EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 1, 2019, 88-100
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Fixed point results in metric-like spaces via σ-simulation functions

Habes Alsamir ${ }^{1, *}$, Mohd Selmi Noorani ${ }^{1}$, Wasfi Shatanawi ${ }^{2,3}$, Hassen Aydi ${ }^{4}$, Habibulla Akhadkulov ${ }^{5}$, Haitham Qawaqneh ${ }^{1}$, Kareem Alanazi ${ }^{6}$
${ }^{1}$ School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia
${ }^{2}$ Department of Mathematics, Hashemite University, Zarqa 1315, Jordan
${ }^{3}$ Department of Mathematics and General Courses Prince Sultan University, Riyadh, Saudi Arabia
${ }^{4}$ Imam Abdulrahman Bin Faisal University, Department of Mathematics, College of Education of Jubail, P.O: 12020, Industrial Jubail 31961. Saudi Arabia
5 School of Quantitative Sciences, University Utara Malaysia, CAS 06010, UUM Sintok, Kedah Darul Aman, Malaysia
${ }^{6}$ Mathematics Department, Science and Arts College, Aljouf University, Saudi Arabia

Abstract

The purpose of this paper is to establish some fixed point results for (α, β)-admissible \mathcal{Z}-contraction mappings in complete metric-like spaces. Our results generalize and extend several known results on literature. Two illustrated examples are also presented.

2010 Mathematics Subject Classifications: 47H10, 54H25
Key Words and Phrases: Fixed point, metric-like space, simulation function, (α, β)-admissible mapping

1. Introduction and preliminaries

Fixed point theory is an essential tool to resolve many equations appeared in applied science such as Biology, Physics, Economics, Engineering and Game Theory. Banach contraction principle [12] is considered the most important tool in fixed point theory. It was extended in several directions. For more details, see [13, 17, 18, 20-25]. Going in this direction, Harandi [16] reintroduced the concept of metric-like spaces.

[^0]Definition 1. [16] Let X is a nonempty set. A function $\sigma: X \times X \rightarrow[0, \infty)$ is said to be a metric-like space (or a dislocated metric) on X if for any $x, w, y \in X$, the following conditions hold:
$\left(\sigma_{1}\right) \sigma(x, y)=0$ implies that $x=y$;
$\left(\sigma_{2}\right) \sigma(x, y)=\sigma(y, x) ;$
$\left(\sigma_{3}\right) \sigma(x, y) \leq \sigma(x, z)+\sigma(z, y)$.
The pair (X, σ) is called a metric-like space.
It is clear that every metric space and partial metric space is a metric-like space, but the converse is not true.

Example 1. Let $X=\{0,1\}$ and

$$
\sigma(x, y)=\left\{\begin{array}{rc}
2, & \text { if } x=y=0 \\
1, & \text { otherwise }
\end{array}\right.
$$

Then (X, σ) is a metric-like space. It is neither a partial metric space $(\sigma(0,0) \not \leq \sigma(0,1))$, nor a metric space $(\sigma(0,0)=2 \neq 0)$.

Following [16], we have the following topological concepts. Each metric-like σ on X generates a topology τ_{σ} on X whose base is the family of open σ-balls

$$
B_{\sigma}(x, \epsilon)=\{y \in X:|\sigma(x, y)-\sigma(x, x)|<\epsilon\}, \text { for all } x \in X \text { and } \epsilon>0 \text {. }
$$

Now, let (X, σ) be a metric-like space. The mapping $T: X \rightarrow X$ is said σ-continuous at $x \in X$ if for all $\varepsilon>0$, there exists $\delta>0$ such that $T\left(B_{\sigma}(x, \delta)\right) \subseteq B_{\sigma}(T x, \varepsilon)$. Consequently, if $T: X \rightarrow X$ is σ-continuous, then if $\lim _{n \rightarrow \infty} x_{n}=x$, we have $\lim _{n \rightarrow \infty} T x_{n}=T x$. A sequence $\left\{x_{n}\right\}_{\infty}^{n=0}$ of elements of X is called σ-Cauchy if the limit $\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, y_{m}\right)$ exists and is a finite number. The metric-like space (X, σ) is called complete if for each σ-Cauchy sequence $\left\{X_{n}\right\}_{\infty}^{n}$, there is some $y \in Y$ such that

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x\right)=\sigma(x, x)=\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right) .
$$

A subset A of a metric-like space (X, σ) is bounded if there is a point $b \in X$ and a positive constant K such that $\sigma(a, b) \leq K$ for all $a \in A$.

