EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 11, No. 3, 2018, 876-881
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Introducing Partial Transformation UP-Algebras*

Aiyared Iampan ${ }^{1, *}$, Phakawat Mosrijai ${ }^{1}$, Akarachai Satirad ${ }^{1}$
${ }^{1}$ Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand

Abstract

The main aim of this paper is to introduce the notion of a partial transformation UPalgebra $P(X)$ induced by a UP-algebra X and prove that the set of all full transformations $T(X)$ is a UP-ideal of $P(X)$.

2010 Mathematics Subject Classifications: 03G25
Key Words and Phrases: UP-algebra, partial transformation, full transformation.

1. Introduction and Preliminaries

Iampan [2] introduced a new algebraic structure, called a UP-algebra, which is a generalization of a KU-algebra. Many researchers have studied on UP-algebras such as [4, 6, 7]. Let X be a universal set and let $\Omega \in \mathcal{P}(X)$. Denote $\mathcal{P}_{\Omega}(X)=\{A \in \mathcal{P}(X) \mid \Omega \subseteq A\}$ and $\mathcal{P}^{\Omega}(X)=\{A \in \mathcal{P}(X) \mid A \subseteq \Omega\}$. Define a binary operation \cdot on $\mathcal{P}_{\Omega}(X)$ by putting

$$
A \cdot B=B \cap\left(A^{\prime} \cup \Omega\right) \text { for all } A, B \in \mathcal{P}_{\Omega}(X)
$$

and a binary operation $*$ on $\mathcal{P}^{\Omega}(X)$ by putting

$$
A * B=B \cup\left(A^{\prime} \cap \Omega\right) \text { for all } A, B \in \mathcal{P}^{\Omega}(X) .
$$

Satirad et al. [5] proved that $\left(\mathcal{P}_{\Omega}(X), \cdot, \Omega\right)$ and $\left(\mathcal{P}^{\Omega}(X), *, \Omega\right)$ are UP-algebras. In particular, $(\mathcal{P}(X), \cdot, \emptyset)$ and $(\mathcal{P}(X), *, X)$ are UP-algebras.

In this paper, we introduce the notion of a partial transformation UP-algebra $P(X)$ induced by a UP-algebra X and prove that the set of all full transformations $T(X)$ is a UP-ideal of $P(X)$.

Now we will recall the definition of a UP-algebra from [2].
An algebra $X=(X, \cdot, 0)$ of type $(2,0)$ is called a UP-algebra where X is a nonempty set, \cdot is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary operation) if it satisfies the following axioms: for any $x, y, z \in X$,

[^0]$(\mathbf{U P}-1)(y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z))=0$,
(UP-2) $0 \cdot x=x$,
(UP-3) $x \cdot 0=0$, and
(UP-4) $x \cdot y=0$ and $y \cdot x=0$ imply $x=y$.
In a UP-algebra $X=(X, \cdot, 0)$, the following assertions are valid (see $[2,3]$).
\[

$$
\begin{align*}
& (\forall x \in X)(x \cdot x=0), \tag{1.1}\\
& (\forall x, y, z \in X)(x \cdot y=0, y \cdot z=0 \Rightarrow x \cdot z=0), \tag{1.2}\\
& (\forall x, y, z \in X)(x \cdot y=0 \Rightarrow(z \cdot x) \cdot(z \cdot y)=0), \tag{1.3}\\
& (\forall x, y, z \in X)(x \cdot y=0 \Rightarrow(y \cdot z) \cdot(x \cdot z)=0), \tag{1.4}\\
& (\forall x, y \in X)(x \cdot(y \cdot x)=0), \tag{1.5}\\
& (\forall x, y \in X)((y \cdot x) \cdot x=0 \Leftrightarrow x=y \cdot x), \tag{1.6}\\
& (\forall x, y \in X)(x \cdot(y \cdot y)=0), \tag{1.7}\\
& (\forall a, x, y, z \in X)((x \cdot(y \cdot z)) \cdot(x \cdot((a \cdot y) \cdot(a \cdot z)))=0), \tag{1.8}\\
& (\forall a, x, y, z \in X)((((a \cdot x) \cdot(a \cdot y)) \cdot z) \cdot((x \cdot y) \cdot z)=0), \tag{1.9}\\
& (\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot(y \cdot z)=0), \tag{1.10}\\
& (\forall x, y, z \in X)(x \cdot y=0 \Rightarrow x \cdot(z \cdot y)=0), \tag{1.11}\\
& (\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot(x \cdot(y \cdot z))=0), \text { and } \tag{1.12}\\
& (\forall a, x, y, z \in X)(((x \cdot y) \cdot z) \cdot(y \cdot(a \cdot z))=0) . \tag{1.13}
\end{align*}
$$
\]

