Abstract. A topological space X is called C-Tychonoff if there exist a one-to-one function f from X onto a Tychonoff space Y such that the restriction $f|_K : K \rightarrow f(K)$ is a homeomorphism for each compact subspace $K \subseteq X$. We discuss this property and illustrate the relationships between C-Tychonoffness and some other properties like submetrizability, local compactness, L-Tychonoffness, C-normality, C-regularity, epinormality, σ-compactness, pseudocompactness and zero-dimensional.

2010 Mathematics Subject Classifications: 54D10, 54D15, 54C10

Key Words and Phrases: Tychonoff, C-Tychonoff, C-normal, C-regular, epinormal, submetrizable, L-Tychonoff

1. Introduction

We define a new topological property called C-Tychonoff. Unlike C-normality[2], we prove that C-Tychonoffness is a topological property which is multiplicative and hereditary. We show that C-Tychonoff and C-normal are independent. Also we investigate the function witnesses the C-Tychonoffness when it is continuous and when it is not. We introduce the notion of L-Tychonoffness. Throughout this paper, we denoted of the set of positive integers by \mathbb{N}, and an order pair by $\langle x, y \rangle$. An ordinal γ is the set of all ordinal α, with $\alpha < \gamma$, we denoted the first infinite ordinal by ω_0 and the first uncountable ordinal by ω_1. A T_3 space is a T_1 regular space, a Tychonoff (T_{3_1}) space is a T_1 completely regular space, and a T_4 space is a T_1 normal space. For a subset B of a space X, $\text{int}B$ denote the interior of B and \overline{B} denote the closure of B. A space X is locally compact if for each $y \in X$ and each open neighborhood U of y there exists an open neighborhood V of y such that $y \in V \subseteq \overline{V} \subseteq U$ and \overline{V} is compact, we do not assume T_2 in the definition of local compactness.
2. **C-Tychonoffness**

Definition 1. A topological space X is called C-Tychonoff if there exist a one-to-one function f from X onto a Tychonoff space Y such that the restriction $f|_K : K \longrightarrow f(K)$ is a homeomorphism for each compact subspace $K \subseteq X$.

Recall that a topological space (X, τ) is called submetrizable if there exists a metric d on X such that the topology τ_d on X generated by d is coarser than τ, i.e., $\tau_d \subseteq \tau$, see [10].

Theorem 1. Every submetrizable space is C-Tychonoff.

Proof. Let τ' be a metrizable topology on X such that $\tau' \subseteq \tau$. Then (X, τ') is Tychonoff and the identity function $id_X : (X, \tau) \longrightarrow (X, \tau')$ is a bijective and continuous. If K is any compact subspace of (X, τ), then $id_X(K)$ is Hausdorff being a subspace of the metrizable space (X, τ'), and the restriction of the identity function on K onto $id_X(K)$ is a homeomorphism by [8, 3.1.13].

Since any Hausdorff locally compact space is Tychonoff, then we have the following theorem.

Theorem 2. Every Hausdorff locally compact space is C-Tychonoff.

The converse of Theorem 1 is not true in general. For example, the Tychonoff Plank $((\omega_1 + 1) \times (\omega_0 + 1)) \setminus \{(\omega_1, \omega_0)\}$ is C-Tychonoff being Hausdorff locally compact, but it is not submetrizabl, because if it was, then $((\omega_1 + 1) \times \{0\}) \subseteq (\omega_1 + 1) \times (\omega_0 + 1)) \setminus \{(\omega_1, \omega_0)\}$ is submetrizabl, because submetrizability is hereditary, but $((\omega_1 + 1) \times \{0\}) \cong \omega_1 + 1$ and $\omega_1 + 1$ is not submetrizabl.

The converse of Theorem 2 is not true in general as the Dieudonné Plank [16] is Tychonoff, hence C-Tychonoff but not locally compact. Hausdorffness is essential in Theorem 2. Here is an example of a locally compact space which is neither C-Tychonoff nor Hausdorff.

