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Abstract. One knows that the concept of minimality and maximality of left ideals and right
ideals play an important role in semigroups. In this paper, we extend this concept to consider in
n-ary semigroups. A number of results concerning relationships between minimality and maximal-
ity of n-ideals of n-ary semigroups and n-simple (0-n-simple) n-ary semigroups as well as some
characterizations of minimality and maximality of n-ideals of n-ary semigroups are given.
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1. Introduction

The generalization of classical algebraic structures to n-ary structures was first intro-
duced by Kasner [10] in 1904. In [12], Sioson introduced regular n-ary semigroups and
verified their properties. In [3], Dudek and Grozdinska investigated the nature of regular
n-ary semigroups in detail; moreover, Dudek proved several results and gave many exam-
ples of n-ary groups in [4], [5] and [6]. Furthermore, Dudek also investigated the properties
of ideals of some elements of n-ary (n ≥ 3) semigroups containing an idempotent in [7]. In
[15], the relation between soft regular n-ary semigroups and regular n-ary semigroups was
discussed by Wang, Zhou and Zhan. Nowadays, the theory of n-ary systems has many ap-
plications, for instance, application in physics ([11] and [14]) and application in automata
theory [8]. Recently, Solano, Suebsung and Chinram studied ideals of fuzzy points n-ary
semigroups in [13].
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In 2000, Cao and Xu studied about the minimal and maximal left ideals in ordered
semigroups and gave some characterizations of them in [2]. After that, in [1], Arslanov
and Kehayopulu characterized the minimal and maximal ideals in ordered semigroups. In
2010, Iampan gave some characterization of minimality and maximality of left ideals and
right ideals in ternary semigroups in [9] and this is an our motivation to do this paper.
In this paper, we extend those results in [9] to n-ary semigroups. We investigate the
minimality and maximality of n-ideals in n-ary semigroups and give some characterizations
of minimality and maximality of n-ideals in n-ary semigroups.

2. Preliminaries

For the sake of completeness, we state some definitions in the same fashion as found
in [15] and [9] which are used throughout this paper. First, we would like to introduce
the definition of n-ary semigroup which was stated in [15], a nonempty set S together
with an n-ary operation given by f : Sn → S, where n ≥ 2, is called an n-ary groupoid
and is denoted by (S, f). According to the general convention used in the theory of n-ary
groupoids, the sequence of elements xi, xi+1, . . . , xj is denoted by xji . In the case j < i, it
is the empty symbol. If xi+1 = xi+2 = · · · = xi+t = x, then we write xt instead of xi+ti+1.
In this convention,

f(x1, x2, . . . , xn) = f(xn1 )

and

f(x1, . . . , xi, x . . . , x︸ ︷︷ ︸
t

, xi+t+1, . . . , xn) = f(xi1, x
t, xni+t+1).

An n-ary groupoid (S, f) is called (i, j)-associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

hold for all x1, x2, . . . , x2n−1 ∈ S. The operation f is associative if the above identity holds
for every 1 ≤ i ≤ j ≤ n, and (S, f) is called an n-ary semigroup.

A nonempty subset H of an n-ary semigroup (S, f) is called an n-ary subsemigroup of
S if f(an1 ) ∈ H for all a1, a2, . . . , an ∈ H.

A nonempty subset I of S is called an i-ideal of S if for every x1, ..., xi−1, xi+1, ..., xn ∈ S
with a ∈ I, then f(xi−1

1 , a, xni+1) ∈ I. A nonempty subset I of S is called an ideal of S if
I is an i-ideal for every 1 ≤ i ≤ n.

For nonempty subset A1, A2, . . . , An of S, let

f(An1 ) := {f(an1 ) | ai ∈ Ai for all i ∈ {1, 2, . . . , n}}.

If A1 = {a1}, then we write f({a1}, An2 ) as f(a1, A
n
2 ), and similarly in another case such

as we write f({a1}, An−1
2 , {an}) as f(a1, A

n
2 , an) and so on.

