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1. Introduction

In the year 2008, Mihes.an [38] constructed an important generalization of the well-
known Szász operators depending on α ∈ R as

G(α)n (f ;x) =
∞∑
k=0

m
(α)
n,k(x)f

(
k

n

)
, x ∈ [0,∞) (1)

where

m
(α)
n,k(x) =

(α)k
k!

.
(nxα )k

(1 + nx
α )α+k

,
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and (α)k = α(α + 1)...(α + k − 1), (α)0 = 1, is the rising factorial and α + nx > 0. The

operator G(α)n preserve the linear polynomials, and for special values of α, one can obtain
some well-known operators.
Recently, Kajla [15] introduced a new sequence of summation-integral type operators
and established some approximation properties e.g. weighted approximation, asymptotic
formula and error estimation in terms of modulus of smoothness. Very recently, Gupta
and Agrawal [11] proposed the integral modification of the operators (1) by taking weights
of Beta basis functions as follows:

M (α)
n (f ;x) =

∞∑
k=1

m
(α)
n,k(x)

∫ ∞
0

bn,k(t)f(t)dt+

(
α

α+ nx

)α
f(0), (2)

where

bn,k(t) =
1

B(n+ 1, k)
.

tk−1

(1 + t)k+n+1
,

and B(m,n) being the Beta function defined as

B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
, m, n > 0.

They obtain different approximation properties for these operators. For the different val-
ues of α, we get different special cases. Some of the special cases are discussed in [11].
In [42], Stancu introduced and investigated a new parameter-dependent linear positive
operators of Bernstein type associated to a function f ∈ C[0, 1]. The new construction
of his operators shows that the new sequence of Bernstein polynomials present a better
approach with the suitable selection of the parameters.
In the recent years, Stancu type generalization of the certain operators introduced by
several researchers and obtained different type of approximation properties of many oper-
ators, we refer some of the important papers in this direction as [1], [16], [23], [24], [25],
[33] etc.
Inspired by the above work, We introduce the Stancu type generalization of the operators
(2):

M (β,γ)
n,α (f ;x) =

∞∑
k=1

m
(α)
n,k(x)

∫ ∞
0

bn,k(t)f

(
nt+ β

n+ γ

)
dt+

(
α

α+ nx

)α
f

(
β

n+ γ

)
. (3)

In this present work, our focus is to study the approximation properties of the operators
(3) in terms of first and second order modulus of continuity. We estimate the rate of
convergence of these operators in terms of modulus of continuity. Furthermore, we inves-
tigate weighted approximation theorems. Lastly we study King type modification of the
operators (3).
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2. Moment estimates

In the sequel, we shall need the following auxiliary results which will be necessary to
prove our main results.

Lemma 1. [11] For the operators M
(α)
n (f ;x), we have

(i) M (α)
n (1;x) = 1,

(ii) M (α)
n (t;x) = x,

(iii) M (α)
n (t2;x) =

x[nx(α+ 1) + 2α]

α(n− 1)
.

Lemma 2. For the operators M
(β,γ)
n,α (f ;x), we have

(i) M (β,γ)
n,α (1;x) = 1,

(ii) M (β,γ)
n,α (t;x) =

nx+ β

n+ γ
,

(iii) M (β,γ)
n,α (t2;x) =

{
n3(α+ 1)

α(n− 1)(n+ γ)2

}
x2 +

{
2n2 + 2nβ(n− 1)

(n− 1)(n+ γ)2

}
x+

β2

(n+ γ)2
.

Proof. For x ∈ [0,∞), in view of Lemma 1, we have

M (β,γ)
n,α (1;x) = 1.

The first order moment is given by

M (β,γ)
n,α (t;x) =

n

n+ γ
M (α)
n (t;x) +

β

n+ γ
=
nx+ β

n+ γ
.

The second order moment is given by

M (β,γ)
n,α (t2;x) =

(
n

n+ γ

)2

M (α)
n (t2;x) +

2nβ

(n+ γ)2
M (α)
n (t;x) +

(
β

n+ γ

)2

=

{
n3(α+ 1)

α(n− 1)(n+ γ)2

}
x2 +

{
2n2 + 2nβ(n− 1)

(n− 1)(n+ γ)2

}
x+

β2

(n+ γ)2
.