From now on, X will always denote a UP-algebra $(X, \cdot, 0)$.
Definition 1. [2] A subset S of X is called a UP-subalgebra of X if the constant 0 of X is in S, and $(S, \cdot, 0)$ itself forms a UP-algebra.

Iampan [2] proved the useful criteria that a nonempty subset S of a UP-algebra X is a UP-subalgebra of X if and only if S is closed under the \cdot multiplication on X.

Definition 2. [2, 8] A subset S of X is called
(1) a UP-filter of X if it satisfies the following properties:
(i) the constant 0 of X is in S, and
(ii) for any $x, y \in X, x \cdot y \in S$ and $x \in S$ imply $y \in S$.
(2) a UP-ideal of X if it satisfies the following properties:
(i) the constant 0 of X is in S, and
(ii) for any $x, y, z \in X, x \cdot(y \cdot z) \in S$ and $y \in S$ imply $x \cdot z \in S$.
(3) a strongly UP-ideal of X if it satisfies the following properties:
(i) the constant 0 of X is in S, and
(ii) for any $x, y, z \in X,(z \cdot y) \cdot(z \cdot x) \in S$ and $y \in S$ imply $x \in S$.

Guntasow et al. [1] proved the generalization that the notion of UP-subalgebras is a generalization of UP-filters, the notion of UP-filters is a generalization of UP-ideals, and the notion of UP-ideals is a generalization of strongly UP-ideals. Moreover, they also proved that a UP-algebra X is the only one strongly UP-ideal of itself.

2. Main Results

We denote

$$
\begin{array}{ll}
B(X) & \text { the set of all binary relations on } X, \\
P(X) & \text { the set of all partial transformations on } X, \\
T(X) & \text { the set of all full transformations on } X .
\end{array}
$$

Then $T(X) \subseteq P(X) \subseteq B(X)$. If $\alpha \in B(X)$ and $x \in X$, then $x \alpha=\{y \in X \mid(x, y) \in \alpha\}$. Thus $x \alpha$ is the set of all elements that are α-related to x. Define a function O from X to X by $O(x)=0$ for all $x \in X$, that is, $O \in T(X)$. Define a binary operation \bullet on $B(X)$ by: for all $\alpha, \beta \in B(X)$,
$(x, y) \in \alpha \bullet \beta \Leftrightarrow\left\{\begin{array}{l}x \in \operatorname{dom} \alpha \cap \operatorname{dom} \beta \text { and } y=y_{x \alpha} \cdot y_{x \beta} \text { for } y_{x \alpha} \in x \alpha \text { and } y_{x \beta} \in x \beta, \text { or } \\ x \notin \operatorname{dom} \alpha \text { and } y=0 .\end{array}\right.$
We can redefine a binary operation \bullet on $P(X)$ by: for all $\alpha, \beta \in P(X)$,

$$
(\alpha \bullet \beta)(x)= \begin{cases}\alpha(x) \cdot \beta(x) & \text { if } x \in \operatorname{dom} \alpha \cap \operatorname{dom} \beta \\ 0 & \text { if } x \notin \operatorname{dom} \alpha\end{cases}
$$

We see that

- for all $\alpha, \beta \in B(X)$,

$$
\begin{equation*}
\operatorname{dom}(\alpha \bullet \beta)=(\operatorname{dom} \alpha-\operatorname{dom} \beta)^{\prime} \tag{2.1}
\end{equation*}
$$

- the empty function $\emptyset \in P(X)$ and for all $\alpha \in P(X)$,

$$
\begin{equation*}
\emptyset \bullet \alpha=O \text { and } \alpha \bullet \emptyset=\left.O\right|_{(\operatorname{dom} \alpha)^{\prime}} \tag{2.2}
\end{equation*}
$$

Theorem 1. $B(X)=(B(X), \bullet, O)$ is an algebra of type $(2,0)$ satisfying (UP-2) and (UP-3).