The intersection of all n-ideals of an n-ary subsemigroup H of an n-ary semigroup S
containing a nonempty subset A of H is the n-ideal of H generated by A. For A = {a}, we
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donote In,H(a) to be the n-ideal of H generate by {a}. If H = S, then we write In,S(a)
as In(a).

An element a of an n-ary semigroup S with at least two elements is called zero element
of S if f(xi−1

1 , a, xni+1) = a for all x1, x2, . . . , xn−1, xn+1, . . . , xn ∈ S and denote it by 0.
If an n-ary semigroup S contains a zero element, then every n-ideal of S also contains a
zero element.

An n-ary semigroup S without zero is called n-simple if it has no proper n-ideals. An
n-ary semigroup S with zero is called 0-n-simple if it has no nonzero proper n-ideals and
f(Sn) 6= {0}.

An n-ideal I of an n-ary semigroup S without zero is called a minimal n-ideal of S
if there is no n-ideal J of S such that J ( I. This implies that if there is an n-ideal J
of S such that J ⊆ I, we obtain that J = I. A nonzero n-ideal I of an n-ary semigroup
S with zero is called a 0-minimal n-ideal of S if there is no nonzero n-ideal J of S such
that J ( I. Equivalently, if S has an n-ideal J such that J ( I, we acquire that J = {0}.
A proper n-ideal I of an n-ary semigroup S is called a maximal n-ideal of S if for any
n-ideal J of S such that I ( J , we have J = S. Equivalently, if J is a proper n-ideal of S
such that I ⊆ J , we gain that J = I.

3. Main Results

Throughout this paper, S is assumed to be an n-ary semigroup. In this section, we
provide some idea, elementary properties and some our fundamental results which relate
to n-ideals, n-simples, and 0-n-simples.

Lemma 1. Let A be any nonempty subset of S. Then f(Sn−1, A) ∪ A is the smallest
n-ideal of S containing A.

Proof. First, we show that f(Sn−1, A) ∪A is an n-ideal of S. Let x1, x2, . . . , xn−1 ∈ S
and y ∈ f(Sn−1, A) ∪A. We divide into two cases.

Case 1: If y ∈ f(Sn−1, A), then y = f(sn−1
1 , a) for some s1, s2, . . . , sn−1 ∈ S and

for some a ∈ A. Then f(xn−1
1 , y) = f(xn−1

1 , f(sn−1
1 , a)) = f(f(xn−1

1 , s1), sn−1
2 , a) ∈

f(Sn−1, A) ⊆ f(Sn−1, A) ∪A.
Case 2: If y ∈ A, then f(xn−1

1 , y) ∈ f(Sn−1, A) ⊆ f(Sn−1, A) ∪A.
From Case 1 and Case 2, we can conclude that f(Sn−1, A) ∪A is a n-ideal of S.
Next, we show that f(Sn−1, A) ∪ A is a smallest n-ideal of S containing A. Let I be

any n-ideal of S containing A. Let y ∈ f(Sn−1, A) ∪ A. If y ∈ A, then y ∈ I because
A ⊆ I. If y ∈ f(Sn−1, A), then y = f(sn−1

1 , a) for some s1, s2, . . . , sn−1 ∈ S and for some
a ∈ A. Thus a ∈ I because A ⊆ I. Hence y = f(sn−1

1 , a) ∈ I since I is an n-ideal of S.
Therefore, we obtain f(Sn−1, A) ∪ A ⊆ I. Since I is an arbitrary n-ideal of S containing
A, we obtain that f(Sn−1, A) ∪A is a smallest n-ideal of S containing A.

Corollary 1. For any an element a of S, In(a) = f(Sn−1, a) ∪ {a}.

Proof. This follows from Lemma 1.
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Lemma 2. Let A be any nonempty subset of S. Then f(Sn−1, A) is an n-ideal of S.

Proof. This follows from one of the proof of Lemma 1.

Lemma 3. If S has no zero element, then the following statements are equivalent:

(1) S is n-simple.

(2) f(Sn−1, a) = S for all a ∈ S.

(3) In(a) = S for all a ∈ S.

