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On the elementary solution for the partial differential
operator ©" related to the wave equation

Sudprathai Bupasiri

Department of Mathematics, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000,
Thailand

Abstract. In this article, we study an elementary solution of the operator ®F, iterated k-times

and is defined by
2
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where p + ¢ = n, k is a nonnegative integer, c is a positive real number, m is a nonnegative
real number and n is the dimension of R™. In this work we study an elementary solution of the
operator ®F. After that, we apply such an elementary solution to solve the solution of the equation
©Fu(z) = f(z), where f is generalized function and u(x) is unknown function for x € R™.
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1. Introduction

Trione [10] has showed that the generalized function Ri,l(a:) defined by (13) is the
unique elementary solution of the operator D’f , that is D’fRil(:c) = § where x € R",
with n-dimensional Euclidean space. Also, Tellez ([7], p.147-149) has proved that Ril(a:)
exists only if n is an odd with p odd and ¢ even, or only n is an even with p odd and
g odd. Later, Bupasiri [9] has showed that the solution of the convolution form u(x) =
(—1)’“R§k7c(az) * Rgcvc(:r) is an elementary solution of the {¥u(z) = & , where the operator
OF is defined by
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where p + ¢ = n is the dimension of the Euclidean space R"™, ¢ is a positive real number
and k is a nonnegative integer. Otherwise, the operator Q’g can be expressed in the form
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OF = OkFAF = AFOF, where OF is the operator related to the ultra-hyperbolic operator
iterated k-times, defined by

k
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and AF is the operator related to the Laplace operator iterate k-times, defined by
k
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Af = 2<2+ 2+ 2) T : (3)
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Next, Tellez [8] has studied the convolution product of W, (u, m) * Wg(u, m). Now in
this paper, the operator ©F can be expressed in the form
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Thus equation (4) can be written as
oF = (O +m2)" (Ae+mD)" = (A +m?)* (O +m2)*, (5)

where (Ac + mQ)k is the operator related to the Helmholtz operator iterated k-times which
is denoted by

(Boam?) = (L (L& O (O P ) k (6)
¢ 2\ 02 023 dx2 Opo Ox?

p+q

and (DC + mz)k is the operator related to the Klein-Gordon operator iterated k-times
which is denoted by

e (L2, @ o2 o2 o2 )\
(Oc+m?)" = 8%2+82+---+@ - ax+1+"'+a2 +m* | , (7)
p p

Tptq
p+q=mn and from (4) with ¢ =0, ¢ =1 and k = 1, we obtain

2

©1 = (Ap + m2) (8)
where o o e
A Ny = 2.
(Dp +m?) (ax§+ax§+ +8x%+m> (9)
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By putting p=1,m =0, ¢c =1 and x; = t (time) in (7) then we obtain the wave operator

52 n—1 52
== — —s (10)
Ox? = 8x?

and from (8) with ¢ = 0,m = 0, ¢ = 1 and k = 1, we obtain Laplace operator iterated
2-times of p-dimension

@1 = AIQ)- (11)

In this paper, we study an elementary solution for the operator ©F, that is

©FG(z) =9,

where G(x) is an elementary solution , § is the Dirac - delta distribution, k is a nonnegative
integer, c¢ is a positive real number and m is a nonnegative real number.

We then also apply such an elementary solution to solve the solution of the equation
©%u(z) = f(z), where f(z) is a given generalized function and u(z) is an unknown function
for x € R™.

2. Preliminaries
Definition 1. Let x = (21, 22,...,zy) be a point of the n - dimensional space R™,
2(.2 2 2 2 2 2
w=c (2] F 23+ T) S Ty~ T~ Ty (12)

where ¢ is a positive real number, p+q =n. Define 'y = {x € R" : 1 > 0 and u > 0}
which designates the interior of the forward cone and I'y designates its closure and the
following functions introduce by Nozaki ([12], p.72) that

a—n

u 2 -
RY (2)={ T Hr€Tl+ (13)
’ 0 ’Lf$ g F+,

Rg’l(x) 1s called the ultra-hyperbolic kernel of Marcel Riesz. Here a is a complex parameter
and n the dimension of the space. The constant K,(«) is defined by

Koyfo) = — 2 L5 T (5%) Do) (14)

P (2520 (2)

and p is the number of positive terms of

Q

202 2 2 2 2 2
u=c (i +ag+-Fx) —a g — Ty —— Ty, p+qg=n

and let supp Rgc(x) cTy. Now Rgc(x) is an ordinary function if Re (a,¢) > n and is a
distribution of o if Re (o, ¢) < n.
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Now, if p=1 then (13) reduces to the function My c(u) say, and defined by

T
Maoo(u) =4 H@ Trely (15)
0 ’LffE g F+,
(n—1)
where u = c?x? — 2% — -+ — 22 and Hy(a) = 7 T 20710 (2=042) The function

My 1(u) is called the hyperbolic kernel of Marcel Riesz.