Example 1. The particular point topology $\tau_{\sqrt{2}}$ on \mathbb{R}, see [16], is not C-Tychonoff. It is well-known that $(\mathbb{R}, \tau_{\sqrt{2}})$ is neither T_1 nor Tychonoff. If $B \subseteq \mathbb{R}$, then $\{x, \sqrt{2} : x \in B\}$ is an open cover for B, thus a subset B of \mathbb{R} is compact if and only if it is finite. To show that $(\mathbb{R}, \tau_{\sqrt{2}})$ is not C-Tychonoff, suppose that $(\mathbb{R}, \tau_{\sqrt{2}})$ is C-Tychonoff. Let Z be a Tychonoff space and $f : \mathbb{R} \longrightarrow Z$ be a bijective function such that the restriction $f|_K : K \longrightarrow f(K)$ is a homeomorphism for each compact subspace K of $(\mathbb{R}, \tau_{\sqrt{2}})$. Take $K = \{x, \sqrt{2}\}$, such that $x \neq \sqrt{2}$, hence K is a compact subspace of $(\mathbb{R}, \tau_{\sqrt{2}})$. By assumption $f|_K : K \longrightarrow f(K) = \{f(x), f(\sqrt{2})\}$ is a homeomorphism. Because $f(K)$ is a finite subspace of Z and Z is T_1, then $f(K)$ is discrete subspace of Z. Therefore, we obtain that $f|_K$ is not continuous and this a contradiction as $f|_K$ is a homeomorphism. Thus $(\mathbb{R}, \tau_{\sqrt{2}})$ is not C-Tychonoff. ■
By the definition, it is clear that a compact C-Tychonoff space must be Tychonoff see Theorem 3 below. Obviously, any Tychonoff space is C-Tychonoff, just by taking $Y = X$ and f to be the identity function, but the converse is not true in general. For example, the Half-Disc space [16] is C-Tychonoff which is not Tychonoff. It is C-Tychonoff because it is submetrizable. C-Tychonoffness does not imply Tychonoffness even with first countability. For example, Smirnov’s deleted sequence topology [16] is first countable and C-Tychonoff being submetrizable but not Tychonoff.

Theorem 3. If X is a compact non-Tychonoff space, then X cannot be C-Tychonoff.

We conclude that from the above theorem, \mathbb{R} with the finite complement topology is not C-Tychonoff.

Theorem 4. If X is a T_1-space such that the only compact subspace are the finite subspace, then X is C-Tychonoff.

Proof. Let $Y = X$ and consider Y with the discrete topology. Then the identity function from X onto Y is a bijective function. If K is any compact subspace of (X, τ), then by assumption K is a finite subspace. Because any finite set in a T_1-space is discrete, hence the restriction of the identity function on K onto K is a homeomorphism since both of the domain and the codomain are discrete and have the same cardinality.

If X is C-Tychonoff and $f : X \to Y$ is a witness of the C-Tychonoffness of X, then f may not be continuous. Here is an example.

Example 2. Consider \mathbb{R} with the countable complement topology CC [16]. Since the only compact subspace are the finite subspaces and (\mathbb{R}, CC) is T_1, then the compact subspace are discrete. Hence \mathbb{R} with the discrete topology and the identity function will give the C-Tychonoffness, see Theorem 4. Observe that the identity function in this case is not continuous. ■

Recall that a space X is Fréchet if for any subset B of X and any $x \in \overline{B}$ there exist a sequence $(b_n)_{n \in \mathbb{N}}$ of points of B such that $b_n \to x$, see [8].

Theorem 5. If X is C-Tychonoff and Fréchet, then any function witnesses its C-Tychonoffness is continuous.

Proof. Let X be C-Tychonoff and Fréchet. Let $f : X \to Y$ be a witness of the C-Tychonoffness of X. Take $B \subseteq X$ and pick $y \in f(\overline{B})$. There is a unique $x \in X$ such that $f(x) = y$, thus $x \in \overline{B}$. Since X is Fréchet, then there exists a sequence $(b_n) \subseteq B$ such that $b_n \to x$. The sequence $K = \{x\} \cup \{b_n : n \in \mathbb{N}\}$ of X is compact since it is a convergent sequence with its limit, thus $f|_K : K \to f(K)$ is a homeomorphism. Let
$W \subseteq Y$ be any open neighborhood of y. Then $W \cap f(K)$ is open in the subspace $f(K)$ containing y. Since $f((b_n : n \in \mathbb{N})) \subseteq f(K) \cap f(B)$ and $W \cap f(K) \neq \emptyset$, then we have $W \cap f(B) \neq \emptyset$. Hence $y \in \overline{f(B)}$ and $f(B) \subseteq \overline{f(B)}$. Thus f is continuous.