Proof. First, we show (1)⇒ (2). Assume that S is n-simple. By Lemma 2, f(Sn−1, a)
is an n-ideal of S for all a ∈ S. Hence f(Sn−1, a) = S for all a ∈ S because S is n-simple.
Next, we show (2)⇒ (3). Suppose that f(Sn−1, a) = S for all a ∈ S. By Corollary 1, we
gain In(a) = f(Sn−1, a) ∪ {a} = S ∪ {a} = S. Therefore, In(a) = S for all a ∈ S. Finally,
we show (3) ⇒ (1). Assume the statement (3) holds. Let I be any n-ideal of S. Since I
is a nonempty set, there exists x ∈ I. Then S = In(x) ⊆ I ⊆ S. This implies that I = S.
Therefore, S is n-simple.

Example 1. Consider Z30, let S = {5, 25}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the multiplication of Z30. It is easy to see that S is
n-simple.

Lemma 4. If S has a zero element, then the following statements hold:

(1) If S is 0-n-simple, then In(a) = S for all a ∈ S r {0}.

(2) If In(a) = S for all a ∈ S r {0}, then either f(Sn) = {0} or S is 0-n-simple.

Proof. (1) Suppose that S is 0-n-simple. Since In(a) is a nonzero n-ideal of S for all
a ∈ S r {0}, we obtain that In(a) = S for all a ∈ S r {0}.

(2) Assume that In(a) = S for all a ∈ S r {0} and suppose that f(Sn) 6= {0}. Let I
be a nonzero n-ideal of S. Then there exists x ∈ I r {0}. Hence S = In(x) ⊆ I ⊆ S, and
so I = S. Therefore, S is 0-n-simple.

Example 2. Consider Z30, let S = {0, 5, 25}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the multiplication of Z30. It is easy to see that S is
0-n-simple.

Lemma 5. let {Iγ | γ ∈ Γ} be a family of n-ideals of S. Then
⋃
γ∈Γ Iγ is an n-ideal of S

and
⋂
γ∈γ Iγ is also an n-ideal of S if it’s not empty.
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Proof. The proof is straightforward.

Lemma 6. Let I be an n-ideal of S and H be an n-ary subsemigroup of S, then the
following statements hold:

(1) If H is n-simple such that H ∩ I 6= ∅, then H ⊆ I.

(2) If H is 0-n-simple such that (H r {0}) ∩ I 6= ∅, then H ⊆ I.

Proof. (1) Assume that H is n-simple such that H∩I 6= ∅. Then there exists a ∈ H∩I.
By Lemma 2, we obtain that f(Hn−1, a) ∩H is an n-ideal of H. Since H is n-simple, we
gain f(Hn−1, a) ∩ H = H. This implies H ⊆ f(Hn−1, a) ⊆ f(Sn−1, I) ⊆ I. Therefore,
H ⊆ I.

(2) Suppose that H is 0-n-simple such that (H r {0}) ∩ I 6= ∅. Then there exists
a ∈ Hr{0}∩I. By Lemma 4(1) and Corollary 1, we obtain H = In,H(a) = (f(Hn−1, a)∪
{a}) ∩H ⊆ f(Sn−1, a) ∪ {a} = In(a) ⊆ I. Therefore, H ⊆ I as desire.

Lemma 7. Let A be a nonempty subset of an n-ideal I of S. Then f(In−1, A) is an
n-ideal of S.

Proof. Let s1, s2, . . . , sn−1 ∈ S and let y ∈ f(In−1, A). Then y = f(xn−1
1 , a) for

some x1, x2, . . . , xn−1 ∈ I and for some a ∈ A. Then f(sn−1
1 , y) = f(sn−1

1 , f(xn−1, a)) =
f(f(sn−1

1 , x1), xn−1
2 , a) ∈ f(In−1, A) because I is an n-ideal of S and xi ∈ I for all i ∈

{1, 2, . . . , n− 1}. This implies that f(In−1, A) is an n-ideal of S.