Proof. Let $\alpha \in B(X)$. Then
$(x, y) \in O \bullet \alpha \Leftrightarrow x \in X \cap \operatorname{dom} \alpha$ and $y=\mathbf{r}_{x O} \cdot y_{x \alpha}$ for some $y_{x \alpha} \in x \alpha \quad(\operatorname{dom} O=X)$
$\Leftrightarrow x \in \operatorname{dom} \alpha$ and $y=O(x) \cdot y_{x \alpha}$ for some $y_{x \alpha} \in x \alpha$

$$
\begin{align*}
& \Leftrightarrow x \in \operatorname{dom} \alpha \text { and } y=0 \cdot y_{x \alpha} \text { for some } y_{x \alpha} \in x \alpha \\
& \Leftrightarrow x \in \operatorname{dom} \alpha \text { and } y=y_{x \alpha} \text { for some } y_{x \alpha} \in x \alpha \tag{UP-2}\\
& \Leftrightarrow(x, y) \in \alpha .
\end{align*}
$$

Hence, $O \bullet \alpha=\alpha$, so (UP-2) is holding.
Let $\alpha \in B(X)$ and $x \in X$. Then
Case 1: $x \notin \operatorname{dom} \alpha$. Then $(x, 0) \in(\alpha \bullet O) \Leftrightarrow(x, 0) \in O$.
Case 2: $x \in \operatorname{dom} \alpha$. Then

$$
\begin{array}{rlr}
(x, y) \in \alpha \bullet O & \Leftrightarrow x \in \operatorname{dom} \alpha \cap X \text { and } y=\mathbf{r}_{x \alpha} \cdot y_{x O} \text { for some } y_{x O} \in x O \quad(\operatorname{dom} O=X) \\
& \Leftrightarrow x \in \operatorname{dom} \alpha \text { and } y=\mathbf{r}_{x \alpha} \cdot O(x) \\
& \Leftrightarrow x \in \operatorname{dom} \alpha \text { and } y=\mathbf{r}_{x \alpha} \cdot 0 \\
& \Leftrightarrow x \in \operatorname{dom} \alpha \text { and } y=0 \tag{UP-3}\\
& \Leftrightarrow(x, y) \in O .
\end{array}
$$

Hence, $\alpha \bullet O=O$, so (UP-3) is holding.
Therefore, $B(X)=(B(X), \bullet, O)$ is an algebra of type (2,0) satisfying (UP-2) and (UP-3).

Theorem 2. $P(X)=(P(X), \bullet, O)$ is a UP-algebra and we shall call it the partial transformation UP-algebra induced by a UP-algebra X.

Proof. Let $\alpha, \beta, \gamma \in P(X)$ and let $x \in X$.
Case 1: $x \notin \operatorname{dom} \alpha$. Then $(\alpha \bullet \beta)(x)=0=(\alpha \bullet \gamma)(x)$, so $x \in \operatorname{dom}(\alpha \bullet \beta) \cap \operatorname{dom}(\alpha \bullet \gamma)$. Thus

$$
\begin{align*}
((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma))(x) & =(\alpha \bullet \beta)(x) \cdot(\alpha \bullet \gamma)(x) \\
& =0 \cdot 0 \\
& =0 \tag{UP-2}
\end{align*}
$$

so $x \in \operatorname{dom}((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma))$.
Case 1.1: $x \notin \operatorname{dom}(\beta \bullet \gamma)$. Then $((\beta \bullet \gamma) \bullet((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma)))(x)=0=O(x)$.
Case 1.2: $x \in \operatorname{dom}(\beta \bullet \gamma)$. Then $x \in \operatorname{dom}(\beta \bullet \gamma) \cap \operatorname{dom}((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma))$. Thus

$$
\begin{align*}
((\beta \bullet \gamma) \bullet((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma)))(x) & =(\beta \bullet \gamma)(x) \cdot((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma))(x) \\
& =(\beta \bullet \gamma)(x) \cdot 0 \\
& =0 \tag{UP-3}\\
& =O(x) .
\end{align*}
$$

Case 2: $x \in \operatorname{dom} \alpha$.