Lemma 3. For f ∈ CB[0,∞) (space of all real valued bounded functions on [0,∞) endowed
with norm ‖ f ‖CB [0,∞)= sup

x∈[0,∞)
|f(x)|),

‖M (β,γ)
n,α (f) ‖≤‖ f ‖ .
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Proof. In view of (3) and Lemma 2, we get

‖M (β,γ)
n,α (f)‖ ≤ ‖f‖M (β,γ)

n,α (1;x) = ‖f‖.

Remark 1. For every x ∈ [0,∞), we have

M (β,γ)
n,α ((t− x);x) =

β − γx
n+ γ

and

M (β,γ)
n,α

(
(t− x)2;x

)
=

{
n2(n+ α) + αγ2(n− 1)

α(n− 1)(n+ γ)2

}
x2 +

{
2n2 + 2βγ(1− n)

(n− 1)(n+ γ)2

}
x+

β2

(n+ γ)2

= ξ(β,γ)n,α (x).

3. Main results

Throughout this paper, we assume that α = α(n) → ∞, as n → ∞ and lim
n→∞

n

α(n)
=

l(∈ R). Let ei(t) = ti, i = 0, 1, 2.

Theorem 1. Let f ∈ C[0,∞). Then lim
n→∞

M (β,γ)
n,α (f ;x) = f(x), uniformly in each compact

subset of [0,∞).

Proof. In view of Lemma 2, we get

lim
n→∞

M (β,γ)
n,α (ei;x) = xi, i = 0, 1, 2,

uniformly in each compact subset of [0,∞). Applying Bohman-Korovkin theorem, it
follows that lim

n→∞
M (β,γ)
n,α (f ;x) = f(x), uniformly in each compact subset of [0,∞).

3.1. Voronovskaja type theorem

In this section we prove Voronvoskaja type asymptotic theorem for the operators

M
(β,γ)
n,α .

Theorem 2. Let f be a bounded and integrable function on [0,∞), second derivative of f
exists at a fixed point x ∈ [0,∞), then

lim
n→∞

n
(
M (β,γ)
n,α (f ;x)− f(x)

)
= (β − γx)f ′(x) +

1

2

(
2x+ (l + 1)x2

)
f ′′(x).

Proof. Let x ∈ [0,∞) be fixed. Using Taylor’s expansion formula of function f , it
follows

f(t) = f(x) + (t− x)f ′(x) +
1

2
f ′′(x)(t− x)2 + r(t, x)(t− x)2, (4)
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where r(t, x) is a bounded function and lim
t→x

r(t, x) = 0.

Applying M
(β,γ)
n,α (f ;x) on both sides of (4), we get

n
(
M (β,γ)
n,α (f ;x)− f(x)

)
= nf ′(x)M (β,γ)

n,α ((t− x);x) +
1

2
nf ′′(x)M (β,γ)

n,α

(
(t− x)2;x

)
+nM (β,γ)

n,α

(
(t− x)2r(t, x);x

)
.

In view of Remark 1, we have

lim
n→∞

nM (β,γ)
n,α ((t− x);x) = β − γx (5)

and

lim
n→∞

nM (β,γ)
n,α

(
(t− x)2;x

)
= 2x+ (l + 1)x2. (6)

Now, we shall show that

lim
n→∞

nM (β,γ)
n,α

(
r(t, x)(t− x)2;x

)
= 0.

By using Cauchy-Schwarz inequality, we have

M (β,γ)
n,α

(
r(t, x)(t− x)2;x

)
≤

(
M (β,γ)
n,α (r2(t, x);x)

)1/2 (
M (β,γ)
n,α ((t− x)4;x)

)1/2
. (7)

We observe that r2(x, x) = 0 and r2(., x) ∈ CB[0,∞). Then, it follows that

lim
n→∞

M (β,γ)
n,α (r2(t, x);x) = r2(x, x) = 0. (8)

Now, from (7) and (8) we obtain

lim
n→∞

nM (β,γ)
n,α

(
r(t, x)(t− x)2;x

)
= 0. (9)

From (5), (6) and (9), we get the required result.

3.2. Local approximation

For CB[0,∞), let us consider the following K-functional:

K2(f, δ) = inf
g∈W 2

{‖ f − g ‖ +δ ‖ g′′ ‖},

where δ > 0 and W 2 = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)}. By, p. 177, Theorem 2.4 in
[2], there exists an absolute constant M > 0 such that

K2(f, δ) ≤Mω2(f,
√
δ), (10)
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where

ω2(f,
√
δ) = sup

0<h≤
√
δ

sup
x∈[0,∞)

| f(x+ 2h)− 2f(x+ h) + f(x) |

is the second order modulus of smoothness of f . By

ω(f, δ) = sup
0<h≤δ

sup
x∈[0,∞)

| f(x+ h)− f(x) |,

we denote the first order modulus of continuity of f ∈ CB[0,∞).