Remark 1. Let $X=\{0,1\}$ be endowed with $\sigma(x, y)=1$ for each $x, y \in X$. Take $x_{n}=1$ for each $n \in \mathbb{N}$. Using the convergence definition, it is is easy to see that $x_{n} \rightarrow 0$ and $x_{n} \rightarrow 1$. In metric-like spaces, the limit of a convergent sequence is not necessarily unique.

The following lemma is known and useful for the rest of paper.

Lemma 1. [5, 16] Let (X, σ) be a metric-like space. Let $\left\{x_{n}\right\}$ be a sequence in X such that $x_{n} \rightarrow x$ where $x \in X$ and $\sigma(x, y)=0$. Then for all $y \in X$, we have $\lim _{n \rightarrow \infty} \sigma\left(x_{n}, y\right)=$ $\sigma(x, y)$.

In literature, there are several (common) fixed point works in the setting of metric-like spaces. For instance, see $[6,8,10]$.
On the one hand, Samet [26] presented the concept of α-admissible mappings and proved some fixed point theorems in metric spaces. Recently, Chandok [14] introduced the notion of (α, β)-admissible mappings and obtained some fixed point theorems.

Definition 2. [14] Let X be a nonempty set, $f: X \rightarrow X$ and $\alpha, \beta: X \times X \rightarrow \mathbb{R}^{+}$. We say that f is an (α, β)-admissible mapping if $\alpha(x, y) \geq 1$ and $\beta(x, y) \geq 1$ imply that $\alpha(f x, f y) \geq 1$ and $\beta(f x, f y) \geq 1$ for all $x, y \in X$.

For other results using different concepts of α-admissible mappings, see $[1,2,7,9,11$, $15,27-29]$. On the other hand, Khojasteh et al. [19] introduced a new class of mappings called simulation functions. They [19] proved several fixed point theorems and showed that many results in the literature are simple consequences of their obtained results.

Definition 3. [19] A function $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ is called a simulation function if ζ satisfies the following conditions:
$\left(\zeta_{1}\right) \quad \zeta(0,0)=0 ;$
$\left(\zeta_{2}\right) \zeta(t, s)<s-t$ for all $t, s>0$;
$\left(\zeta_{3}\right)$ if $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}=\ell \in$ $(0, \infty)$, then

$$
\lim _{n \rightarrow \infty} \sup \zeta\left(t_{n}, s_{n}\right)<0
$$

In [19], the following unique fixed point theorem is established.
Theorem 1. [19] Let (X, d) be a metric space and $f: X \rightarrow X$ be a \mathcal{Z}-contraction with respect to a simulation function ζ, that is,

$$
\zeta(d(f x, f y), d(x, y)) \geq 0, \quad \text { forall } x, y \in X
$$

Then T has a unique fixed point.
It is worth mentioning that the Banach contraction is an example of \mathcal{Z}-contractions by defining $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ via

$$
\zeta(t, s)=\gamma s-t, \quad \forall s, t \in[0, \infty)
$$

where $\gamma \in[0,1)$.
Argoubi et al. [4] modified Definition 3 as follows.

Definition 4. [4] A simulation function is a function $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ that satisfies the following conditions:
(i) $\zeta(t, s)<s-t$ for all $t, s>0$;
(ii) if $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}=\ell \in$ $(0, \infty)$, then

$$
\lim _{n \rightarrow \infty} \sup \zeta\left(t_{n}, s_{n}\right)<0 .
$$

It is clear that any simulation function in the sense of Khojasteh et al. (Definition 3) is also a simulation function in the sense of Argoubi et al. (Definition 4). The converse is not true. For more details, see [4].