Definition 2. Let x = (z1,x2,...,2,) € R" and

v=c (el +ad - Fa)) al g Fas et a,, prg=n (16)

For any complex number 5 , we define the function

n — /8) v(ﬂ_n)/2

2 ) TB/2)
The function Rg’l(v) is called the elliptic kernel of Marcel Riesz. It is an ordinary function
if Re(B,¢) > n and a distribution of B if Re(B,c) < n.

RS (v) =27 77/ < (17)

Lemma 1. Given the equation A’gu(m) = ¢ for x € R", where A’g is the operator related
to the Laplace operator iterated k-times defined by (3). Then u(x) = (—1)kR§kvc(fu) is an
elementary solution of the operator A¥ with 5 = 2k.

Proof. See [2].

Lemma 2. If OFu(z) = 6 forx € Ty = {x € R" : 21 > 0 and u > 0}, where OF is
the operator related to the ultra-hyperbolic operator iterated k-times defined by (2). Then

u(z) = RIL (u) is the unique elementary solution of the operator OF, with a = 2k.

Proof. See [10].

Lemma 3. Given the equation (DC —I—mg)ku(fn) =4 for v € R", where (Dc —|—m2)k 18
the operator related to the Klein-Gordon operator iterated k-times defined by equation (7),
6 is the Dirac-delta distribution, k is a nonnegative integer and m is a nonnegative real
number, then u(x) = Wa o(u,m) is an elementary solution of the operator (Dc + mQ)k,

where
o

Wake(u,m) = ) (_’“) w2 R o, (), (18)

r=0
Ri7c(u) is defined by (13).

Proof. See [6].
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Lemma 4. Let O, be the operator related to the ultra-hyperbolic operator, defined by (2)
and § is the Dirac delta distribution for x € R™, then

(Dc + m2)k 0= W—2k,c(ua m)a

where W_gy, o(u, m) is the inverse of Way, .(u, m) in the convolution algebra.

Proof. Let
V(z) = (0. +m?)"s,

convolving both sides by Way .(u, m), then
W1t m)  V (2) = Wa o(u,m) (e +m?)" 5
= (Oc+ m2)k Wk o (u,m) % &
= 4. (19)

Since Wy, o(u, m) is lie in S’, where S is a space of tempered distribution, choose S' C D7,
where D7, is the right-side distribution which is a subspace of D’ of distribution. Thus
Work.c(u, m) € D, it follow that Way .(u, m) is an element of convolution algebra, thus by
([1], p-150-151), we have that the equation (19) has a unique solution

V(z) = Woggc(u,m) x« § = W_g o(u, m). (20)
That complete the proof.
Lemma 5. Given the equation (. —l—mQ)ku(x) = § for x € R", where (A, —i—m2)k is

the operator related to the Helmholtz operator iterated k-times defined by equation (6), §
is the Dirac-delta distribution, k is a nonnegative integer, then u(z) = Yo (v, m) is an

elementary solution of the operator (AC + mQ)k, where
[~k
Vara(orm) = 3 () ()M R ), (21)
r=0
RS, (v) is defined by (17).
Proof. See [6].

Lemma 6. Let A, be the operator related to the Laplace operator, defined by (3) and ¢ is
the Dirac delta distribution for x € R™, then

(e +m?)" 6 = Yoopo(v,m),

where Y_o, .(v,m) is the inverse of Yo, .(v,m) in the convolution algebra.

Proof. The proof of this lemma similar lemma 4.
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Lemma 7. The convolution Way, o(u, m) * Yoy, (v, m) exists and is a tempered distribution
where Woy, o(u, m) and Yoy (v, m) be defined by (18) and (21), respectively.

Proof. From (18) and (21), we have

= [~k
WQk’,c(u7m) * }/Zk,c(vam) = (Z < r >m2TRgg+2r,c(u)>

r=0

* (i (;k) m2T(_1)k+rR§k+2r,c(v)>

r=0

— —k —k r+2s r pe
=22 ( \ )( ) )m () R o(0) % B o(0),

r=0 s=0

Since the function R, . .(v) and Ri+257c(u) are tempered distributions, see([3], p.34,
[5], p.302 and [4], p.97) and the convolution of functions

(_ 1 ) k+TRgc+2r,c(u) * R§k+25,c (U)

exists and is also a tempered distribution, see ([11], p.152). Thus, Way, (u, m)* Yoy, .(v, m)
exists and also is a tempered distribution.