Theorem 3. Let f ∈ CB[0,∞). Then, for every x ∈ [0,∞), we have

|M (β,γ)
n,α (f ;x)− f(x) | ≤ Mω2

(
f, ζ(β,γ)n,α (x)

)
+ ω

(
f,
|β − γx|
n+ γ

)
,

where M is a positive constant and

ζ(β,γ)n,α (x) =

(
ξ(β,γ)n,α (x) +

(
β − γx
n+ γ

)2)1/2

.

Proof. For x ∈ [0,∞), we consider the auxiliary operators M
(β,γ)
n,α defined by

M
(β,γ)
n,α (f ;x) = M (β,γ)

n,α (f ;x)− f
(
nx+ β

n+ γ

)
+ f(x). (11)

From Lemma 2, we observe that the operators M
(β,γ)
n,α are linear and reproduce the linear

functions.
Hence

M
(β,γ)
n,α ((t− x);x) = 0. (12)

Let g ∈W 2 and x, t ∈ [0,∞). By Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x
(t− v)g′′(v)dv.

Applying M
(β,γ)
n,α on both sides of the above equation and using (12), we get

M
(β,γ)
n,α (g;x)− g(x) = M

(β,γ)
n,α

(∫ t

x
(t− v)g′′(v)dv;x

)
.

Thus, by (11) we get

|M (β,γ)
n,α (g;x)− g(x)|

≤ M (β,γ)
n,α

(∣∣∣∣ ∫ t

x
(t− v)g′′(v)dv

∣∣∣∣;x)+

∣∣∣∣ ∫ nx+β
n+γ

x

(
nx+ β

n+ γ
− v
)
g′′(v)dv

∣∣∣∣
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≤
(
ξ(β,γ)n,α (x) +

(
β − γx
n+ γ

)2)
‖ g′′ ‖

≤
(
ζ(β,γ)n,α (x)

)2
‖ g′′ ‖ . (13)

On other hand, by (11) and Lemma 3, we have

|M (β,γ)
n,α (f ;x)| ≤ ‖ f ‖ . (14)

Using (13) and (14) in (11), we obtain

|M (β,γ)
n,α (f ;x)− f(x)|

≤ |M (β,γ)
n,α (f − g;x)|+ |(f − g)(x)|+ |M (β,γ)

n,α (g;x)− g(x)|+
∣∣∣∣f (nx+ β

n+ γ

)
− f(x)

∣∣∣∣
≤ 2 ‖ f − g ‖ +

(
ζ(β,γ)n,α (x)

)2
‖ g′′ ‖ +

∣∣∣∣f (nx+ β

n+ γ

)
− f(x)

∣∣∣∣.
Taking infimum over all g ∈W 2, we get

|M (β,γ)
n,α (f ;x)− f(x) | ≤ K2

(
f, (ζ(β,γ)n,α (x))2

)
+ ω

(
f,
|β − γx|
n+ γ

)
.

In view of (10), we get

|M (β,γ)
n,α (f ;x)− f(x) | ≤ Mω2

(
f, ζ(β,γ)n,α (x)

)
+ ω

(
f,
|β − γx|
n+ γ

)
,

which proves the theorem.

Let a1, a2 > 0 be fixed. We define the following Lipschitz-type space (see [39]):

Lip
(a1,a2)
M (r) =

(
f ∈ C[0,∞) : |f(t)− f(x)| ≤M |t− x|r

(t+ a1x2 + a2x)r/2
; x, t ∈ [0,∞)

)
,

where M is any positive constant and 0 < r ≤ 1.

Theorem 4. Let f ∈ Lip(a1,a2)M (r). Then, for all x > 0, we have

|M (β,γ)
n,α (f ;x)− f(x)| ≤M

(
ξ
(β,γ)
n,α (x)

a1x2 + a2x

)r/2
.

Proof. First we prove the theorem for r = 1. Then, for f ∈ Lip(a1,a2)M (1), and x > 0,
we have

|M (β,γ)
n,α (f ;x)− f(x)| ≤ M (β,γ)

n,α (|f(t)− f(x)|;x)

≤ MM (β,γ)
n,α

(
|t− x|

(t+ a1x2 + a2x)1/2
;x

)
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≤ M

(a1x2 + a2x)1/2
M (β,γ)
n,α (|t− x|;x).