Example 2. [4] Define a function $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ by

$$
\zeta(t, s)= \begin{cases}1 & \text { if }(s, t)=(0,0) \\ \lambda s-t & \text { otherwise }\end{cases}
$$

where $\lambda \in(0,1)$. Then ζ is a simulation function in the sense of Argoubi et al.
In the following, some other examples of simulation functions in the sense of Definition 3 (see [3, 19, 31]).
(i) $\zeta(t, s)=c s-t$ for all $t, s \in[0, \infty)$ where $c \in[0,1)$.
(ii) $\zeta(t, s)=s-\phi(s)-t$ for all $t, s \in[0, \infty)$, where $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a lower semicontinuous function such that $\phi(t)=0$ if and only if $t=0$.

In this paper, we introduce the concept of (α, β)-admissible \mathcal{Z}-contractions with respect to ζ. We also establish the existence of fixed points for this class of mappings in metric-like spaces. Our work generalizes and extends some theorems in the literature. Two illustrated examples are given to support the obtained results.

2. Main results

First, we introduce the following.
Definition 5. Let (X, σ) be a metric-like space. Given $f: X \rightarrow X$ and $\alpha, \beta: X \times X \rightarrow \mathbb{R}^{+}$. Such f is said an (α, β)-admissible \mathcal{Z}-contraction with respect to ζ if

$$
\begin{equation*}
\zeta(\alpha(x, y) \beta(x, y) \sigma(f x, f y), \sigma(x, y)) \geq 0 \tag{1}
\end{equation*}
$$

for all $x, y \in X$, where ζ is a simulation function in the sense of Definition 3.
Now, we introduce our main theorem.

Theorem 2. Let (X, σ) be a complete metric-like space and let f be a self-mapping on X satisfying the following conditions:
(i) f is (α, β)-admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\beta\left(x_{0}, f x_{0}\right) \geq 1$;
(iii) f is an (α, β)-admissible \mathcal{Z}-contraction on (X, σ);
(iv) f is σ-continuous.

Then f has a unique fixed point $u \in X$ with $\sigma(u, u)=0$.
Proof.
By (2), there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\beta\left(x_{0}, f x_{0}\right) \geq 1$. Define the sequence $\left\{x_{n}\right\}$ by $x_{n+1}=f x_{n}$ for all $n=0,1,2, \cdots$. If $x_{n}=x_{n+1}$ for some n, then $x_{n}=x_{n+1}=f x_{n}$. So x_{n} is a fixed point of f, and the proof is completed. From now on, assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N} \cup\{0\}$. Since f is an (α, β)-admissible mapping, we derive

$$
\alpha\left(x_{0}, f x_{0}\right)=\alpha\left(x_{0}, x_{1}\right) \geq 1 \Rightarrow \alpha\left(f x_{0}, f x_{1}\right)=\alpha\left(x_{1}, x_{2}\right) \geq 1 .
$$

Continuing in this process, we get

$$
\begin{equation*}
\alpha\left(x_{n}, x_{n+1}\right) \geq 1, \quad \text { for all } n \geq 0 . \tag{2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\beta\left(x_{n}, x_{n+1}\right) \geq 1, \quad \text { for all } n \geq 0 . \tag{3}
\end{equation*}
$$

From (1), (2) and (3), we have

$$
\begin{align*}
0 & \leq \zeta\left(\alpha\left(x_{n}, x_{n-1}\right) \beta\left(x_{n}, x_{n-1}\right) \sigma\left(f x_{n}, f x_{n-1}\right), \sigma\left(x_{n}, x_{n-1}\right)\right) \\
& =\zeta\left(\alpha\left(x_{n}, x_{n-1}\right) \beta\left(x_{n}, x_{n-1}\right) \sigma\left(x_{n+1}, x_{n}\right), \sigma\left(x_{n}, x_{n-1}\right)\right) \\
& <\sigma\left(x_{n}, x_{n-1}\right)-\alpha\left(x_{n}, x_{n-1}\right) \beta\left(x_{n}, x_{n-1}\right) \sigma\left(x_{n+1}, x_{n}\right) \tag{4}
\end{align*}
$$

Consequently, we derive that

$$
\begin{equation*}
\sigma\left(x_{n+1}, x_{n}\right) \leq \alpha\left(x_{n}, x_{n-1}\right) \beta\left(x_{n}, x_{n-1}\right) \sigma\left(x_{n+1}, x_{n}\right)<\sigma\left(x_{n}, x_{n-1}\right) \text { for all } n \geq 0 \tag{5}
\end{equation*}
$$

