EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 11, No. 4, 2018, 922-928 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

On the Bessel operator \odot_B^t related to the Bessel-Helmholtz and Bessel Klein-Gordon operator

Sudprathai Bupasiri

Department of Mathematics, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand

Abstract. In this paper, we study the Bessel operator \odot_B^t , iterated t-times and denote by

where p + q = n, $B_{a_i} = \frac{\partial^2}{\partial a_i^2} + \frac{2v_i}{a_i} \frac{\partial}{\partial a_i}$, $2v_i = 2\alpha_i + 1$, $\alpha_i > -\frac{1}{2}$, $a_i > 0$, $t \in \mathbb{Z}^+ \cup \{0\}$, $m \in \mathbb{R}^+ \cup \{0\}$ and p + q = n is the dimension of $\mathbb{R}_n^+ = \{a : a = (a_1, \dots, a_n), a_1 > 0, \dots, a_n > 0\}$.

2010 Mathematics Subject Classifications: 46F10

Key Words and Phrases: Bessel Helmholtz operator, Bessel Klein-Gordon operator, Bessel diamond operator

1. Introduction

Yildirim, Sarikaya and Ozturk [7] have showed that $(-1)^t S_{2t}(a) * R_{2t}(a)$ is the solution of the $\diamondsuit_B^t ((-1)^t S_{2t}(a) * R_{2t}(a)) = \delta$, where

$$\diamondsuit_B^t = \left(\left(\sum_{i=1}^p B_{a_i} \right)^2 - \left(\sum_{j=p+1}^{p+q} B_{a_j} \right)^2 \right)^t. \tag{1}$$

Here $p+q=n, B_{a_i}=\frac{\partial^2}{\partial a_i^2}+\frac{2v_i}{a_i}\frac{\partial}{\partial a_i}, 2v_i=2\alpha_i+1, \alpha_i>-\frac{1}{2}, a_i>0, i=1,2,\ldots,n,$ $t\in\mathbb{Z}^+\cup\{0\}$ and n is the dimension of the $\mathbb{R}_n^+=\{a:a=(a_1,\ldots,a_n),a_1>0,\ldots,a_n>0\}$. Otherwise, the operator \diamondsuit_B^k can also be expressed in the form $\diamondsuit_B^t=\Box_B^t\triangle_B^t=\triangle_B^t\Box_B^t$, where \Box_B^t denote by

$$\Box_B^t = (B_{a_1} + B_{a_2} + \dots + B_{a_p} - B_{a_{p+1}} - B_{a_{p+2}} - \dots - B_{a_{p+q}})^t, \tag{2}$$

DOI: https://doi.org/10.29020/nybg.ejpam.v11i4.3319

Email addresses: sudprathai@gmail.com (S. Bupasiri)

S. Bupasiri / Eur. J. Pure Appl. Math, 11 (4) (2018), 922-928

923

and \triangle_B^t denote by

$$\Delta_B^t = (B_{a_1} + B_{a_2} + \dots + B_{a_n})^t. \tag{3}$$

Now in this paper,

$$\odot_B^t = \left(\left(\sum_{i=1}^p B_{a_i} - \sum_{j=p+1}^{p+q} B_{a_j} \right) + m^2 \right)^t \left(\sum_{i=1}^n B_{a_i} + m^2 \right)^t, p+q = n.$$
 (4)

Thus

$$\bigcirc_{B}^{t} = \left(\Box_{B} + m^{2}\right)^{t} \left(\triangle_{B} + m^{2}\right)^{t} = \left(\triangle_{B} + m^{2}\right)^{t} \left(\Box_{B} + m^{2}\right)^{t},$$
 (5)

where

$$(\Delta_B + m^2)^t = (B_{a_1} + B_{a_2} + \dots + B_{a_n} + m^2)^t \tag{6}$$

and

$$\left(\Box_B + m^2\right)^t = \left(B_{a_1} + B_{a_2} + \dots + B_{a_p} - B_{a_{p+1}} - \dots - B_{a_{p+q}} + m^2\right)^t \tag{7}$$

and from (4) with q = 0 and t = 1, we obtain

$$\odot_B = \left(\triangle_{B,p} + m^2\right)^2,$$

where

$$(\Delta_{B,p} + m^2) = (B_{a_1} + B_{a_2} + \dots + B_{a_p} + m^2).$$
(8)

Moreover for m = 0, then we obtain Bessel diamond operator and defined by (1).