4. Minimality of n-ideals

In this section, we investigate the relationship between the minimality of n-ideals and
n-simple (0-n-simple) n-ary semigroups.

Theorem 1. Let S be an n-ary semigroup without zero and I be an n-ideal of S. Then I
is a minimal n-ideal of S if and only if I is n-simple.

Proof. (1) Assume that I is a minimal n-ideal of S. Let J be any n-ideal of I. Thus
f(In−1, J) ⊆ J ⊆ I. By Lemma 7, f(In−1, J) is an n-ideal of S. Since I is a minimal
n-ideal, I ⊆ f(In−1, J) and then f(In−1, J) = I. Therefore, I is n-simple. Conversely,
suppose that I is n-simple. Let J be an n-ideal of S such that J ⊆ I. So I ∩ I 6= ∅, and
hence I ⊆ J by Lemma 6(1). This implies that J = I. Therefore, I is a minimal n-ideal
of S.

Example 3. Consider Z30, let S = {1, 5, 25}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the multiplication of Z30. It is easy to see that
I = {5, 25} is a minimal n-ideal of S.
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Theorem 2. If S has a zero element and I is a nonzero n-ideal of S, then the following
statement hold:

(1) If I is a 0-minimal n-ideal of S, then either f(In−1, J) = {0} for some nonzero
n-ideal J of I or I is 0-n-simple.

(2) If I is 0-n-simple, then I is a 0-minimal n-ideal of S.

Proof. (1) Assume that I is a 0-minimal n-ideal of S and assume that f(In−1, J) 6= {0}
for any nonzero n-ideal J of I. Let J be a nonzero n-ideal of I. Then {0} 6= f(In−1, J) ⊆
J ⊆ I. Moreover, we obtain that f(In−1, J) is an n-ideal of S by Lemma 7. Since I is a
0-minimal n-ideal of S, I ⊆ f(In−1, J). This implies that f(In−1, J) = J = I. Therefore,
I is an 0-n-simple.

(2) Assume that I is 0-n-simple. Let J be a nonzero n-ideal of S such that J ⊆ I.
This implies that I r {0} ∩ J 6= ∅ and so I ⊆ J by Lemma 6(2). Hence J = I. Therefore,
I is a 0-minimal n-ideal of S.

Example 4. Consider Z30, let S = {0, 1, 5, 25}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the multiplication of Z30. It is easy to see that
I = {0, 5, 25} is a 0-minimal n-ideal of S.

Theorem 3. If S has no zero element but it has proper n-ideals, then every proper n-ideal
of S is minimal if and only if S contains exactly one proper n-ideal or S contains exactly
two proper n-ideals I1 and I2 such that I1 ∪ I2 = S and I1 ∩ I2 = ∅.

Proof. Assume that every proper n-ideal of S is minimal. Let I be a proper n-ideal of
S. Then I is a minimal n-ideal of S. We divide into two cases:

Case 1: Suppose that S = In(a) for all a ∈ S r I. Let J be a proper n-ideal of
S and J 6= I, then J r I 6= ∅ because I is a minimal n-ideals of S. Thus there exists
a ∈ J r I ⊆ S r I. Hence S = In(a) ⊆ J ⊆ S. So J = S, which is a contradiction.
This implies that J = I. In this case, we can conclude that S contains exactly one proper
n-ideal of S.