Since any first countable space is Fréchet [8], we conclude the following corollary:

Corollary 1. If X is C-Tychonoff first countable and $f : X \rightarrow Y$ witnessing the C-Tychonoffness of X, then f is continuous.

Corollary 2. Any C-Tychonoff Fréchet space is Urysohn.

Proof. Let (X, τ) be any C-Tychonoff Fréchet space. We may assume that X has more than one element. Pick a Tychonoff space (Y, τ') and a bijection function $f : (X, \tau) \rightarrow (Y, \tau')$ such that $f_{|A} : A \rightarrow f(A)$ is a homeomorphism for each compact subspace A of X. Since X is Fréchet, then f is continuous. Define a topology τ^* on X as follows: $\tau^* = \{ f^{-1}(U) : U \in \tau' \}$. It clear that τ^* is a topology on X coarser that τ such that $f : (X, \tau^*) \rightarrow (Y, \tau')$ is continuous. If $W \in \tau^*$, then W is of the form $W = f^{-1}(U)$ where $U \in \tau'$. So, $f(W) = f(f^{-1}(U)) = U$ which gives that f is open, hence homeomorphism. Thus (X, τ^*) is Tychonoff. Pick distinct $a, b \in X$. Using T_2 of (X, τ^*), choose $G, H \in \tau^*$ such that $a \in G, b \in H$, and $G \cap H = \emptyset$. Using regularity of (X, τ^*), choose $U, V \in \tau^*$ such that $a \in U \subseteq U^\tau \subseteq G$ and $b \in V \subseteq V^\tau \subseteq H$. We have that $U, V \in \tau$ and since $\overline{B^\tau} \subseteq \overline{B^\tau}$ for any $B \subseteq X$, we get $\overline{U^\tau} \cap \overline{V^\tau} = \emptyset$. Therefore, (X, τ) is Urysohn.

So, we conclude that any first countable C-Tychonoff space is Hausdorff.

Recall that a space X is a k-space if X is T_2 and it is a quotient image of a locally compact space [8]. By the theorem: “a function f from a k-space X into a space Y is continuous if and only if $f_{|Z} : Z \rightarrow Y$ is continuous for each compact subspace Z of X”, [8, 3.3.21]. We conclude the following:

Corollary 3. If X is a C-Tychonoff k-space and $f : X \rightarrow Y$ witnessing the C-Tychonoffness of X, then f is continuous.

Recall that a topological space X is called C-normal if there exist a one-to-one function f from X onto a normal space Y such that the restriction $f_{|K} : K \rightarrow f(K)$ is a homeomorphism for each compact subspace $K \subseteq X$[2].

Theorem 6. Every C-Tychonoff Fréchet Lindelöf space is C-normal.
Proof. Let X be any C-Tychonoff Fréchet Lindelöf space. Pick a Tychonoff space Y and a bijective function $f : X \to Y$ such that the restriction $f_K : K \to f(K)$ is a homeomorphism for each compact subspace $K \subseteq X$. By Theorem 5, f is continuous. Since the continuous image of a Lindelöf space is Lindelöf [8, 3.8.7], we conclude that Y is Lindelöf, hence normal as any regular Lindelöf space is normal [8, 3.8.2]. Therefore, X is C-normal.

C-normality and C-Tychonoffness are independent from each other. Here is an example of a C-normal which is not C-Tychonoff.