2. Preliminaries

Denoted by T_a^b the generalized shift operator acting according to the law [2]

$$T_a^b \varphi(a) = C_v^* \int_0^{\pi} \dots \int_0^{\pi} \varphi\left(\sqrt{a_1^2 + b_1^2 - 2a_1b_1 \cos \theta_1}, \dots, \sqrt{a_n^2 + b_n^2 - 2a_nb_n \cos \theta_n}\right) \times (\prod_{i=1}^n \sin^{2v_i - 1}) d\theta_1 \dots d\theta_n,$$

where $a, b \in \mathbb{R}_n^+, C_v^* = \prod_{i=1}^n \frac{\Gamma(v_i+1)}{\Gamma(\frac{1}{2})\Gamma(v_i)}$. We remark that this shift operator is closely connected with the Bessel differential operator [2].

$$\frac{d^2U}{da^2} + \frac{2v}{a}\frac{dU}{da} = \frac{d^2U}{db^2} + \frac{2v}{b}\frac{dU}{db}$$
$$U(a,0) = f(a),$$
$$U_b(a,0) = 0.$$

The convolution operator determined by T_a^b is as follow:

$$(f * \varphi) = \int_{\mathbb{R}_n^+} f(b) T_a^b \varphi(a) \left(\prod_{i=1}^n b_i^{2v_i} \right) db.$$
 (9)

Convolution (9) is known as a B-convolution. We note the following properties for the B-convolution and the generalized shift operator:

- (a) $T_a^b \cdot 1 = 1$.
- (b) $T_a^0 \cdot f(a) = f(a)$.
- (c) If $f(a), g(a) \in C(\mathbb{R}_n^+), g(a)$ is a bounded function, a > 0 and

$$\int_0^\infty |f(a)| \left(\prod_{i=1}^n a_i^{2v_i} \right) da < \infty,$$

then

$$\int_{\mathbb{R}_{n}^{+}} T_{a}^{b} f(a) g(b) \left(\prod_{i=1}^{n} b_{i}^{2v_{i}} \right) db = \int_{\mathbb{R}_{n}^{+}} f(b) T_{a}^{b} g(a) \left(\prod_{i=1}^{n} b_{i}^{2v_{i}} \right) db.$$

(d) From (c), we have the following equality for g(a) = 1,

$$\int_{\mathbb{R}^{+}_{a}} T_{a}^{b} f(a) \left(\prod_{i=1}^{n} b_{i}^{2v_{i}} \right) db = \int_{\mathbb{R}^{+}_{a}} f(b) \left(\prod_{i=1}^{n} b_{i}^{2v_{i}} \right) db$$

(e)
$$(f * g)(a) = (g * f)(a)$$
.

Definition 1. ([6]) A distribution E is said to be a fundamental solution or an elementary solution for the differential operator L if

$$LE = \delta$$

, where δ is Dirac-delta distribution. Let L(D) be a differential operator with constant coefficients. We say that a distribution $E \in \mathcal{D}'(\mathbb{R}^n)$ is a fundamental solution or the elementary solution of the differential operator L(D) if E satisfies $L(D)E = \delta$ in $\mathcal{D}'(\mathbb{R}^n)$.