The sequence $\left\{\sigma\left(x_{n}, x_{n-1}\right)\right\}$ is nondecreasing, so there exists $r \geq 0$ such that $\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n-1}\right)=$ r. We prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n-1}\right)=0 \tag{6}
\end{equation*}
$$

Suppose that $r>0$. By (5), we derive that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha\left(x_{n}, x_{n-1}\right) \beta\left(x_{n}, x_{n+1}\right) \sigma\left(x_{n}, x_{n-1}\right)=r . \tag{7}
\end{equation*}
$$

Letting $s_{n}=\alpha\left(x_{n}, x_{n-1}\right) \beta\left(x_{n}, x_{n-1}\right) \sigma\left(x_{n}, x_{n+1}\right)$ and $s_{n}=\sigma\left(x_{n}, x_{n-1}\right)$ and taking $\left(\zeta_{3}\right)$ into account, we have

$$
\begin{equation*}
0 \leq \limsup _{n \rightarrow \infty} \zeta\left(\alpha\left(x_{n}, x_{n-1}\right) \beta\left(x_{n}, x_{n+1}\right) \sigma\left(x_{n}, x_{n-1}\right)\right)<0, \tag{8}
\end{equation*}
$$

which is a contradiction. Thus, $r=0$.
Now, we will show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Suppose on the contrary that $\left\{x_{n}\right\}$ is not a Cauchy sequence. Then, there exists ϵ for which we can find subsequences $\left\{x_{n_{l}}\right\}$ and $\left\{x_{m_{l}}\right\}$ of $\left\{x_{n}\right\}$ with $n_{l}>m_{l}>l$ such that for every l,

$$
\begin{equation*}
\sigma\left(x_{n_{l}}, x_{m_{l}}\right) \geq \epsilon \tag{9}
\end{equation*}
$$

and n_{l} is the smallest number such that (9) holds. From (9), we get

$$
\begin{equation*}
\sigma\left(x_{n_{l}-1}, x_{m_{l}}\right)<\epsilon . \tag{10}
\end{equation*}
$$

Using the triangular inequality and (10),

$$
\begin{aligned}
\epsilon & \leq \sigma\left(x_{n_{l}}, x_{m_{l}}\right) \\
& \leq \sigma\left(x_{n_{l}}, x_{n_{l}-1}\right)+\sigma\left(x_{n_{l}-1}, x_{m_{l}}\right) \\
& <\sigma\left(x_{n_{l}}, x_{n_{l}-1}\right)+\epsilon .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the above inequality and using (6), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n_{l}}, x_{m_{l}}\right)=\epsilon . \tag{11}
\end{equation*}
$$

Also, from the triangular inequality, we have

$$
\left|\sigma\left(x_{n_{l}+1}, x_{m_{l}}\right)-\sigma\left(x_{n_{l}}, x_{m_{l}}\right)\right| \leq \sigma\left(x_{n_{l}}, x_{n_{l}+1}\right) .
$$

On taking limit as $l \rightarrow \infty$ on both sides of above inequality and using (6) and (11), we get

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \sigma\left(x_{n_{l}+1}, x_{m_{l}}\right)=\epsilon . \tag{12}
\end{equation*}
$$

Similarly, it is easy to show that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \sigma\left(x_{n_{l}+1}, x_{m_{l}+1}\right)=\epsilon \tag{13}
\end{equation*}
$$

Moreover, since f is an (α, β)-admissible mapping, we have

$$
\begin{equation*}
\alpha\left(x_{n_{l}}, x_{m_{l}}\right) \geq 1 \operatorname{and} \beta\left(x_{n_{l}}, x_{m_{l}}\right) \geq 1 . \tag{14}
\end{equation*}
$$