Example 3. Consider \mathbb{R} with its right ray topology \mathcal{R} [16]. So, $\mathcal{R} = \{\emptyset, \mathbb{R}\} \cup \{(x, \infty) : x \in \mathbb{R}\}$. Since any two non-empty closed sets must intersect, then $(\mathbb{R}, \mathcal{R})$ is normal, hence C-normal [2]. Now, suppose that $(\mathbb{R}, \mathcal{R})$ is C-Tychonoff. Pick a Tychonoff space Y and a bijective function $f : \mathbb{R} \to Y$ such that the restriction $f_K : K \to f(K)$ is a homeomorphism for each compact subspace $K \subseteq \mathbb{R}$. It is well-known that a subspace K of $(\mathbb{R}, \mathcal{R})$ is compact if and only if K has a minimal element. Thus $[2, \infty)$ is compact, hence $f_{[2, \infty)} : [2, \infty) \to f([2, \infty)) \subseteq Y$ is a homeomorphism. i.e. $f([2, \infty))$ as a subspace of $(\mathbb{R}, \mathcal{R})$ is regular which is a contradiction as $[2, 3]$ is closed in $[2, \infty)$ and $5 \notin [2, 3]$ and any non-empty open sets in $[2, \infty)$ must intersect. Therefore, $(\mathbb{R}, \mathcal{R})$ cannot be C-Tychonoff.

Here is an example of a C-Tychonoff space which is not C-normal.

Example 4. Consider the infinite Tychonoff product space $G = D^{\omega_1} = \prod_{\alpha \in \omega_1} D$, where $D = \{0, 1\}$ considered with the discrete topology. Let H be the subspace of G consisting of all points of G with at most countably many non-zero coordinates. Put $M = G \times H$. Raushan Buzyakova proved that M cannot be mapped onto a normal space Z by a bijective continuous function [7]. Using Buzyakova’s result and the fact that M is a k-space, we conclude that M is a Tychonoff space which is not C-normal [13]. Since M is Tychonoff, then it is C-Tychonoff.

Theorem 7. C-Tychonoffness is a topological property.

Proof. Let X be a C-Tychonoff space and $X \cong Y$. Let Z be a Tychonoff space and let $f : X \to Z$ be a bijective function such that the restriction $f_K : K \to f(K)$ is a homeomorphism for each compact subspace $K \subseteq X$. Let $h : Y \to X$ be a homeomorphism. Then Z and $f \circ h : Y \to Z$ satisfies the requirement.

Theorem 8. C-Tychonoffness is an additive property.
Corollary 4. Since any compact subspace of a Tychonoff space is Tychonoff, for each compact subspace K of X_s, the function $f : X_s \rightarrow Y_s$ such that $f|_{K_s} : K_s \rightarrow f_s(K_s)$ is a homeomorphism for each compact subspace K of X_s. Because Y_s is Tychonoff for each $s \in S$, then the sum $\bigoplus_{s \in S} Y_s$ is Tychonoff, by the Tychonoff theorem. Hence $f(x) = f_s(x)$ if $x \in X_s$, $s \in S$. A subspace $K \subseteq \bigoplus_{s \in S} X_s$ is compact if and only if the set $S_0 = \{s \in S : K \cap X_s \neq \emptyset\}$ is finite and $K \cap X_s$ is compact in X_s for each $s \in S_0$. If $K \subseteq \bigoplus_{s \in S} X_s$ is compact, then $\bigoplus_{s \in S} f_s|_K$ is a homeomorphism since $f_s|_{K \cap X_s}$ is a homeomorphism for each $s \in S_0$.

Theorem 9. C-Tychonoffness is a multiplicative property.

Proof. Let X_s be a C-Tychonoff space for each $s \in S$. Pick a Tychonoff space Y_s and a bijective function $f_s : X_s \rightarrow Y_s$ such that $f|_{K_s} : K_s \rightarrow f_s(K_s)$ is a homeomorphism for each compact subspace K_s of X_s. Since Y_s is Tychonoff for each $s \in S$, then the Cartesian product $\prod_{s \in S} Y_s$ is Tychonoff [8, 2.2.7]. Consider the function sum $f = \bigoplus_{s \in S} f_s : \bigoplus_{s \in S} X_s \rightarrow \bigoplus_{s \in S} Y_s$ defined by $f(x) = f_s(x)$ if $x \in X_s$, $s \in S$. A subspace $K \subseteq \bigoplus_{s \in S} X_s$ is compact if and only if the set $S_0 = \{s \in S : K \cap X_s \neq \emptyset\}$ is finite and $K \cap X_s$ is compact in X_s for each $s \in S_0$. If $K \subseteq \bigoplus_{s \in S} X_s$ is compact, then $\bigoplus_{s \in S} f_s|_K$ is a homeomorphism. Thus $f|_K$ is a homeomorphism, because the restriction of a homeomorphism is a homeomorphism.