Case 2: Suppose that there exists a ∈ S r I such that S 6= In(a). This implies that
In(a) 6= I and In(a) is a minimal n-ideal of S by the fact that In(a) is a proper n-ideal of
S. By Lemma 5, we gain that In(a)∪ I is an n-ideal of S. Since I is a minimal n-ideal of
S and I ( In(a)∪ I, we acquire that In(a)∪ I = S otherwise In(a)∪ I must be a minimal
n-ideal of S, it is impossible. By the minimality of an n-ideal In(a) and by the fact that
In(a)∩I ( In(a), we have that In(a)∩I = ∅. Next, we show that S has exactly two proper
n-ideals I and In(a). Suppose that M is a proper n-ideal of S. Then M is a minimal
n-ideal of S by the hypothesis. Thus M = M∩S = M∩(In(a)∪I) = (M∩In(a))∪(M∩I).
If M ∩ I 6= ∅, then M = I because M and I are both minimal n-ideals of S. If M ∩ I = ∅,
then M = M ∩ In(a). Hence M ∩ In(a) 6= ∅. This implies that M = In(a) because M and
In(a) are both minimal n-ideals of S. In this case, we can conclude that S contains exactly
two proper n-ideals I and In(a), moreover, we obtain In(a) ∪ I = S and In(a) ∩ I = ∅.
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Conversely, if S has exactly one proper n-ideal, then it is clearly that it is just a
minimal n-ideal. Next, suppose that S has exactly two proper n-ideals I1 and I2 such that
I1 ∪ I2 = S and I1 ∩ I2 = ∅. Since I1 ∩ I2 = ∅, we have that I1 6⊆ I2 and I2 6⊆ I1. Hence I1

and I2 are both minimal n-ideals of S. So we can conclude that every proper n-ideal of S
is minimal.

Therefore, the proof is completed.

Theorem 4. If S has a zero element and nonzero proper n-ideals, then every nonzero
proper n-ideal of S is 0-minimal if and only if S contains exactly one nonzero proper n-
ideal or S contains exactly two nonzero proper n-ideals I1 and I2 such that I1 ∪ I2 = S
and I1 ∩ I2 = {0}.

Proof. It follows from the proof of Theorem 3 and use the fact that every n-ideal of S
contains a zero element.

5. Maximality of n-ideals

As a result of this section, we give some characterization of the minimality of n-ideals
of n-ary semigroups as well as the relationship between maximality of n-ideals and the
union U of all (nonzero) proper n-ideals of n-ary semigroups are characterized.

Theorem 5. If S has no zero element but it has proper n-ideals, then every proper n-ideal
of S is maximal if and only if S contains exactly one proper n-ideal or S contains exactly
two proper n-ideals I1 and I2 such that I1 ∪ I2 = S and I1 ∩ I2 = ∅.

Proof. Assume that every proper n-ideal of S is maximal. Let I be a proper n-ideal
of S. Then I is maximal n-ideal of S. We divide into two cases:

Case 1: Suppose that S = In(a) for all a ∈ S r I. Let J be also a proper n-ideal of
S and J 6= I. Then J is a maximal n-ideal of S, and so J r I 6= ∅. Then there exists
a ∈ J r I ⊆ S r I. Hence S = In(a) ⊆ J ⊆ S, and so J = S, which is a contradiction.
This implies that J = I. In this case, we can conclude that I is the unique n-ideal of S

Case 2: Suppose that there exists a ∈ S r I such that S 6= In(a). This implies that
In(a) 6= I and In(a) is a maximal n-ideal of S by the fact that In(a) is a proper n-ideal
of S. By Lemma 5, we have that In(a) ∪ I is an n-ideal of S. Since I is a maximal
n-ideal of S and I ( In(a) ∪ I, we obtain that In(a) ∪ I = S. By the maximality of
an n-ideal In(a) and by the fact that In(a) ∩ I ( In(a), we gain that In(a) ∩ I = ∅.
Next, we show that S has exactly two proper n-ideal I and In(a). Suppose that M is
a proper n-ideal of S. Then M is a maximal n-ideal of S by the hypothesis. Hence
M = M ∩ S = M ∩ (In(a) ∪ I) = (M ∩ In(a)) ∪ (M ∩ I). If M ∩ I 6= ∅, then M = I
because M and I are both maximal n-ideals of S. If M ∩ I = ∅, then M = M ∩ In(a).
Then M ∩In(a) 6= ∅. This implies that M = In(a) because M and In(a) are both maximal
n-ideals of S. In this case, we can conclude that S contains exactly two proper n-ideal I
and In(a), moreover, we obtain In(a) ∪ I = S and In(a) ∩ I = ∅.
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Conversely, if S contains exactly one proper n-ideal, then it is clearly that it is just a
maximal n-ideal. Next, assume that S contains exactly two proper n-ideals I1 and I2 such
that I1 ∪ I2 = S and I1 ∩ I2 = ∅. Since I1 ∩ I2 = ∅, we obtain that I1 6⊆ I2 and I2 6⊆ I1.
Hence I1 and I2 are both maximal n-ideals of S.