Applying Cauchy-Schwarz inequality, we get

|M (β,γ)
n,α (f ;x)− f(x)| ≤ M

(a1x2 + a2x)1/2

(
M (β,γ)
n,α ((t− x)2;x)

)1/2
≤ M

(
ξ
(β,γ)
n,α (x)

a1x2 + a2x

)1/2

.

Thus the result holds for r = 1.
Now, we prove that the result is true for 0 < r < 1. Then, for f ∈ Lip(a1,a2)M (r), and x > 0,
we get

|M (β,γ)
n,α (f ;x)− f(x)| ≤ M

(a1x2 + a2x)r/2
M (β,γ)
n,α (|t− x|r;x).

Taking p = 1
r and q = p

p−1 , applying the Hölders inequality, we have

|M (β,γ)
n,α (f ;x)− f(x)| ≤ M

(a1x2 + a2x)r/2

(
M (β,γ)
n,α (|t− x|;x)

)r
.

Finally by Cauchy-Schwarz inequality, we get

|M (β,γ)
n,α (f ;x)− f(x)| ≤ M

(
ξ
(β,γ)
n,α (x)

a1x2 + a2x

)r/2
.

Thus, the proof is completed.

3.3. Global approximation

In this section, the first and the second order Ditzian-Totik moduli of smoothness are
defined as

ω̄φ(f, δ) = sup
0<|h|≤δ

sup
x+hφ(x)∈[0,∞)

| f(x+ hφ(x))− f(x) |

and

ω2,φ(f,
√
δ) = sup

0<|h|≤
√
δ

sup
x±hφ(x)∈[0,∞)

| f(x+ hφ(x))− 2f(x) + f(x− hφ(x)) |,

respectively and the corresponding K-functional is

K2,φ(f, δ) = inf
g∈W 2(φ)

{‖ f − g ‖ +δ ‖ φ2g′′ ‖},
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where δ > 0 and W 2(φ) = {g ∈ CB[0,∞) : g′ ∈ AC[0,∞), φ2g′′ ∈ CB[0,∞)} and
g′ ∈ AC[0,∞) means that g′ is absolutely continuous on [0,∞). It is well known that (see
[3]) K2,φ(f, δ) ∼ ω2,φ(f,

√
δ) which means that there exist an absolute constant M > 0

such that

M−1ω2,φ(f,
√
δ) ≤ K2,φ(f, δ) ≤Mω2,φ(f,

√
δ). (15)

In the following we will consider φ(x) = 1 + x2.

Theorem 5. Let f ∈ CB[0,∞) and x ∈ [0,∞). Then, there exist an absolute constant
M > 0 such that

|M (β,γ)
n,α (f ;x)− f(x) |≤ 4K2,φ

(
f,
M

2n

)
+ ω̄φ

(
f,

√
M

n

)
,

for n sufficiently large.

Proof. Let g ∈W 2(φ). Applying Taylor’s expansion, we may write

g(t) = g(x) + (t− x)g′(x) +

∫ t

x
(t− v)g′′(v)dv.

Applying M
(β,γ)
n,α on both sides of the above equation, we get

|M (β,γ)
n,α (g;x)− g(x)|

≤ M (β,γ)
n,α

(∣∣∣∣ ∫ t

x
|t− v||g′′(v)|dv

∣∣∣∣;x)+

∣∣∣∣ ∫ nx+β
n+γ

x

∣∣∣∣nx+ β

n+ γ
− v
∣∣∣∣|g′′(v)|dv

∣∣∣∣
≤ ‖ φ2g′′ ‖

φ2(x)

(
ξ(β,γ)n,α (x) +

(
β − γx
n+ γ

)2)
. (16)

In view of Remark 1, it follows that there exist a positive constant M > 0 such that

ξ
(β,γ)
n,α (x)

φ2(x)
≤ M

n
,

1

φ2(x)

(
β − γx
n+ γ

)2

≤ M

n2
.

Thus,

|M (β,γ)
n,α (g;x)− g(x)| ≤M ‖ φ2g′′ ‖

(
1

n
+

1

n2

)
≤ 2M

n
‖ φ2g′′ ‖ .