Lemma 1. If $\Box_B^t u(a) = \delta$ for $a \in \Gamma_+ = \{a \in \mathbb{R}^n : a_1 > 0, a_2 > 0, \dots, a_n > 0 \text{ and } U > 0\}$, where \Box_B^t is the Bessel ultra-hyperbolic operator iterated t-times defined by (2). Then $u(a) = R_{2t}(a)$ is the unique elementary solution of the operator \Box_B^t where

$$R_{2t}(a) = \frac{U^{(\frac{2t-n-2|v|}{2})}}{y_n(2t)} = \frac{\left(\sum_{i=1}^p a_i^2 - \sum_{j=p+1}^{p+q} a_j^2\right)^{\left(\frac{2t-n-2|v|}{2}\right)}}{y_n(2t)}$$
(10)

for

$$y_n(2t) = \frac{\pi^{\frac{n+2|v|-1}{2}} \Gamma\left(\frac{2+2t-n-2|v|}{2}\right) \Gamma\left(\frac{1-2t}{2}\right) \Gamma(2t)}{\Gamma\left(\frac{2+2t-p-2|v|}{2}\right) \Gamma(\frac{p-2t}{2})}, |v| = \sum_{i=1}^n v_i.$$
(11)

Lemma 2. Given the equation $\triangle_B^t u(a) = \delta$ for $a \in \mathbb{R}_n^+$, where \triangle_B^t is the Laplace-Bessel operator iterated t-times defined by (3). Then $u(a) = (-1)^t S_{2t}(a)$ is an elementary solution of the operator \triangle_B^t where

$$S_{2t}(a) = \frac{|a|^{2t-n-2|v|}}{z_n(2t)} \tag{12}$$

for

$$z_n(2t) = \frac{\prod_{i=1}^n 2^{v_i - \frac{1}{2}} \Gamma\left(v_i + \frac{1}{2}\right) \Gamma(t)}{2^{n+2|v|-4t} \Gamma\left(\frac{n+2|v|-2t}{2}\right)}.$$

Proof. The proofs of Lemma 1 and Lemma 2 are given in [7].

Lemma 3. Given the equation $(\Box_B + m^2)^t u(a) = \delta$ for $a \in \mathbb{R}_n^+$, where $(\Box_B + m^2)^t$ is the Bessel Klein-Gordon operator iterated t-times defined by equation (7), δ is the Dirac-delta distribution, $a \in \mathbb{R}_n^+$ and $t \in \mathbb{Z}^+ \cup \{0\}$, then $u(a) = F_{B,2t}(a,m)$, where

$$F_{B,2t}(a,m) = \sum_{r=0}^{\infty} {\binom{-t}{r}} m^{2r} R_{2t+2r}(a), \tag{13}$$

 $R_{2t}(a)$ is defined by (10).

Proof. See [5].

Lemma 4. Let \square_B be the Bessel ultra-hyperbolic operator, defined by (2) and δ is the Dirac delta distribution for $a \in \mathbb{R}_n^+$, then

$$\left(\Box_B + m^2\right)^t \delta = F_{B,-2t}(a,m),$$

where $F_{B,-2t}(a,m)$ is the inverse of $F_{B,2t}(a,m)$ in the convolution algebra.

Proof. Let

$$D(a) = \left(\Box_B + m^2\right)^t \delta,$$

convolving both sides by $F_{B,2t}(a,m)$, then

$$F_{B,2t}(a,m) * D(a) = F_{B,2t}(a,m) * (\Box_B + m^2)^t \delta$$

= $(\Box_B + m^2)^t F_{B,2t}(a,m) * \delta$
= δ . (14)

Since $F_{B,2t}(a,m)$ is lie in S', where S' is a space of tempered distribution, choose $S' \subset D'_R$, where D'_R is the right-side distribution which is a subspace of D' of distribution. Thus $F_{B,2t}(a,m) \in D'_R$, it follow that $F_{B,2t}(a,m)$ is an element of convolution algebra, thus by ([4], p.150-151), we have that the equation (14) has a unique solution

$$D(a) = F_{B,-2t}(a,m) * \delta = F_{B,-2t}(a,m).$$
(15)

That complete the proof.