By the fact f is an (α, β)-admissible \mathcal{Z}-contraction with respect to ζ, together with (11), (14) and $\left(\zeta_{3}\right)$, we get

$$
0 \leq \limsup _{l \rightarrow \infty} \zeta\left(\alpha\left(x_{n_{l}}, x_{m_{l}}\right) \beta\left(x_{n_{l}}, x_{m_{l}}\right) \sigma\left(x_{n_{l}+1}, x_{m_{l}+1}\right), \sigma\left(x_{n_{l}}, x_{m_{l}}\right)\right)<0,
$$

which is a contradiction. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence. Owing to the fact that (X, σ) is a complete metric-like space, there exists some $u \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, u\right)=\sigma(u, u)=\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0, \tag{15}
\end{equation*}
$$

which implies that $\sigma(u, u)=0$. Moreover, the continuity of f implies that

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n+1}, f u\right)=\sigma\left(f x_{n}, f u\right)=\sigma(f u, f u) .
$$

By Lemma 1 and (15), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n+1}, f u\right)=\sigma(u, f u) . \tag{16}
\end{equation*}
$$

Combining (15) and (16), we have $\sigma(f u, f u)=\sigma(u, f u)$, that is, $f u=u$.. To prove the uniqueness of the fixed point, suppose that there exists $w \in X$ such that $f w=w$ and $w \neq u$. Then

$$
0 \leq \zeta(\alpha(u, w) \beta(u, w) \sigma(f u, f w), \sigma(u, w))<\sigma(u, w)-\alpha(u, w) \beta(u, w) \sigma(f u, f w) \leq 0
$$

which is a contradiction, so $u=w$.
Theorem 2 remains true if we drop the continuity hypothesis by the following property:
(H) : If $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ and $\beta\left(x_{n}, x_{n+1}\right) \geq 1$ for all n, then there exists a subsequence $\left\{x_{n_{l}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{l}}, x_{n_{l}+1}\right) \geq 1$ and $\beta\left(x_{n_{l}}, x_{n_{l}+1}\right) \geq 1$ for all $l \in \mathbb{N}$ and $\alpha(x, f x) \geq 1$ and $\beta(x, f x) \geq 1$.
Theorem 3. Let (X, σ) be a complete metric-like space and let f be a self-mapping on X satisfying the following conditions:
(i) f is (α, β)-admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\beta\left(x_{0}, f x_{0}\right) \geq 1$;
(iii) f is an (α, β)-admissible \mathcal{Z}-contraction on (X, σ);
(iv) (H) holds.

Then f has a unique fixed point $u \in X$ with $\sigma(u, u)=0$.
Proof. Following the proof of Theorem 2, we construct a sequence $\left\{x_{n}\right\}$ in X defined by $x_{n+1}=f x_{n}$, which converges to some $u \in X$. From definition (2) and (H), there exists a subsequence $\left\{x_{n_{l}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{l}}, x_{n_{l}}\right) \geq 1$ and $\beta\left(x_{n_{l}}, x_{n_{l}}\right) \geq 1$ for all $l \in \mathbb{N}$. Thus applying (1) for all l, we have

$$
\begin{align*}
0 & \leq \zeta\left(\alpha\left(x_{n_{l}}, u\right) \beta\left(x_{n_{l}}, u\right) \sigma\left(f x_{n}, f u\right), \sigma\left(x_{n_{l}}, u\right)\right) \\
& =\zeta\left(\alpha\left(x_{n_{l}}, u\right) \beta\left(x_{n_{l}}, u\right) \sigma\left(x_{n+1}, f u\right), \sigma\left(x_{n_{l}}, u\right)\right) \\
& <\sigma\left(x_{n_{l}}, u\right)-\alpha\left(x_{n_{l}}, u\right) \beta\left(x_{n_{l}}, u\right) \sigma\left(x_{n_{l}+1}, f u\right) \tag{17}
\end{align*}
$$

which is equivalent to

$$
\begin{equation*}
\sigma\left(x_{n_{l}}+1, f u\right)=\sigma\left(f x_{n_{l}}, f u\right) \leq \alpha\left(x_{n_{l}}, u\right) \beta\left(x_{n_{l}}, u\right) \sigma\left(f x_{n}, f u\right) \leq \sigma\left(x_{n_{l}}, u\right) . \tag{18}
\end{equation*}
$$

Letting $l \rightarrow \infty$ in the above equality, we have $\sigma(u, f u)=0$. Using similar arguments as above, we can show that u is a fixed point of f. The uniqueness of the fixed point of f is obtained by similar arguments as those given in the proof of Theorem 2.