Theorem 10. C-Tychonoffness is a hereditary property.

Proof. Let A be any non empty subspace of C-Tychonoff space X. Pick a bijective function f from X onto a Tychonoff space Y such that $f|_K : K \rightarrow f(K)$ is a homeomorphism for each compact subspace $K \subseteq X$. Let $B = f(A) \subseteq Y$. Then B is Tychonoff being a subspace of a Tychonoff space Y. Now, we have $f|_A : A \rightarrow B$ is a bijective function. Since any compact subspace of A is compact in X and $f|_{A|_K} = f|_K$, we conclude that A is C-Tychonoff.

From Theorem 9 and Theorem 10, we conclude the following corollary.

Corollary 4. $\prod_{s \in S} X_s$ is C-Tychonoff if and only if X_s is C-Tychonoff $\forall s \in S$.

3. L-Tychonoffness and Other Properties

We introduce another new topological property called L-Tychonoff.
Definition 2. A topological space \(X \) is called \(L \)-Tychonoff if there exist a one-to-one function \(f \) from \(X \) onto a Tychonoff space \(Y \) such that the restriction \(f|_L : L \rightarrow f(L) \) is a homeomorphism for each Lindelöf subspace \(L \subseteq X \).

By the definition it is clear that a Lindelöf \(L \)-Tychonoff space must be Tychonoff. Since any compact space is Lindelöf, then any \(L \)-Tychonoff space is \(C \)-Tychonoff. The converse is not true in general. Obviously, no Lindelöf non-Tychonoff space is \(L \)-Tychonoff. So, no countable complement topology on uncountable set \(X \) is \(L \)-Tychonoff, but it is \(C \)-Tychonoff, see Example 2. An example of an \(L \)-Tychonoff space which is not Tychonoff.

Example 5. Consider \(\omega_2 \), the successor cardinal number of the cardinal number \(\omega_1 \). Let \(X = \omega_2 \cup \{i, j\} \) where \(\{i, j\} \cap \omega_2 = \emptyset \) so \(i \notin \omega_2 \) and \(j \notin \omega_2 \). Generate a topology on \(X \) as follows: Each \(\alpha \in \omega_2 \) is isolated. A basic open neighborhood of \(i \) is of the form \(U = \{i\} \cup (\omega_2 \setminus E) \) where \(E \subseteq \omega_2 \) with \(|E| = \omega_1 \). Similarly, a basic open neighborhood of \(j \) is of the form \(V = \{j\} \cup (\omega_2 \setminus F) \) where \(F \subseteq \omega_2 \) with \(|F| = \omega_1 \). Then \(X \) is not \(T_2 \) as \(i \) and \(j \) cannot be separated by disjoint open sets. \(X \) is not Lindelöf as the open cover \(\{\{i\} \cup (\omega_2 \setminus \omega_1), \{j\} \cup (\omega_2 \setminus \omega_1)\}, \{\alpha\} : \alpha \in \omega_1 \} \) of \(X \) has no countable subcover. Also, if \(C \) is any countable subspace of \(X \), then \(C \) is discrete as a subspace because if \(i \in C \), then \(U = \{i\} \cup (\omega_2 \setminus (\omega_1 \cup (C \setminus \{j\})) \) is an open neighborhood of \(i \) in \(X \) such that \(U \cap C = \{i\} \). Similarly, if \(j \in C \). It is clear that if \(C \) is countable, then \(C \) is Lindelöf. Assume that \(C \) is uncountable. Then \(|C| \geq \omega_1 \). Suppose that \(\{i, j\} \subseteq C \). Partition \(C \) into three partitions \(C_1, C_2, \) and \(C_3 \) such that \(i \in C_1 \) with \(|C_1| = \omega_1 \), \(j \in C_2 \) with \(|C_2| = \omega_1 \), and \(C_3 \geq \omega_1 \). The open cover \(\{\{i\} \cup (\omega_2 \setminus (C_1 \cup C_2) \setminus \{i, j\}), \{j\} \cup (\omega_2 \setminus (C_1 \cup C_2) \setminus \{i, j\})\}, \{\alpha\} : \alpha \in C_1 \cup C_2 \} \) of \(C \) has no countable subcover. If \(C \) contains either \(i \) or \(j \), we do the same idea but for just two partitions. Thus a subspace \(C \) of \(X \) is Lindelöf if and only if \(C \) is countable. Thus \(X \) is \(L \)-Tychonoff which is not Tychonoff.

