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Abstract. The general sequence of positive linear operators containing some well-known operators
as special cases were introduced in the earlier work by Srivastava and Gupta [9], which reproduce
only the constant functions. In the present sequel, we provide a general sequence of operators
which preserve not only the constant functions, but also linear functions.
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1. Introduction and Preliminaries

In the year 2003, Srivastava and Gupta [9] introduced a general sequence of positive
linear operators defined by

Vn,c(f, x) = n
∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f(t)dt

+ pn,0(x, c)f(0) (n ∈ N := {1, 2, 3, · · · }), (1)

where

pn,k(x, c) =
(−x)k

k!
φ(k)n,c(x).

The following special cases of the operator defined by (1) are worthy of mention here:
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• If c = 0 and φn,c(x) = e−nx, then we get

pn,k(x, 0) = e−nx
(nx)k

k!
;

• If c ∈ N and φn,c(x) = (1 + cx)−
n
c , then we obtain

pn,k(x, c) =

(
n
c

)
k

k!

(cx)k

(1 + cx)
n
c
+k
,

where, and in what follows, (λ)n denotes the Pochhammer symbol (or the shifted
factorial) defined, for λ ∈ C, by

(λ)0 = 1 and (λ)n = λ(λ+ 1) · · · (λ+ n− 1) (n ∈ N);

• If c = −1 and φn,c(x) = (1− x)n, then

pn,k(x,−1) =

(
n

k

)
xk(1− x)n−k.

Here, for the last case when c = −1, we have x ∈ [0, 1] whereas, for c ∈ N ∪ {0}, we
have x ∈ [0,∞). These operators were further discussed by Ispir and Yüksel [6], Atakuta
and Büyükyazici [2], Deo [3], Gupta and Tachev [5], Kumar [7] and Yadav [13], and other
authors (see also the closely-related works by Acar et al. [1], Maheshwari [8], Srivastava
and Gupta [10], Srivastava and Zeng [11], and Verma and Agrawal [12]).

The moments of the above-defined operator Vn,c(f, x) of order r (r ∈ N) are given, in
terms of the Gauss hypergeometric function 2F1 and Kummer’s confluent hypergeometric
function 1F1, as follows:

Vn,c(er, x) =



r! · (nx)

(n− c)(n− 2c) · · · (n− rc)
· 2F1

(n
c

+ 1, 1− r; 2;−cx
)

(c ∈ N ∪ {−1})

r! · (nx)

nr
1F1(1− r; 2;−nx) (c = 0),

(2)

where `Fm

(
α1, · · · , α`;β1, · · · , βm;x

)
denotes the generalized hypergeometric function

with ` numerators parameters α1, · · · , α` and m denominator parameters β1, · · · , βm de-
fined by

`Fm

(
α1, · · · , α`;β1, · · · , βm;x

)
=

∞∑
n=0

∏̀
j=1

(αj)n

m∏
j=1

(βj)n

xn

n!
(3)
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`,m ∈ N0 := N ∪ {0}; ` 5 m+ 1; ` 5 m and |x| <∞;

` = m+ 1 and |x| < 1; ` = m+ 1, |x| = 1 and <(ω) > 0
)
,

where

ω :=

m∑
j=1

βj −
∑̀
j=1

αj

(
αj ∈ C (j = 1, · · · , `); βj ∈ C \ Z−0 (j = 1, · · · , m)

)
.

The operators Vn,c(f, x) are known to preserve the constant functions only except for
the case c = 0. We observe that in (1) the suffix n in the basis function pn,k(x, c) has a
difference of c under summation and integration. But, if we have a difference of 2c in place
of c under summation and integration, we may get the modified operators which preserve
the constant functions as well as linear functions.

2. Modified Operators Preserving Linear Functions

Here, in this section, we introduce a modification of the operators Vn,c(f, x) which do
preserve linear functions as well. For m an integer and c ∈ N0 := N ∪ {0}, we define

Gn,c(f, x) = [n+ (m+ 1)c]
∞∑
k=1

pn+mc,k(x, c)

·
∫ ∞
0

pn+(m+2)c,k−1(t, c)f(t)dt+ pn+mc,0(x, c)f(0), (4)

where pn,k(x, c) is defined by (1). The above-mentioned two cases lead to the familiar
Phillips operators and the genuine Baskakov-Durrmeyer type operators for c = 0 and
c ∈ N, respectively. In the special case when m = 0 and c = 1, the operators Gn,c(f, x)
were considered by Finta [4]. who also estimated some converse results. Moreover, for
c = −1, the operators Gn,c(f, x) take the following form:

Gn,−1(f, x) = (n−m− 1)
n−m−1∑
k=1

pn−m,k(x,−1)

·
∫ 1

0
pn−m−2,k−1(t,−1)f(t)dt

+ pn−m,0(x,−1)f(0) + pn−m,n−m(x,−1)f(1), (5)

The moments of the operators Gn,c(f, x) of order r (r ∈ N) are given, in terms of the
Gauss hypergeometric function 2F1, as follows:
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Gn,c(er, x) =



r! · xΓ
(n
c
− r +m+ 1

)
cr−1 Γ

(n
c

+m
)

· 2F1

(n
c

+m+ 1, 1− r; 2;−cx
)

(c ∈ N ∪ {−1})

r! · (nx)

nr
1F1(1− r; 2;−nx) (c = 0).

(6)

Finally, by applying this last result (6), it can easily be verified that the operators
Gn,c(f, x) preserve not only the constant functions, but also linear functions.

3. Concluding Remarks and Observations

The present investigation was motivated essentially by the fact that the widely-studied
Srivastava-Gupta operator Vn,c(f, x) preserves only the constant functions, but not linear
functions. Here, in this paper, we have successfully provided a general sequence Gn,c(f, x)
of positive linear operators which preserve not only the constant functions, but also linear
functions. We have also considered several recent developments on the subject of positive
linear operators.
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