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Abstract. In this paper, we study the Bessel operator ®%;, iterated ¢-times and denote by
t 2\ 2 2 t
QBZ((BU‘I—"_“.—’—BG'F—"_m) _(Bap+1+“.+Bap+q) )

wherep—l—q:n,Ba.:‘i—i—?’“— 20; =20+ 1,0, > =1 a;, >0, teZtU{0}, meRTU{0
; 2

aa? a; Oa;’
and p + q = n is the dimension of R}Y = {a:a = (a1,...,a,),a1 > 0,...,a, > 0}.
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1. Introduction

Yildirim, Sarikaya and Ozturk [7] have showed that (—1)!S9(a)* Ro(a) is the solution
of the &% ((—1)!Sa¢(a) * Rot(a)) = & , where

P 2 p+aq 2\
<>tB = <Z Bai) - Z Baj : (1)
‘ J

Here p+q = n,B,, = %+ 2;’1%,21)1 = 204 + 1,4 > —%,ai > 0,2 = 1,2,...,n,

t € Z*U{0} and n is the dimension of the Rf ={a:a=(a1,...,an),a1 >0,...,a, >0}
. Otherwise, the operator <> can also be expressed in the form $f = ORAL = AL,
where O denote by

t
04 = (Ba1 +Ba2+“'+Bap _Bap+1 _Bap+2 _'”_Bazﬂrq) ’ (2)
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and A’ denote by
AL = (Bg, + Bay + -+ By,

Now in this paper,

p p+q t n t
O =Y. Ba— Y. Ba | +m? (ZB% +m2) p+q=n.
i=1 j=p+1 =1
Thus . . . .
o= (0p+ m2) (Ap+ m2) = (Ap+ mQ) (Op + m2) ,
where
(AB + mQ)t = (Bal + Bay + -+ + Ba, + mQ)t
and

t t
(DB+m2) = (Bal+Ba2+”'+B“p_Bap+l _"'_Bap+q+m2)
and from (4) with ¢ =0 and ¢ = 1, we obtain
OB = (AByp +m2)2,

where
(App+m?) = (Bay + Bay + -+ + Ba, + m?).

Moreover for m = 0, then we obtain Bessel diamond operator and defined by (1).

2. Preliminaries

Denoted by TP the generalized shift operator acting according to the law [2]

Tf(p(a):C:/O /0 cp< a%+b%—2a1b1c0591,...,\/a%—i—b%—?anbncos%)

X (H?Zl sin%i_l) doy ...do,,

923

where a,b € R, C* = 1% Lt W remark that this shift operator is closely con-

SR
nected with the Bessel differential operator [2].

d2U 21)@ B inU 2vdU

2 a2 T v
Ul(a,0) = f(a),
Ub(a,O) =0.

The convolution operator determined by 7? is as follow:

(fxp) = /R " F(O)TLp(a) <H?:1b?”i> db.

9)

Convolution (9) is known as a B-convolution. We note the following properties for the

B-convolution and the generalized shift operator:



S. Bupasiri / Eur. J. Pure Appl. Math, 11 (4) (2018), 922-928 924
(a) T -1=1.

(b) T3 - f(a) = f(a).
(c) If f(a),g(a) € C(R}),g(a) is a bounded function, a > 0 and

| 1s@ (a) da < .
0
then

b n 2v; _ b n 21}2'
/M T2 (@)g(b) (T b7 ) db = /m F®)T2g(a) (T0 b2 ) db.
(d) From (c), we have the following equality for g(a) =1,

/M TV f(a) (H?Zlbz?fvi) db = /R:; £(b) <H?:1b?”i> b
(e) (fxg)(a)= (g% f)(a).

Definition 1. (/6]) A distribution E is said to be a fundamental solution or an elementary
solution for the differential operator L if

LE =

, where § is Dirac-delta distribution. Let L(D) be a differential operator with constant
coefficients. We say that a distribution E € D'(R™) is a fundamental solution or the
elementary solution of the differential operator L(D) if E satisfies L(D)E = § in D'(R™).

Lemma 1. If Ohu(a) =6 fora €Ty ={a € R":a; > 0,a3 > 0,...,a, >0 and U > 0},
where Ol is the Bessel ultra-hyperbolic operator iterated t-times defined by (2). Then
u(a) = Roi(a) is the unique elementary solution of the operator O where

(2t7n272\v\)
poey 2 VD (Sl -2 ) o)
8 ya(21) un (21)
for o
A (2+2t‘;‘2‘”‘) I (152) 1 (2t) n
yn(2t) = 24+2t—p—2|v] p—2t v = Zvi' (11)
r ( 2 ) F( 2 ) =1

Lemma 2. Given the equation N'u(a) =6 for a € R}, where Al is the Laplace-Bessel
operator iterated t-times defined by (3). Then u(a) = (—1)!So(a) is an elementary solution
of the operator Ay where

‘a|2t—n—2\v|

Sot(a) = @D (12)

for
1
22T (v + 3) T(t)

on-+2[v|—4t] (W) '

zn(2t) =
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Proof. The proofs of Lemma 1 and Lemma 2 are given in [7].

Lemma 3. Given the equation (DB + mQ)t u(a) = § fora € R}, where (DB + m2)t is the
Bessel Klein-Gordon operator iterated t-times defined by equation (7), 0 is the Dirac-delta
distribution, a € R} and t € ZT U {0}, then u(a) = Fpat(a,m), where

[e.o]

Fpa(a,m) = Z <_rt> m2TR2t+2r(a), (13)

r=0
Royt(a) is defined by (10).
Proof. See [5].