A function \(f : X \rightarrow Y \) witnessing the \(L \)-Tychonoffness of \(X \) need not be continuous. But it will be if \(X \) is of countable tightness. Recall that a space \(X \) is of countable tightness if for each subset \(B \) of \(X \) and each \(x \in \overline{B} \), there exists a countable subset \(B_0 \) of \(B \) such that \(x \in \overline{B_0} \) [8].

Theorem 11. If \(X \) is \(L \)-Tychonoff and of countable tightness and \(f : X \rightarrow Y \) is a witness of the \(L \)-Tychonoffness of \(X \), then \(f \) is continuous.

Proof. Let \(A \) be any non-empty subset of \(X \). Let \(y \in f(\overline{A}) \) be arbitrary. Let \(x \in X \) be the unique element such that \(f(x) = y \). Then \(x \in \overline{A} \). Pick a countable subset \(A_0 \subseteq A \) such that \(x \in \overline{A_0} \). Let \(B = \{x\} \cup A_0 \); then \(B \) is a Lindelöf subspace of \(X \) and hence \(f|_B : B \rightarrow f(B) \) is a homeomorphism. Now, let \(V \subseteq Y \) be any open neighborhood of \(y \); then \(V \cap f(B) \) is open in the subspace \(f(B) \) containing \(y \). Thus \(f^{-1}(V) \cap B \) is open in the subspace \(B \) containing \(x \). Thus \((f^{-1}(V) \cap B) \cap A_0 \neq \emptyset \). So \((f^{-1}(V) \cap B) \cap A \neq \emptyset \). Hence \(\emptyset \neq f((f^{-1}(V) \cap B) \cap A) \subseteq f(f^{-1}(V) \cap A) = V \cap f(A) \). Thus \(y \in f(A) \). Therefore, \(f \) is continuous.
Recall that if \((x_n)_{n \in \mathbb{N}}\) is a sequence in a topological space \(X\), then the \textit{convergency set of} \((x_n)\) is defined by \(C(x_n) = \{ x \in X : x_n \rightarrow x \}\) and a topological space \(X\) is \textit{sequential} if for any \(A \subseteq X\) we have that \(A\) is closed if and only if \(C(x_n) \subseteq A\) for any sequence \((x_n) \subseteq A\), see [8]. We have the following implications, see [8, 1.6.14, 1.7.13].

First countability \(\Rightarrow\) Fréchet \(\Rightarrow\) Sequential \(\Rightarrow\) Countable tightness.

Corollary 5. If \(X\) is \(L\)-Tychonoff and first countable (Fréchet, Sequential) and \(f : X \rightarrow Y\) is a witness of the \(L\)-Tychonoffness of \(X\), then \(f\) is continuous.

Theorem 12. \(L\)-Tychonoffness is a topological property.

Theorem 13. \(L\)-Tychonoffness is an additive property.

Theorem 14. \(L\)-Tychonoffness is a multiplicative property.

Theorem 15. \(L\)-Tychonoffness is a hereditary property.

Theorem 16. If any countable subspace of a space \(X\) is discrete and the only Lindelöf subspaces are the countable subspaces, then \(X\) is \(L\)-Tychonoff.

\textit{Proof.} Let \(Y = X\) and consider \(Y\) with the discrete topology. Then the identity function from \(X\) onto \(Y\) is a bijective function. If \(K\) is any Lindelöf subspace of \(X\), then, by assumption, \(K\) is countable and discrete, hence the restriction of the identity function on \(K\) onto \(K\) is a homeomorphism.

Theorem 17. If \(X\) is \(C\)-Tychonoff space such that each Lindelöf subspace is contained in a compact subspace, then \(X\) is \(L\)-Tychonoff.