Now,

|M (β,γ)
n,α (f ;x)− f(x)|

≤ |M (β,γ)
n,α (f − g;x)|+ |(f − g)(x)|+ |M (β,γ)

n,α (g;x)− g(x)|+
∣∣∣∣f (nx+ β

n+ γ

)
− f(x)

∣∣∣∣
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≤ 4 ‖ f − g ‖ +
2M

n
‖ φ2g′′ ‖ +

∣∣∣∣f (nx+ β

n+ γ

)
− f(x)

∣∣∣∣.
Also, we obtain∣∣∣∣f (nx+ β

n+ γ

)
− f(x)

∣∣∣∣ =

∣∣∣∣f
(
x+ φ(x)

nx+β
n+γ − x
φ(x)

)
− f(x)

∣∣∣∣
≤ sup

∣∣∣∣f
(
x+ φ(x)

β−γx
n+γ

φ(x)

)
− f(x)

∣∣∣∣
≤ ω̄φ

(
f,

√
M

n

)
.

Using the above equations, we get

|M (β,γ)
n,α (f ;x)− f(x) | ≤ 4

(
‖ f − g ‖ +

M

2n
‖ φ2g′′ ‖

)
+ ω̄φ

(
f,

√
M

n

)
.

Now, applying (15), the theorem is completed.

3.4. Rate of convergence

Let ωa(f, δ) denote the usual modulus of continuity of f on the closed interval [0, a], a >
0, and defined as

ωa(f, δ) = sup
|t−x|≤δ

sup
x,t∈[0,a]

|f(t)− f(x)|.

We observe that for a function f ∈ CB[0,∞), the modulus of continuity ωa(f, δ) tends to
zero.
Now, we give a rate of convergence theorem for the operators M

(β,γ)
n,α .

Theorem 6. Let f ∈ CB[0,∞) and ωa+1(f, δ) be its modulus of continuity on the finite
interval [0, a+ 1] ⊂ [0,∞), where a > 0. Then, we have

|M (β,γ)
n,α (f ;x)− f(x)| ≤ 6Mf (1 + a2)ξ(β,γ)n,α (a) + 2ωa+1

(
f,

√
ξ
(β,γ)
n,α (a)

)
,

where ξ
(β,γ)
n,α (a) is defined in Remark 1 and Mf is a constant depending only on f .

Proof. For x ∈ [0, a] and t > a+ 1. Since t− x > 1, we have

|f(t)− f(x)| ≤ Mf (2 + x2 + t2)

≤ Mf (t− x)2(2 + 3x2 + 2(t− x)2)

≤ 6Mf (1 + a2)(t− x)2.
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For x ∈ [0, a] and t ≤ a+ 1, we have

|f(t)− f(x)| ≤ ωa+1(f, |t− x|) ≤
(

1 +
|t− x|
δ

)
ωa+1(f, δ)

with δ > 0.
From the above, we have

|f(t)− f(x)| ≤ 6Mf (1 + a2)(t− x)2 +

(
1 +
|t− x|
δ

)
ωa+1(f, δ),

for x ∈ [0, a] and t ≥ 0.
Thus

|M (β,γ)
n,α (f ;x)− f(x)| ≤ 6Mf (1 + a2)(M (β,γ)

n,α (t− x)2;x)

+ωa+1(f, δ)

(
1 +

1

δ
(M (β,γ)

n,α (t− x)2;x)
1
2

)
.

Applying Cauchy-Schwarz’s inequality, we get

|M (β,γ)
n,α (f ;x)− f(x)| ≤ 6Mf (1 + a2)ξ(β,γ)n,α (a) + 2ωa+1

(
f,

√
ξ
(β,γ)
n,α (a)

)
,

on choosing δ =

√
ξ
(β,γ)
n,α (a). This completes the proof of theorem.

3.5. Weighted approximation

In this section we give some weighted approximation properties of the operators M
(β,γ)
n,α .

We do this for the following class of continuous functions defined on [0,∞).
Let Bν [0,∞) denote the weighted space of real-valued functions f defined on [0,∞) with
the property |f(x)| ≤Mfν(x) for all x ∈ [0,∞), where ν(x) = 1 + x2 is a weight function
and Mf is a constant depending on the function f . We also consider the weighted subspace
Cν [0,∞) of Bν [0,∞) given by Cν [0,∞) = {f ∈ Bν [0,∞) : f is continuous on [0,∞)} and

C∗ν [0,∞) denotes the subspace of all functions f ∈ Cν [0,∞) for which lim
|x|→∞

f(x)

ν(x)
exists

finitely.
It is obvious that C∗ν [0,∞) ⊂ Cν [0,∞) ⊂ Bν [0,∞). The space Bν [0,∞) is a normed linear
space with the following norm:

‖ f ‖ν= sup
x∈[0,∞)

|f(x)|
ν(x)

.

