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Abstract. The subject matter of this work is hoping for a new relationship between the Lie
algebras and the algebra of logic, which will constitute an important part of our study of “pure”
algebra theory. BCL algebras as a class of logical algebras can be generated by a Lie algebra. The
opposite is also true that when special conditions occur. The aim of this paper is to prove several
theorems on Lie algebras with BCL algebras. I introduce the notion of a “pseudo-association”
which I propose as the adjoint notion of BCL algebra in the abelian group.
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1. Introduction

Lie algebras comprise a significant part of Lie group theory (see [1]) and are being
vibrantly studied. On the other hand, Lie algebras and their representations are used
extensively in physics, notably in quantum mechanics and particle physics. But it is sig-
nificant that our results show that the Lie algebra and logical algebra are closely linked.
Sure, BCL algebras as a class of logical algebras were introduced by Liu in 2011 [2]. The
last results was discovered and developed in [3-15]. From set theory perspective, BCL
algebras are the algebraic formulations of the set difference together with its properties.

In the paper, I just want to prove that the connectivity theorems but that I have sus-
pected for a long time, which is the relationship between the Lie algebras and the BCL
algebras. More importantly, we developed the theory that Lie algebras do have a pre-
ferred direction that causes us to the study of logic issues so we can capture new method.
Meanwhile, let the theory of BCL algebras becomes strong enough.
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2. Basic definitions

In this section, we list two definitions from the literature that will be used in the sequel.

Definition 2.1 A Lie algebra over a field k is a vector space g over k together with
a k-bilinear map

[ , ]: g × g → g

(called the bracket) such that
(Lie 1) [x, x] = 0 for all x ∈ g
(Lie 2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.
A homomorphism of Lie algebras is a k-linear map α: g → g′

such that

α([x, y]) = [α(x), α(y)] for all x, y, z ∈ g.

Condition (Lie 2) is called the Jacobi identity. Note that (Lie 1) applied to [x + y, x
+ y] shows that the Lie bracket is skew-symmetric.

[x, y] = − [y, x] for all x, y, z ∈ g.

Definition 2.2 ([2], Definition 2.1.) A BCL algebra is a triple (A; →, 0), where A is a
nonempty set, → is a binary operation on A, the following three axioms hold for any x,
y, z ∈ A.
(BCL 1) x → x = 0.
(BCL 2) x → y = 0 and y → x = 0 imply x = y.
(BCL 3) (((x → y) → z) → ((x → z) → y)) → ((z → y) → x) = 0.

3. Results

Theorem 3.1 Let L be Lie algebras. Define

x → y = [x, y]− [y, x],

(x → y) → z = [[x, y], z],

and 0 → x = 0 = [x, x].

Then L be BCL algebras.

Proof. Let x, y, z ∈ L. Then
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(1) x → x = [x, x]− [x, x] = 0.

(2) [x, x] = 0 = x → y and [y, y] = 0 = y → x imply x = y.

(3) [[[[x, y], z], [[x, z], y]], [[z, y], x]] = 0.

Clearly, proving (1) and (2).
Now we need to prove (3), we define

[x, y] = x + y.

Then

[[z, y], x] = [x, [z, y]]

⊆ [z, [y, x]] + [y, [x, z]]

= [[x, y], z] + [[x, z], y]

⊆ [[x, y], z], [[x, z], y]],

and (3) is proved. We see that L be BCL algebras.

Theorem 3.2 Let x, y, z ∈ P be BCL algrbras. Then P is abelian Lie algebra iff

x = y = z.

Proof. Assume that P is abelian Lie algebra, sine x, y, z ∈ P , we have

[x, y] = 0 = [y, z].

Therefore, x = y = z.
Conversely, assume x = y = z. To prove that this algebra is a BCL algebra. Let x, y,

z ∈ P . By Theorem 2.1. Then

(4) [x, x] = 0 = x → x.

(5) [x, x] = 0 = x → y and [y, y] = 0 = y → x imply x = y.

(6) [0, [0, x]] = [[0, x], 0] = (0 → x)→ 0 = 0→ 0 = 0.

This completes the proof.

Definition 3.1 Let (G, +) be an abelian, (G; −, 0) be an adjoint BCL algrbras and
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(G; →, 0) be a pseudo-association BCL algrbras. Suppose the following conditions hold:

(GPA 1) x − (0 − y) = x + y.

(GPA 2) x − y = x→ y.

Then adjoint group of (G; −, 0) is abelian (G, +), and adjoint BCL algrbras of abelian
(G, +) is (G; →, 0).

Theorem 3.3 Let P be a pseudo-association BCL algrbra. The bracket

[x, y] = x → y − (y → x), for all x, y ∈ P .

Then P be a Lie algebras about the bracket [ , ] and we use notation PL, for the Lie
algebra is generated by the pseudo-association BCL algrbra.

Proof. By definition of the bracket, [x, x] = 0 trivially hoid. To prove bilinear, sine
x1, x2, y ∈ PL, and λ1, λ2 ∈ PL, we have

[λ1 x1 + λ2 x2, y]

= ((λ1 x1 + λ2 x2)→ y)− (y → (λ1 x1 + λ2 x2))

= (λ1(x1 → y) + λ2(x2 → y))− (λ1(y → x1) + λ2(y → λ2 x2))

= λ1[x1, y] + λ2[x2, y]

To prove Jacobi identity, sine x, y, z ∈ PL, we have

(7) [x, [y, z]] = [x, y → z − (z → y)]

= x→ (y → z − (z → y))− ((y → z − (z → y))→ x)

= x→ y → z − x→ z → y − y → z → x+ z → y → x.

(8) [y, [z, x]] = y → z → x− y → x→ z − z → x→ y + x→ z → y.

(9) [z, [x, y]] = z → x→ y − z → y → x− x→ y → z + y → x→ z.

Therefore, the sum of three brackets, i.e., (7), (8) and (9) satisfying the Jacobi iden-
tity

(10) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.
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