\textit{Proof.} Assume that \(X\) is \(C\)-Tychonoff and if \(L\) is any Lindelöf subspace of \(X\), then there exists a compact subspace \(K\) with \(L \subseteq K\). Let \(f\) be a bijective function from \(X\) onto a Tychonoff space \(Y\) such that the restriction \(f|_C : C \rightarrow f(C)\) is a homeomorphism for each compact subspace \(C\) of \(X\). Now, let \(L\) be any Lindelöf subspace of \(X\). Pick a compact subspace \(K\) of \(X\) where \(L \subseteq K\), then \(f|_K : K \rightarrow f(K)\) is a homeomorphism, thus \(f|_L : L \rightarrow f(L)\) is a homeomorphism as \((f|_K)|_L = f|_L\).

Now, we study some relationships between \(C\)-Tychonoffness and some other properties.
Recall that a topological space X is called C-regular if there exist a one-to-one function f from X onto a regular space Y such that the restriction $f|_K : K \to f(K)$ is a homeomorphism for each compact subspace $K \subseteq X$ [5]. Any C-Tychonoff space is C-regular space, but the converse is not true in general. For example, any indiscrete space which has more than one element is an example of C-regular space which is not C-Tychonoff by Theorem 3.

Recall that a topological space (X, τ) is called epinormal if there is a coarser topology τ' on X such that (X, τ') is T_4 [3]. By a similar proof as that of Theorem 1 above, we can prove the following corollary:

Corollary 6. Any epinormal space is C-Tychonoff.

\mathbb{R} with the countable complement topology $\mathbb{C}C$ [16], is an example of C-Tychonoff space which is not epinormal because $(\mathbb{R}, \mathbb{C}C)$ is not T_2 and any epinormal space is T_2 [3].

Let X be any Hausdorff non-k-space. Let $kX = X$. Define a topology on kX as follows: a subset of kX is open if and only if its intersection with any compact subspace C of the space X is open in C. kX with this topology is Hausdorff and k-space such that X and kX have the same compact subspace and the same topology on these subspace [6], we conclude the following:

Theorem 18. If X is Hausdorff but not k-space, then X is C-Tychonoff if and only if kX is C-Tychonoff.

C-Tychonoffness and σ-compactness are independent from each other. For example the rational sequence space [16] is C-Tychonoff being Tychonoff, but not σ-compact. \mathbb{R} with the finite complement topology is not C-Tychonoff by Theorem 3, but it is σ-compact being compact. Any pseudocompact is C-Tychonoff being Tychonoff, but the converse is not true, for example Sorgenfrey line square topology [16], it is C-Tychonoff being Tychonoff but not pseudocompact. Also any zero-dimensional space is C-Tychonoff, but the converse is not true, for example Niemytzki’s tangent disc topology [16], it is C-Tychonoff being Tychonoff but not zero-dimensional because it is connected.

Let X be any topological space. Let $X' = X \times \{a\}$. Note that $X \cap X' = \emptyset$. Let $A(X) = X \cup X'$. For simplicity, for an element $x \in X$, we will denote the element $\langle x, a \rangle$ in X' by x' and for a subset $E \subseteq X$ let $E' = \{x' : x \in E\} = E \times \{a\} \subseteq X'$. For each $x' \in X'$, let $B(x') = \{\{x'\}\}$. For each $x \in X$, let $B(x) = \{U \cup (U' \setminus \{x'\}) : U$ is open in X with $x \in U\}$. Let T denote the unique topology on $A(X)$ which has $\{B(x) : x \in X\} \cup \{B(x') : x' \in X'\}$ as its neighborhood system. $A(X)$ with this topology is called the *Alexandroff Duplicate* of X. Similar proof as in [2], we get the following theorem.
Theorem 19. If X is C-Tychonoff, then its Alexandroff Duplicate $A(X)$ is also C-Tychonoff.

Also a similar proof as in [15], we get the following theorem.

Theorem 20. If X is L-Tychonoff, then its Alexandroff Duplicate $A(X)$ is also L-Tychonoff.

Acknowledgements

The authors wish to express their sincere thanks to the referee for his/her helpful comments and valuable suggestions.

References