3. Main results

Theorem 1. Given the equation

©"G(x) =6 (22)
for x € R™, where @’(f 1s the operator related to the Helmhotz operator and Klein-Gordon
operator iterated k-times defined by (4), then

G(x) = Wagc(u, m) * Yop (v, m) (23)

is an elementary solution of (22), where Way, o(u, m) and Yoy .(v,m) are defined by (18)
and (21), respectively, k is a nonnegative integer and m 1is a nonnegative real number.
Moreover, from (23) we obtain

W_og.c(u,m) x G(x) = Yo, (v, m) (24)

as the elementary solution of the operator (. +m?)F related to the Helmholtz operator
iterated k-times defined by (6) and in particular, for ¢ = 0 and ¢ = 1 then @],f reduces

to the Helmhotz operator (Ap + m2)2k of p-dimension iterated 2k-times and is defined by
(9), where

AN i 872 + 672 + + 672
P2 \ox? 03 ox2 )’
thus (22) becomes
)Qk

(Ap +m?)7 G(x) =4, (25)
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we obtain
G(z) = Yag1(v,m) (26)

is an elementary solution of (25) and from (23). Moreover,
Yogke(u,m) * G(x) = Wag c(u, m) (27)

is an elementary solution of operator related to the Klein-Gordon operator. In particular,

we obtain
(—1)* R4 (v) * G(x) = My (u)

is an elementary solution of the wave operator defined by (10) where u = t*> — 23 — 13 —

oo —x2 1. Also, form=0,q=0 and c =1 then (25) becomes
2k
AN G(x) =0 (28)
where A%k is the Laplacian of p-dimension iterated 2k-times. We have
G(x) = Ry, (v)
is an elementary solution of (28) where
U:CQ(QZ%-}-SU%—F“'-F.T?,).
Proof. From (5) and (22) we have
eFG(x) = ((DC + mQ)lc (D + mQ)k) G(z) = 4.

Convolving both sides of the above equation by the convolution Way, .(u, m) * Yoy, (v, m)
and the properties of convolution with derivatives, we obtain

(Dc + m2)k WQk,c(uv m) * (Ac + m2)k Y2k,c(vv m) * G(x)
= Wop,c(u, m) * Yo o(v,m) * 0. (29)

Thus
G(x) =6%6xG(x) = Wap c(u, m) * Yo (v, m) (30)

by Lemma 3 and 5. Now from (23) and by Lemma 3 and Lemma 4 and properties of
inverses in the convolution algebra, we obtain

W_gk c(u,m) *« G(x) = 6 * Yo o(v,m) = Yoy (v, m)

is an elementary solution of operator related to the Helmhotz operator iterated k-times
defined by (6). In particular, for ¢ = 0 and ¢ = 1 then (22) becomes

(Dy+m2)* G(z) =6 (31)
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where (Ap + m2)2k is the Helmholtz operator of p-dimension, iterated 2k-times and is
defined by (9). By Lemma 5, we have

G(x) = Y1 (v, m) (32)

is an elementary solution of (31). Moreover, from (23) and by Lemma 6 and Lemma 5
and properties of inverses in the convolution algebra, we obtain

Yook c(u,m) * G(x) = Wap o(u,m) * 6 = Way, o(u, m)

is an elementary solution of operator related to the Klein-Gordon operator. In particular,
by puttingp=1,¢g=n—1,k=1,2; =t,c=1and m =0 in (23) and (27), Wa1(u,m =
0) = Rgl(u) reduces to My 1(u) where Ms(u) is defined by (15) with o = 2. Thus we
obtain
(1) RE 51 (v) x G(w) = Mo (u)
2 2

is an elementary solution of the wave operator defined by (10) where u = t? — 2% — 22 —
<« —a22_,. Also, for m =0, c = 1 and ¢ = 0 then (25) becomes

NFG(z) =6 (33)
where A%k is the Laplacian of p-dimension iterated 2k-times. By Lemma 1, we have
G(x) = (~1)*RG1(0) = Ripa(v)
is an elementary solution of (33) where
v:c2(a:%+x§+“-+x]2,).

On the other hand, we can also find G(x) from (23), since ¢ = 0, ¢ = 1 and m = 0, we have
Wop,1(u,m = 0) = Ri,l(“) reduces to (—1)’“R§k71(v), where v = ¢*(23 + 23 + -+ + 23).
Thus, by (23) for ¢ =0, ¢ = 1 and m = 0, we obtain

G(z) = (=1)* RSy, 1 (v) * (=1)* RSy 1 (v)
= (_1)%R§k+2k,l(v)

= R 1(v) by W.F. Donoghue ([11],p 158).

That complete the proofs.

Theorem 2. Given the equation

©pu(z) = f(2), (34)

where f is a given generalized function and u(zx) is an unknown function, we obtain
u(z) = G(z) = f(x)

is a solution of the equation (34), where G(x) is an elementary solution for ®% operator.
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Proof. Convolving both sides of (34) by G(x), where G(x) is an elementary solution
of ® in Theorem 1, we obtain

G(z) * ©gu(z) = G() * f(x)

or,

©FG(z) * u(z) = G(z) * f(z)
applying the Theorem 1 , we have
dxu(z) = G(z) * f(x).

Therefore,
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