Case 2.1: $x \notin \operatorname{dom} \beta$. Then $x \in \operatorname{dom} \alpha-\operatorname{dom} \beta$, so $(\beta \bullet \gamma)(x)=0$ and $(\alpha \bullet \beta)(x)$ is not defined. Thus $x \notin \operatorname{dom}(\alpha \bullet \beta)$, so $((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma))(x)=0$. Thus $x \in \operatorname{dom}(\beta \bullet \gamma) \cap$ $((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma))$, so

$$
\begin{align*}
((\beta \bullet \gamma) \bullet((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma)))(x) & =(\beta \bullet \gamma)(x) \cdot((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma))(x) \\
& =0 \cdot 0 \\
& =0 \tag{UP-2}\\
& =O(x) .
\end{align*}
$$

Case 2.2: $x \in \operatorname{dom} \beta$. If $x \notin \operatorname{dom} \gamma$, then $x \in \operatorname{dom} \beta-\operatorname{dom} \gamma$. Thus $(\beta \bullet \gamma)(x)$ is not defined, so $x \notin \operatorname{dom}(\beta \bullet \gamma)$. Thus $((\beta \bullet \gamma) \bullet((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma)))(x)=0=O(x)$. If $x \in \operatorname{dom} \gamma$, then we conclude that

$$
\begin{aligned}
((\beta \bullet \gamma) \bullet((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma)))(x) & =(\beta \bullet \gamma)(x) \cdot((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma))(x) \\
& =(\beta \bullet \gamma)(x) \cdot((\alpha \bullet \beta)(x) \cdot(\alpha \bullet \gamma)(x)) \\
& =(\beta(x) \cdot \gamma(x)) \cdot((\alpha(x) \cdot \beta(x)) \cdot(\alpha(x) \cdot \gamma(x))) \\
& =0 \\
& =O(x) .
\end{aligned}
$$

Hence, $(\beta \bullet \gamma) \bullet((\alpha \bullet \beta) \bullet(\alpha \bullet \gamma))=O$, so (UP-1) is holding.
Let $\alpha \in P(X)$ and let $x \in X$.
Case 1: $x \notin \operatorname{dom} \alpha$. Then $x \in \operatorname{dom} O-\operatorname{dom} \alpha$. Thus $\alpha(x)$ and $(O \bullet \alpha)(x)$ are not defined.

Case 2: $x \in \operatorname{dom} \alpha$. Then $x \in \operatorname{dom} O \cap \operatorname{dom} \alpha$. Thus $(O \bullet \alpha)(x)=O(x) \cdot \alpha(x)=$ $0 \cdot \alpha(x)=\alpha(x)$.

Hence, $O \bullet \alpha=\alpha$, so (UP-2) is holding.
Let $\alpha \in P(X)$ and let $x \in X$.
Case 1: $x \notin \operatorname{dom} \alpha$. Then $(\alpha \bullet O)(x)=0=O(x)$.
Case 2: $x \in \operatorname{dom} \alpha$. Then $x \in \operatorname{dom} \alpha \cap \operatorname{dom} O$. Thus $(\alpha \bullet O)(x)=\alpha(x) \cdot O(x)=$ $\alpha(x) \cdot 0=0=O(x)$.

Hence, $\alpha \bullet O=O$, so (UP-3) is holding.
Let $\alpha, \beta \in P(X)$ be such that $\alpha \bullet \beta=O$ and $\beta \bullet \alpha=O$. Let $x \in X$. Then $(\alpha \bullet \beta)(x)=O(x)=0$ and $(\beta \bullet \alpha)(x)=O(x)=0$. If $x \in \operatorname{dom} \alpha-\operatorname{dom} \beta$, then $(\alpha \bullet \beta)(x)$ is not defined which is a contradiction. If $x \in \operatorname{dom} \beta-\operatorname{dom} \alpha$, then $(\beta \bullet \alpha)(x)$ is not defined which is a contradiction. If $x \in \operatorname{dom} \alpha \cap \operatorname{dom} \beta$, then $0=(\alpha \bullet \beta)(x)=\alpha(x) \cdot \beta(x)$ and $0=(\beta \bullet \alpha)(x)=\beta(x) \cdot \alpha(x)$. By (UP-4), we have $\alpha(x)=\beta(x)$. If $x \notin \operatorname{dom} \alpha$ and $x \notin \operatorname{dom} \beta$, then $\alpha(x)$ and $\beta(x)$ are not defined. Hence, $\alpha=\beta$, so (UP-4) is holding.