Lemma 5. Given the equation $(\triangle_B + m^2)^t u(a) = \delta$ for $a \in \mathbb{R}_n^+$, where $(\triangle_B + m^2)^t$ is the Bessel-Helmholtz operator iterated t-times defined by equation (6), δ is the Dirac-delta distribution, $a \in \mathbb{R}_n^+$ and $t \in \mathbb{Z}^+ \cup \{0\}$, then $u(a) = H_{B,2t}(a,m)$ is an elementary solution of the operator $(\triangle_B + m^2)^t$, where

$$H_{B,2t}(a,m) = \sum_{r=0}^{\infty} {\binom{-t}{r}} m^{2r} (-1)^{t+r} S_{2t+2r}(a), \tag{16}$$

 $S_{2t}(a)$ is defined by (12).

Proof. See [9].

Lemma 6. The convolution $F_{B,2t}(a,m) * H_{B,2t}(a,m)$ exists and is a tempered distribution where $F_{B,2t}(a,m)$ and $H_{B,2t}(a,m)$ be defined by (13) and (16), respectively.

Proof. From (13) and (16), we have

$$F_{B,2t}(a,m) * H_{B,2t}(a,m) = \left(\sum_{r=0}^{\infty} {t \choose r} m^{2r} R_{2t+2r}(a)\right)$$

$$* \left(\sum_{r=0}^{\infty} {t \choose r} m^{2r} (-1)^{t+r} S_{2t+2r}(a)\right)$$

$$= \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} {t \choose r} {t \choose s} m^{2r+2s} (-1)^{t+r} S_{2t+2r}(a) * R_{2t+2s}(a).$$

Since the function $S_{2t+2r}(a)$ and $R_{2t+2s}(a)$ are tempered distributions, see ([3], p.302 and [1], p.97). From ([10], p.152), the convolution of functions

$$(-1)^{t+r}S_{2t+2r}(a) * R_{2t+2s}(a),$$

exists and is also a tempered distribution. Thus, $F_{B,2t}(a,m) * H_{B,2t}(a,m)$ exists and also is a tempered distribution.

3. Main results

Theorem 1. Given the equation

$$\odot_R^t T(a, m) = \delta \tag{17}$$

for $a \in \mathbb{R}_n^+$, where \odot_B^t is the Bessel operator iterated t-times defined by (5), then

$$T(a,m) = F_{B,2t}(a,m) * H_{B,2t}(a,m)$$
(18)

is an elementary solution of (17), where $F_{B,2t}(a,m)$ and $H_{B,2t}(a,m)$ are defined by (13) and (16), respectively, $t \in \mathbb{Z}^+ \cup \{0\}$ and $m \in \mathbb{R}^+ \cup \{0\}$. Moreover, from (18) we obtain

$$F_{B,-2t}(a,m) * T(a,m) = H_{B,2t}(a,m)$$
(19)

as an elementary solution of the Bessel-Helmholtz operator $(\triangle_B + m^2)^t$ iterated t-times defined by (6) and in particular, for q = 0 then \odot_B^t reduces to the Bessel-Helmhotz operator $(\triangle_{B,p} + m^2)^{2t}$ of p-dimension iterated 2t-times and is defined by (8), where

$$\triangle_{B,p} = B_{a_1} + B_{a_2} + \dots + B_{a_p},$$

thus (17) becomes

$$\left(\Delta_{B,p} + m^2\right)^{2t} T(a,m) = \delta \tag{20}$$

we obtain

$$T(a,m) = H_{B,4t}(a,m) \tag{21}$$

is an elementary solution of (20).