Therefore, the proof is completed.

Theorem 6. If S has a zero element and nonzero proper n-ideals, then every nonzero
proper n-ideal of S is maximal if and only if S contains exactly one nonzero proper n-
ideal or S contains exactly two nonzero proper n-ideals I1 and I2 such that I1 ∪ I2 = S
and I1 ∩ I2 = {0}.

Proof. The proof of this theorem follows from the proof of Theorem 5 and the fact
that every n-ideal of S contains a zero element.

Theorem 7. Let I be a proper n-ideal of S. Then I is maximal n-ideal if and only if

(1) S r I = {a} and f(a, Sn−2, a) ⊆ I for some a ∈ S or

(2) S r I ⊆ f(Sn−1, a) for all a ∈ S r I.

Proof. Assume that I is maximal n-ideal of S. We consider the following two cases:
Case 1: Suppose that there exists a ∈ S r I such that f(Sn−1, a) ⊆ I. Then

f(a, Sn−2, a) ⊆ f(Sn−1, a) ⊆ I. By Corollary 1, we obtain I∪{a} = (I∪f(Sn−1, a))∪{a} =
I ∪ (f(Sn−1, a) ∪ {a}) = I ∪ In(a). This implies that I ∪ {a} is an n-ideal of S because
I ∪ In(a) is an n-ideal of S. Since I is a maximal n-ideal of S and I ( I ∪ {a}, we obtain
that I ∪ {a} = S. This implies that S r I = {a}. Hence we have that S r I = {a} and
f(a, Sn−2, a) ⊆ I for some a ∈ S as desire. In this case, the statement (1) is satisfied.

Case 2: Suppose that f(Sn−1, a) 6⊆ I for all a ∈ S r I. Let a ∈ S r I. Then
f(Sn−1, a) 6⊆ I. Moreover, we obtain that f(Sn−1, a) is an n-ideal of S by Lemma 2. By
Lemma 5, we gain that I ∪ f(Sn−1, a) is an n-ideal of S. Since I is a maximal n-ideal of S
and I ( I ∪ f(Sn−1, a), we acquire that I ∪ f(Sn−1, a) = S. Hence a ∈ f(Sn−1, a) because
a ∈ Sr I. This implies that Sr I ⊆ f(Sn−1, a) for all a ∈ Sr I. Hence, this case satisfies
the statement (2).

Conversely, suppose that J is an n-ideal of S such that I ( J . Then J r I 6= ∅. If
there exists a ∈ S such that Sr I = {a} and f(a, Sn−2, a) ⊆ I, then J r I ⊆ Sr I = {a},
and hence J r I = {a}. This implies that J = I ∪ {a} = S. Hence we obtain that I
is a maximal n-ideal of S. Next, if S r I ⊆ f(Sn−1, a) for all a ∈ S r I, then S r I ⊆
f(Sn−1, x) ⊆ f(Sn−1, J) ⊆ J for all x ∈ J r I. Hence S = (S r I) ∪ I ⊆ J ∪ J = J ⊆ S,
and so J = S. Therefore, I is a maximal n-ideal of S.

Hence the proof of this theorem is completed.

Example 5. (1) Let S = N. Define f : Sn → S by

f(xn1 ) = x1 + x2 + . . . + xn
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for all x1, x2, . . . , xn ∈ S where + is the usual addition of N. Let I = N r {1}. Thus
S r I = {1} and f(1, Sn−2, 1) ⊆ I. By Theorem 7(1), I is a maximal n-ideal of S.

(2) Let S = {0,−1, 1}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the usual multiplication. Let I = {0}. Then
SrI ⊆ f(Sn−1, 1) and SrI ⊆ f(Sn−1,−1). By Theorem 7(2), I is a maximal n-ideal of S.