Lemma 4. Let Op be the Bessel ultra-hyperbolic operator, defined by (2) and 0 is the
Dirac delta distribution for a € R}, then

(DB + m2)t 0= FB,*Qt(aa m)7

where Fp _ot(a,m) is the inverse of Fpai(a, m) in the convolution algebra.

Proof. Let
D(a) = (Op +m?)"s,

convolving both sides by Fp 2:(a,m), then

Fpai(a,m) * D(a) = Fpg(a,m) * (Op + m2)t d

= (DB + m2)t FB72t(a, m) x0
— 6. (14)
Since Fat(a,m) is lie in ', where S’ is a space of tempered distribution, choose S’ C D,
where D', is the right-side distribution which is a subspace of D’ of distribution. Thus

Fpat(a,m) € DY, it follow that Fp :(a, m) is an element of convolution algebra, thus by
([4], p-150-151), we have that the equation (14) has a unique solution

D(a) = Fp_at(a,m) *x § = Fg _o(a,m). (15)

That complete the proof.

Lemma 5. Given the equation (Ap +m2)tu(a) =6 for a € R, where (Ap +m2)t is
the Bessel-Helmholtz operator iterated t-times defined by equation (6), § is the Dirac-delta
distribution, a € R} and t € ZT U {0}, then u(a) = Hpa(a,m) is an elementary solution

of the operator (AB + mQ)t, where

HB,Qt(a, m) = Z <_rt> mQT(—l)t+T52t+2r(a)7 (16)

r=0
Sat(a) is defined by (12).
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Proof. See [9].

Lemma 6. The convolution Fp ot(a, m)* Hp ot(a, m) exists and is a tempered distribution
where Fpat(a,m) and Hp 2:(a, m) be defined by (13) and (16), respectively.

Proof. From (13) and (16), we have

Fpat(a,m) « Hg ot(a,m) = (Z (‘Tt> mer2t+2r(a)>

r=0

* (i (;t> mQT(_l)t+rS2t+2r(a)>

r=0

0o 00 ¢ ¢
= ( > < s )m2r+2s(—1)t+T5'2t+2T(a) * R2t+25(a).
r=0 s=0

r

Since the function Sai19,(a) and Rotas(a) are tempered distributions, see( [3], p.302 and
[1], p.97). From ([10], p.152), the convolution of functions

(=) Sop i 9r(a) * Royyos(a),

exists and is also a tempered distribution. Thus, Fp 2:(a, m) * Hp 2¢(a, m) exists and also
is a tempered distribution.

3. Main results
Theorem 1. Given the equation
®%T(a,m) =6 (17)
for a € R}, where @Y is the Bessel operator iterated t-times defined by (5), then
T(a,m) = Fpo(a,m)* Hg o (a,m) (18)

is an elementary solution of (17), where Fpai(a,m) and Hp o (a,m) are defined by (13)
and (16), respectively, t € Z+ U {0} and m € RT U {0}. Moreover, from (18) we obtain

Fp _ot(a,m) «T(a,m) = Hpo(a,m) (19)

as an elementary solution of the Bessel-Helmholtz operator (Ap + m?)! iterated t-times
defined by (6) and in particular, for ¢ = 0 then @tB reduces to the Bessel-Helmhotz operator

(AB,p + m2)2t of p-dimension iterated 2t-times and is defined by (8), where
AB,p - Ba1 +Ba2 + - +Bap7

thus (17) becomes
(App+m?)* T(a,m) =6 (20)
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we obtain
T(a,m) = Hp at(a, m) (21)

is an elementary solution of (20).

Proof. From (5) and (17) we have
ORT(a,m) = ((DB + m2)t (Lp+ m2)t) T(a,m) = 4.

Convolution of the above equation by Fpgoi(a,m) * Hpot(a,m) and the properties of
convolution with derivatives, we obtain

(DB + mQ)t Fpai(a,m) * (AB + mQ)t Hpoi(a,m) *T(a,m)
= Fpai(a,m) x Hg 21(a, m) * 0. (22)

Thus
T(a,m) =06*06*T(a,m) = Fpa(a,m)* Hpaa,m) (23)

by Lemma 3 and Lemma 5. Now from (18) and by Lemma 3 and Lemma 4 and properties
of inverses in the convolution algebra, we obtain

Fp _gi(a,m) «T(a,m) =6 * Hgo(a,m) = Hp o(a, m)

is an elementary solution of the Bessel-Helmhotz operator iterated t-times defined by (6).
In particular, for ¢ = 0 then (17) becomes

(App+m?) ¥ T(a,m) =6 (24)

where (A Bp+ m2)2t is the Bessel-Helmholtz operator of p-dimension, iterated 2t¢-times
and is defined by (8). By Lemma 5, we have

T(a,m) = Hp at(a, m) (25)

is an elementary solution of (17). This completes the proof.

Corollary 1. Given the equation
©5T(a,0) =0 (26)

fora € RF

n’

where @Y is the Bessel operator iterated t-times defined by (5), then
T(a,0) = (—1)"Sos(a) * Rat(a) (27)

is an elementary solution of Bessel diamond operator, where Roi(a) and Soi(a) are defined
by (10) and (12), respectively.

Proof. If m = 0, then we have T'(a,0) = (—1)"Sa(a) * Rat(a) yielding the result,, see
[7]-
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