Proof. From (5) and (17) we have

$$\bigcirc_B^t T(a,m) = \left(\left(\square_B + m^2 \right)^t \left(\triangle_B + m^2 \right)^t \right) T(a,m) = \delta.$$

Convolution of the above equation by $F_{B,2t}(a,m) * H_{B,2t}(a,m)$ and the properties of convolution with derivatives, we obtain

$$(\Box_B + m^2)^t F_{B,2t}(a,m) * (\triangle_B + m^2)^t H_{B,2t}(a,m) * T(a,m)$$

= $F_{B,2t}(a,m) * H_{B,2t}(a,m) * \delta.$ (22)

Thus

$$T(a,m) = \delta * \delta * T(a,m) = F_{B,2t}(a,m) * H_{B,2t}(a,m)$$
 (23)

by Lemma 3 and Lemma 5. Now from (18) and by Lemma 3 and Lemma 4 and properties of inverses in the convolution algebra, we obtain

$$F_{B,-2t}(a,m) * T(a,m) = \delta * H_{B,2t}(a,m) = H_{B,2t}(a,m)$$

is an elementary solution of the Bessel-Helmhotz operator iterated t-times defined by (6). In particular, for q = 0 then (17) becomes

$$\left(\triangle_{B,p} + m^2\right)^{2t} T(a,m) = \delta \tag{24}$$

where $(\triangle_{B,p} + m^2)^{2t}$ is the Bessel-Helmholtz operator of *p*-dimension, iterated 2*t*-times and is defined by (8). By Lemma 5, we have

$$T(a,m) = H_{B,4t}(a,m) \tag{25}$$

is an elementary solution of (17). This completes the proof.

Corollary 1. Given the equation

$$\odot_B^t T(a,0) = \delta \tag{26}$$

for $a \in \mathbb{R}_n^+$, where \odot_B^t is the Bessel operator iterated t-times defined by (5), then

$$T(a,0) = (-1)^t S_{2t}(a) * R_{2t}(a)$$
(27)

is an elementary solution of Bessel diamond operator, where $R_{2t}(a)$ and $S_{2t}(a)$ are defined by (10) and (12), respectively.

Proof. If m = 0, then we have $T(a,0) = (-1)^t S_{2t}(a) * R_{2t}(a)$ yielding the result,, see [7].

REFERENCES 928

Acknowledgements

The author would like to thank the referee for his suggestions which enhanced the presentation of the paper. The author was supported by Sakon Nakhon Rajabhat University

References

- [1] A. Kananthai, On the convolution equation related to the diamond kernel of Marcel Riesz, *Appl. Math. Comput.* **114** (1998), 95–101.
- [2] B.M. Levitan, Expansion in Fourier series and integrals with Bessel functions, *Uspeki Mat.*, *Nauka (N.S.)* **6**,2(42)(1951) 102-143 (in Russian).
- [3] A. Kananthai, On the convolution equation related to the N-dimensional ultrahyperbolic operator, J. Comp. Appl. Math. 115 (2000), 301–308.
- [4] A. H. Zemanian, Distribution Theory and Transform Analysis, New York, McGraw-Hill, 1964.
- [5] C. Bunpog, Nonlinear L_1^k operator related to the Bessel-Helmholtz operator and the Bessel Klein-Gordon operator, *Int. Journal of Math.* **6** (28) (2012), 1395–1402.
- [6] Daniel Eceizabarrena Pérez, Distribution Theory and Fundamental Solutions of Differential Operators, Leioa, June 24th, 2015.
- [7] H. Yildirim, M.Z. Sarikaya, S. and Ozturk, The solution of the *n*-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution, *Proc. Indian Acad. Sci.* (Math. Sci.) **114** (4) (2004), 375–387.
- [8] I.M. Gelfand, and G.E. Shilov, *Generalized Function*, New York, Academic Press, 1964.
- [9] S. Niyom, and A. Kananthai, The nonlinear product of the Bessel Laplace operator and the Bessel Helmholtz operator, Applied Mathematical sciences 4 (36) (2010), 1797–1804.
- [10] W. F. Donoghue, *Distribution and Fourier Transform*, New York, Academic Press, 1969.