Theorem 7. For each f ∈ C∗ν [0,∞), we have

lim
n→∞

‖M (β,γ)
n,α (f)− f ‖ν= 0.



A. Kumar, D. Tapiawala, L. N. Mishra / Eur. J. Pure Appl. Math, 11 (4) (2018), 958-975 969

Proof. From [6], we know that it is sufficient to verify the following three conditions

lim
n→∞

‖M (β,γ)
n,α (ei)− ei ‖ν= 0, i = 0, 1, 2. (17)

Since M
(β,γ)
n,α (1;x) = 1, the condition in (17) holds true for i = 0.

By Lemma 2, we have

‖M (β,γ)
n,α (t)− x ‖ν = sup

x∈[0,∞)

|M (β,γ)
n,α (t;x)− x|

1 + x2

≤ γ

n+ γ
sup

x∈[0,∞)

(
x

1 + x2

)
+

β

n+ γ
sup

x∈[0,∞)

(
1

1 + x2

)
≤ β + γ

n+ γ

which implies that lim
n→∞

‖M (β,γ)
n,α (t)− x ‖ν= 0.

Again by Lemma 2, we have

‖M (β,γ)
n,α (t2)− x2 ‖ν = sup

x∈[0,∞)

|M (β,γ)
n,α (t2;x)− x2|

1 + x2

≤
∣∣∣∣ n3(α+ 1)

α(n− 1)(n+ γ)2
− 1

∣∣∣∣+

∣∣∣∣2n2 + 2nβ(n− 1)

(n− 1)(n+ γ)2

∣∣∣∣+
β2

(n+ γ)2
,

which implies that lim
n→∞

‖M (β,γ)
n,α (t2)− x2 ‖ν= 0.

This completes the proof of theorem.

3.6. Weighted Lp-approximation

Let w be positive continuous function on real axis [0,∞) satisfying the condition∫ ∞
0

x2pw(x)dx <∞.

We denote by Lp,w[0,∞)(1 ≤ p <∞) the linear space of p-absolutely integrable on [0,∞)
with respect to the weight function w

Lp,w[0,∞) =

{
f : [0,∞)→ R, ‖f‖p,w =

(∫ ∞
0
|f(x)|pw(x)dx

) 1
p

<∞

}
.

Theorem 8. [8] Let (Ln)n≥1 be a uniformly bounded sequence of positive linear operators
from Lp,w[0,∞) into Lp,w[0,∞), satisfying the conditions

lim
n→∞

‖ Ln(tk)− xk ‖p,w= 0, k = 0, 1, 2. (18)

Then for every f ∈ Lp,w[0,∞)

lim
n→∞

‖ Ln(f)− f ‖p,w= 0.
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Now we choose w(x) = 1
(1+x2r)p

, 1 ≤ p < ∞ and consider analogue weighted Lp-space

[5]:

Lp,2r[0,∞) =

{
f : [0,∞)→ R, ‖f‖p,2r =

(∫ ∞
0

∣∣∣∣ f(x)

1 + x2r

∣∣∣∣p dx) 1
p

<∞

}
.

Theorem 9. For every f ∈ Lp,2r[0,∞), r > 1, we have

lim
n→∞

‖M (β,γ)
n,α (f)− f ‖p,2r= 0.

Proof. Using the Theorem 8, we see that it is sufficient to verify the three conditions

(18). Since M
(β,γ)
n,α (1;x) = 1, the first condition is obvious for k = 0.

By Lemma 2, for k = 1, we have(∫ ∞
0

∣∣∣∣∣M (β,γ)
n,α (t;x)− x

1 + x2r

∣∣∣∣∣
p

dx

) 1
p

≤ γ

n+ γ

(∫ ∞
0

∣∣∣∣ x

1 + x2r

∣∣∣∣p dx) 1
p

+
β

n+ γ

(∫ ∞
0

∣∣∣∣ 1

1 + x2r

∣∣∣∣p dx) 1
p

which implies that lim
n→∞

‖M (β,γ)
n,α (t)− x ‖p,2r= 0.