Therefore, $(P(X), \bullet, O)$ is a UP-algebra.

Theorem 3. $T(X)$ is a UP-ideal of $P(X)$ and we shall call it the full transformation UP-algebra induced by a UP-algebra X.

Proof. Clearly, $O \in T(X)$. Let $\alpha, \beta, \gamma \in P(X)$ be such that $\alpha \bullet(\beta \bullet \gamma) \in T(X)$ and $\beta \in T(X)$. Then $\operatorname{dom}(\alpha \bullet(\beta \bullet \gamma))=X$ and $\operatorname{dom} \beta=X$ and so by (2.1), $X=$ $\operatorname{dom}(\alpha \bullet(\beta \bullet \gamma))=(\operatorname{dom} \alpha-\operatorname{dom}(\beta \bullet \gamma))^{\prime}$. Thus $\operatorname{dom} \alpha-\operatorname{dom}(\beta \bullet \gamma)=\emptyset$ and so by (2.1), $\emptyset=\operatorname{dom} \alpha-\operatorname{dom}(\beta \bullet \gamma)=\operatorname{dom} \alpha-(\operatorname{dom} \beta-\operatorname{dom} \gamma)^{\prime}=\operatorname{dom} \alpha-(X-\operatorname{dom} \gamma)^{\prime}=$ $\operatorname{dom} \alpha-\left((\operatorname{dom} \gamma)^{\prime}\right)^{\prime}=\operatorname{dom} \alpha-\operatorname{dom} \gamma$. By (2.1), $\operatorname{dom}(\alpha \bullet \gamma)=(\operatorname{dom} \alpha-\operatorname{dom} \gamma)^{\prime}=\emptyset^{\prime}=X$. That is, $\alpha \bullet \gamma \in T(X)$. Hence, $T(X)$ is a UP-ideal of $P(X)$ and also a UP-filter and a UP-subalgebra.

Acknowledgements

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

[1] T. Guntasow, S. Sajak, A. Jomkham, and A. Iampan. Fuzzy translations of a fuzzy set in UP-algebras. J. Indones. Math. Soc., 23(2):1-19, 2017.
[2] A. Iampan. A new branch of the logical algebra: UP-algebras. J. Algebra Relat. Top., $5(1): 35-54,2017$.
[3] A. Iampan. UP-algebras: the beginning. COPY HOUSE and PRINTING, Thailand, 2018.
[4] D. A. Romano. Proper up-filters of UP-algebra. Univ. J. Math. Appl., 1(2):98-100, 2018.
[5] A. Satirad, P. Mosrijai, and A. Iampan. Generalized power UP-algebras. Manuscript accepted for publication in Int. J. Math. Comput. Sci., May 2018.
[6] T. Senapati, Y. B. Jun, and K. P. Shum. Cubic set structure applied in UP-algebras. Discrete Math. Algorithms Appl., https://doi.org/10.1142/S1793830918500490.
[7] T. Senapati, G. Muhiuddin, and K. P. Shum. Representation of UP-algebras in intervalvalued intuitionistic fuzzy environment. Ital. J. Pure Appl. Math., 38:497-517, 2017.
[8] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, and A. Iampan. Fuzzy sets in UPalgebras. Ann. Fuzzy Math. Inform., 12(6):739-756, 2016.

[^0]: *This work was financially supported by the University of Phayao.
 *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v11i3.3296
 Email addresses: aiyared.ia@up.ac.th (A. Iampan),
 phakawat.mo@gmail.com (P. Mosrijai), akarachai.sa@gmail.com (A. Satirad)
 http://www.ejpam.com © 2018 EJPAM All rights reserved.