For an n-ary semigroup S, the notation U is assumed to be the union of all nonzero
proper n-ideals of S if S has a zero element and the notation U is assumed to be the the
union of all proper n-ideals of S if S has no a zero element, from now on.

Lemma 8. U = S if and only if In(a) 6= S for all a ∈ S.

Proof. Assume that U = S. If In(a) = S for some a ∈ S. Then a 6∈ Iγ for all proper
n-ideal Iγ of S. Hence a 6∈ U = S, which is a contradiction. Therefore, In(a) 6= S for
all a ∈ S. Conversely, suppose that In(a) 6= S for all a ∈ S. This implies that In(a) is
a proper ideal for all a ∈ S, and so S ⊆

⋃
a∈S In(a) ⊆ U ⊆ S. Therefore, we obtain that

U = S.

Theorem 8. If S has no zero element, then the exactly one of the following statements
is satisfied:

(1) S is n-simple.

(2) In(a) 6= S for all a ∈ S.

(3) There exists a ∈ S such that In(a) = S, a /∈ f(Sn−1, a), f(a, Sn−2, a) ⊆ U = S r {a}
and U is the unique maximal n-ideal of S.

(4) S r U = {a ∈ S | f(Sn−1, a) = S} and U is the unique maximal n-ideal of S.

Proof. Assume that S is not n-simple. This implies that there exists a proper n-ideal
I of S. Hence U is an n-ideal of S. We divide into two cases:

Case 1: If U = S, then In(a) 6= S for all a ∈ S by Lemma 8. In this case, the statement
(2) is satisfied.

Case 2: If U 6= S, then U is a maximal n-ideal of S. We would like to show that U is
the unique maximal n-ideal of S. Suppose that I is a maximal n-ideal of S, and so I is a
proper n-ideal of S. Hence I ⊆ U ( S. Since I is a maximal n-ideal of S, we obtain I = U .
Therefore, U is the unique maximal n-ideal of S as desire. Furthermore, by Theorem 7,
we acquire

(1) S r U = {a} and f(a, Sn−2, a) ⊆ U for some a ∈ S or

(2) S r U ⊆ f(Sn−1, a) for all a ∈ S r U .
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First, we assume that S r U = {a} and f(a, Sn−2, a) ⊆ U for some a ∈ S. Since
S r U = {a}, we have f(a, Sn−2, a) ⊆ U = S r {a}. Since a /∈ U , we have In(a) = S.
If a ∈ f(Sn−1, a), then {a} ⊆ f(Sn−1, a), and hence S = In(a) = f(Sn−1, a) ∪ {a} =
f(Sn−1, a) by Corollary 1. This implies that a = f(sn−1

1 , a) and s1 = f(s2n−2
n , a) for some

s1, s2, . . . , s2n−2 ∈ S. Hence a = f(sn−1
1 , a) = f(s1, s

n−1
2 , a) = f(f(s2n−2

n , a), sn−1
2 , a) =

f(s2n−2
n , f(a, sn−1

2 , a)). Since f(a, Sn−2, a) ⊆ U and U is an n-ideal of S, we have that
a = f(s2n−2

n , f(a, sn−1
2 , a)) ∈ U , which is a contradiction. Hence a /∈ f(Sn−1, a). In this

case, the statement (3) is satisfied.
Finally, suppose that S r U ⊆ f(Sn−1, a) for all a ∈ S r U . We would like to show

that S r U = {a ∈ S | f(Sn−1, a) = S}. Let a ∈ S r U . By the hypothesis, we have that
a ∈ f(Sn−1, a), and so {a} ⊆ f(Sn−1, a). Then In(a) = f(Sn−1, a) ∪ {a} = f(Sn−1, a) by
Corollary 1. Since a /∈ U , we obtain In(a) = S. Hence S = In(a) = f(Sn−1, a). Now, we
get S rU ⊆ {a ∈ S | f(Sn−1, a) = S}. Conversely, let a ∈ S be such that S = f(Sn−1, a).
If a ∈ U , then In(a) ⊆ U ( S. By Corollary 1, we have In(a) = f(Sn−1, a) ∪ {a} =
S ∪ {a} = S, which is a contradiction. This implies that a ∈ S r U . This implies that
{a ∈ S | f(Sn−1, a) = S} ⊆ S r U . Therefore, S r U = {a ∈ S | f(Sn−1, a) = S}, as
desired. In this case, the statement (4) is satisfied.