For k = 2, we can write(∫ ∞
0

∣∣∣∣∣M (β,γ)
n,α (t2;x)− x2

1 + x2r

∣∣∣∣∣
p

dx

) 1
p

≤
(

n3(α+ 1)

α(n− 1)(n+ γ)2
− 1

)(∫ ∞
0

∣∣∣∣ x2

1 + x2r

∣∣∣∣p dx)
1
p

+
2n2 + 2nβ(n− 1)

(n− 1)(n+ γ)2

(∫ ∞
0

∣∣∣∣ x

1 + x2r

∣∣∣∣p dx) 1
p

+
β2

(n+ γ)2

(∫ ∞
0

∣∣∣∣ 1

1 + x2r

∣∣∣∣p dx) 1
p

which implies that lim
n→∞

‖M (β,γ)
n,α (t2)− x2 ‖p,2r= 0.

This completes the proof of theorem.

4. King type modification

In this section, we discuss better convergence rates by King type operators. To make
the convergence faster, King [26] proposed an approach to modify the classical Bernstein
polynomial, so that the sequence preserve test functions e0 and e2, where ei(t) = ti, i =
0, 1, 2. After this approach many researcher contributed in this direction.

As the operator M
(β,γ)
n,α (f ;x) defined in (3) preserve only the constant functions so further

modification of these operators is proposed to be made so that the modified operators
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preserve the constant as well as linear functions.
For this purpose the modification of (3) is defined as

M̂ (β,γ)
n,α (f ;x) =

∞∑
k=1

m
(α)
n,k(rn(x))

∫ ∞
0

bn,k(t)f

(
nt+ β

n+ γ

)
dt

+

(
α

α+ nrn(x)

)α
f

(
β

n+ γ

)
(19)

where rn(x) = (n+γ)x−β
n and x ∈ In = [ β

n+γ ,∞).

Lemma 4. For every x ∈ In, we have

(i) M̂
(β,γ)
n,α (1;x) = 1,

(ii) M̂
(β,γ)
n,α (t;x) = x,

(iii) M̂
(β,γ)
n,α (t2;x) =

n(α+ 1)x2

α(n− 1)
+

(2nα− 2αβ − 2nβ)x

α(n− 1)(n+ γ)
+
nβ2 + αβ2 − 2nαβ

α(n− 1)(n+ γ)2
.

Consequently, for each x ∈ In, we have the following equalities

M̂ (β,γ)
n,α ((t− x);x) = 0

M̂ (β,γ)
n,α ((t− x)2;x) =

(n+ α)x2

α(n− 1)
+

(2nα− 2αβ − 2nβ)x

α(n− 1)(n+ γ)
+
nβ2 + αβ2 − 2nαβ

α(n− 1)(n+ γ)2

= λ(β,γ)n,α (x). (20)

Theorem 10. For f ∈ CB(In), we have

|M̂ (β,γ)
n,α (f ;x)− f(x)| ≤M ′ω2

(
f,

√
λ
(β,γ)
n,α (x)

)
,

where λ
(β,γ)
n,α (x) is given by (20) and M ′ is a positive constant.

Proof. Let g ∈W 2 and x, t ∈ In. Using the Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x
(t− v)g′′(v)dv.

Applying M̂
(β,γ)
n,α on both sides and using Lemma ??, we get

M̂ (β,γ)
n,α (g;x)− g(x) = M̂ (β,γ)

n,α

(∫ t

x
(t− v)g′′(v)dv, x

)
.
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Obviously, we have

∣∣∣∣∫ t

x
(t− v)g′′(v)dv

∣∣∣∣ ≤ (t− x)2‖g′′‖.

Therefore

| M̂ (β,γ)
n,α (g;x)− g(x) |≤ M̂ (β,γ)

n,α ((t− x)2;x) ‖ g′′ ‖= λ(β,γ)n,α (x) ‖ g′′ ‖ .

Since | M̂ (β,γ)
n,α (f ;x) |≤ ‖f‖, we get

| M̂ (β,γ)
n,α (f ;x)− f(x) | ≤ | M̂ (β,γ)

n,α (f − g;x) | + | (f − g)(x) | + | M̂ (β,γ)
n,α (g;x)− g(x) |

≤ 2‖f − g‖+ λ(β,γ)n,α (x)‖g′′‖.

Finally, taking the infimum over all g ∈W 2 and using (10) we obtain

| M̂ (β,γ)
n,α (f ;x)− f(x) |≤M ′ω2

(
f,

√
λ
(β,γ)
n,α (x)

)
,

which proves the theorem.

