On almost primary ideals, International journal of Algebra, 5 (13), 627-636, 2011.
[13] S. Kyuno, Prime ideals in gamma rings,Vol. 98 (2), 375-379, April 1982.
[14] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1, 81-89, 1964.
[15] G. Pilz, Near-rings, North-Holland publishing Co., Amsterdam, second edition, 1983.
[16] M. Sabur Uddin and M. Shamsul Islam, "Semi-Prime ideals of gamma rings", Annals of pure and applied Mathematics Vol. 1, No. 2, 2012, 186-191, ISSN: 2279-087X (P), 2279-0888(online) published on 16 October 2012.
[17] P. Yiarayong and P. Panpho, Some basic properties of weakly completely primary ideals in -near rings, Asian journal of applied Sciences (ISSN: 2321 - 0893), 3(1), Feb., 2015.

[^0]: * Corresponding author.

 Email addresses: sirwak2003@yahoo.com (W. A. Khan),
 adnanmuhammad216@gmail.com (A. Muhammad), ganitaouti@yahoo.com.au (A. Taouti), jamcad@rit.edu (J. Maki)