Hence the proof is completed.

Example 6. (1) Let S = {−1, 1}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the usual multiplication. Then S is n-simple, this
implies that U = ∅. So, S satisfies the condition (1) of Theorem 8.

(2) Let S = Nr {1}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the usual multiplication. It is easy to verify that
In(a) 6= S for all a ∈ S. Hence S satisfies the condition (2) of Theorem 8.

(3) Consider Z2n+1 , let S = {0, 2, 2n}. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the usual multiplication. Thus U = {0, 2n}. It is easy
to verify that S satisfies the condition (3) of Theorem 8 by use a = 2.

(4) Let S = N. Define f : Sn → S by

f(xn1 ) = x1 · x2 · . . . · xn

for all x1, x2, . . . , xn ∈ S where · is the usual multiplication. Then U = S \ {1}. It is easy
to verify that S satisfies the condition (4) of Theorem 8.

Theorem 9. If S has a zero element and f(Sn) 6= {0}, then the exactly one of the
following statements is satisfied:
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(1) S is 0-n-simple.

(2) In(a) 6= S for all a ∈ S.

(3) There exists a ∈ S such that In(a) = S, a /∈ f(Sn−1, a), f(a, Sn−2, a) ⊆ U = S r {a}
and U is the unique maximal n-ideal of S.

(4) S r U = {a ∈ S | f(Sn−1, a) = S} and U is the unique maximal n-ideal of S.

Proof. This follows from Theorem 8.

6. Discussion

In this paper, we introduce many algebraic structures of n-ary semigroups and ones
of those important are n-ideals, n-simple, 0-n-simple, minimal n-ideals, 0-minimal n-
ideals, and maximal n-ideals. The concept of n-ideals (n-simple, 0-n-simple, minimal
n-ideals, 0-minimal n-ideals, and maximal n-ideals, respectively) of n-ary semigroups that
we studied supports the concept of left ideals (left-simple, left 0-simple, minimal left ideals,
0-minimal left ideals, maximal left ideals, respectively) of semigroups in case n = 2 and of
ternary semigroups in case n = 3 that are investigated by several researchers before. Of
course, the study of left ideals (left-simple, left 0-simple, minimal left ideals, 0-minimal left
ideals, maximal left ideals, respectively) is always come together with the study of right
ideals (right-simple, right 0-simple, minimal right ideals, 0-minimal right ideals, maximal
right ideals, respectively) because they have the similar structures, no matter what we
consider in groups, semigroups, or ternary semigroups, and so that many researchers
usually show in the only one case between left and right. In case of right, the right ideals
(right-simple, right 0-simple, minimal right ideals, 0-minimal right ideals, maximal right
ideals, respectively) of semigroups/ternary semigroups are just the 1-ideals (1-simple, 0-1-
simple, minimal 1-ideals, 0-minimal 1-ideals, and maximal 1-ideals, respectively) of 2-ary
semigroups/3-ary semigroups. For any results of this research, we can place 1-ideal ,1-
simple, 0-1-simple, minimal 1-ideal, 0-minimal 1-ideal, and maximal 1-ideal, respectively,
instead of n-ideal, n-simple, 0-n-simple, minimal n-ideal, 0-minimal n-ideal, and maximal
n-ideal, respectively, and then we will obtain the similar results.

Finally, we present some ideas for extending our results. We know that an n-ary
semigroup is just a ternary semigroup if n = 3. There are many researchs about the lateral
ideals of ternary semigroups which are just 2-ideals of 3-ary semigroups. For the more
generally cases of our results that we let them be the open problems are the minimality
and maximality of i-ideals where 1 < i < n in n-ary semigroups.
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