Theorem 11. Let f ∈ CB(In). If f ′, f ′′ exists at a fixed point x ∈ In, then we have

lim
n→∞

n
(
M̂ (β,γ)
n,α (f ;x)− f(x)

)
=
x

2
(2 + (l + 1)x) f ′′(x).

The proof follows along the lines of Theorem 2.

Acknowledgements

The authors would like to express their deep gratitude to the anonymous learned
referee(s) and the editor for their valuable suggestions and constructive comments, which
resulted in the subsequent improvement of this research article. The third author Lakshmi
Narayan Mishra is much thankful to the Department of Mathematics, School of Advanced
Sciences (SAS), Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu for
supporting this research article.

References

[1] T. Acar, L.N. Mishra, V.N. Mishra, Simultaneous Approximation for Generalized
Srivastava-Gupta Operators, Journal of Function Spaces Volume 2015, Article ID
936308, 11 pages.

[2] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin (1993).

[3] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987.



REFERENCES 973

[4] A.R. Devdhara, V.N. Mishra, Local Approximation Results for Stancu Variant of
Modified Szasz-Mirakjan Operators, Eur. J. Pure Appl. Math., Vol. 11, No. 2 (2018),
400-409.

[5] E. Deniz, A. Aral, G. Ulusoy, New integral type operators, Filomat, 31:9 (2017),
2851-2865.

[6] A.D. Gadjiev, Theorems of the type of P.P. korovkin’s theorems, Matematicheskie
Zametki, 20(5) (1976), 781-786.

[7] A.D. Gadjiev, The convergence problem for a sequence of positive linear operators
on bounded sets and theorems analogous to that of P.P. Korovkin, Dokl. Akad. Nauk
SSSR 218(5) (1974); Transl. in Soviet Math. Dokl. 15(5) (1974), 1433-1436.

[8] A.D. Gadjiev, A. Aral, The Weighted Lp-approximation with positive linear operators
on unbounded sets, Appl. Math. Letters, 20 (2007), 1046-1051.

[9] A.R. Gairola, Deepmala, L.N. Mishra, On the q-derivatives of a certain linear positive
operators, Iranian Journal of Science and Technology, Transactions A: Science, Vol.
42, No. 3, (2018), pp. 1409-1417. DOI 10.1007/s40995-017-0227-8.

[10] A.R. Gairola, Deepmala, L.N. Mishra, Rate of Approximation by Finite Iterates of
q-Durrmeyer Operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (April-June
2016) 86(2):229-234 (2016). doi: 10.1007/s40010-016-0267-z

[11] V. Gupta, D. Agrawal, Approximation results by certain genuine operators of integral
type, Kragujevac Journal of Mathematics, 42 (3) (2018), 335-348.

[12] R.B. Gandhi, Deepmala, V.N. Mishra, Local and global results for modified Szász-
Mirakjan operators, Math. Method. Appl. Sci., Vol. 40, Issue 7, (2017), pp. 2491-2504.
DOI: 10.1002/mma.4171.

[13] G.C. Jain, Approximation of functions by a new class of linear operators, J. Aust.
Math. Soc., 13:3 (1972), 271-276.

[14] A. Kajla, Direct estimates of certain Mihes.an-Durrmeyer type operators, Adv. Oper.
Theory 2 (2017), no. 2, 16217178. http://doi.org/10.22034/aot.1612-1079

[15] A. Kajla, Approximation for a summation-integral type link operators, Khayyam. J.
Math. 3 (2017), no. 1, 441760. DOI: 10.22034/kjm.2017.45322

[16] A. Kumar, Approximation by Stancu type generalized Srivastava-Gupta operators
based on certain parameter, Khayyam J. Math., Vol. 3, no. 2 (2017), pp. 147-159.
DOI: 10.22034/kjm.2017.49477

[17] A. Kumar, General Gamma type operators in Lp spaces, Palestine Journal of Math-
ematics, 7 (1) (2018), 73-79.



REFERENCES 974

[18] A. Kumar, Voronovskaja type asymptotic approximation by general Gamma type
operators, Int. J. of Mathematics and its Applications, 3(4-B) (2015) 71-78.

[19] A. Kumar, D.K. Vishwakarma, Global approximation theorems for general Gamma
type operators, Int. J. of Adv. in Appl. Math. and Mech. 3(2) (2015), 77-83.

[20] A. Kumar, Vandana, Approximation by genuine Lupaş-Beta-Stancu opera-
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