3. Consequences

In this section, we apply Theorem 2 to obtain different results known in literature. The first one is of Banach type.

Corollary 1. Let (X, σ) be a complete metric-like space and let f be a self-mapping on X satisfying the following conditions:
(i) f is (α, β)-admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\beta\left(x_{0}, f x_{0}\right) \geq 1$;
(iii)

$$
\alpha(x, y) \beta(x, y) \sigma(f x, f y) \leq \lambda \sigma(x, y),
$$

for all $x, y \in X$ and $\lambda \in[0,1)$;
(iv) f is σ-continuous.

Then f has a unique fixed point $u \in X$ with $\sigma(u, u)=0$.
Proof. Following the lines of Theorem 2, by taking as a σ-simulation function,

$$
\zeta(t, s)=\lambda s-t .
$$

Corollary 2. Let (X, σ) be a complete metric-like space and let f be a self-mapping on X satisfying the following conditions:
(i) f is (α, β)-admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\beta\left(x_{0}, f x_{0}\right) \geq 1$;
(iii) there exists a lower semi-continuous function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi^{-1}=\{0\}$ such that

$$
\alpha(x, y) \beta(x, y) \sigma(f x, f y) \leq \sigma(x, y)-\varphi(\sigma(x, y))
$$

for all $x, y \in X$;
(iv) f is σ-continuous.

Then f has a unique fixed point $u \in X$ with $\sigma(u, u)=0$.
Proof. It suffices to take

$$
\zeta(t, s)=s-\varphi(s)-t .
$$

If we consider in Theorem $2, \alpha(x, y)=\beta(x, y)=1$ for all $x, y \in X$, we have

Corollary 3. Let (X, σ) be a complete metric-like space and let f be a self-mapping on X. Suppose that there exists a σ-simulation function ζ such that

$$
\begin{equation*}
\zeta(\sigma(f x, f y), \sigma(x, y)) \geq 0 \tag{19}
\end{equation*}
$$

for all $x, y \in X$. Then f has a unique fixed point $u \in X$ with $\sigma(u, u)=0$.
We present the following illustrated examples.
Example 3. Let $X=[0, \infty), \sigma(x, y)=(x+y)$ for all $x, y \in X$ and $f: X \rightarrow X$ be defined by

$$
f x= \begin{cases}\frac{1}{4} x & \text { if } 0 \leq x \leq 1 \\ 4 x & \text { otherwise }\end{cases}
$$

Consider

$$
\zeta(s, t)=c s-t
$$

where $0 \leq \frac{1}{4}<c<1$. Define $\alpha, \beta: X \times X \rightarrow \mathbb{R}_{+}$as

$$
\begin{aligned}
& \alpha(x, y)= \begin{cases}\frac{4}{3} & \text { if } 0 \leq x, y \leq 1 \\
0 & \text { otherwise }\end{cases} \\
& \beta(x, y)= \begin{cases}\frac{3}{2} & \text { if } 0 \leq x, y \leq 1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We shall prove that Corollary 1 can be applied. Clearly, (X, σ) is a complete metric-like space. Let $x, y \in X$ such that $\alpha(x, y) \geq 1$ and $\beta(x, y) \geq 1$. Since $x, y \in[0,1]$ and so $f x \in[0,1], f y \in[0,1]$ and $\alpha(f x, f y)=1$ and $\beta(f x, f y)=1$. Hence f is (α, β)-admissible. Condition (2) is satisfied with $x_{0}=1$. Condition (4) is satisfied with $x_{n}=f^{n} x_{1}=\frac{1}{n}$.

If $0 \leq x \leq 1$, then $\alpha(x, y)=\frac{4}{3}$ and $\beta(x, y)=\frac{3}{2}$. We have

$$
\begin{aligned}
\zeta(\alpha(x, y) \beta(x, y) \sigma(f x, f y), \sigma(x, y)) & =c \sigma(x, y)-\alpha(x, y) \beta(x, y) \sigma(f x, f y) \\
& =\frac{3}{4}(x+y)-2 \frac{1}{4}(x+y) \\
& =\left(\frac{3}{4}-\frac{1}{2}\right)(x+y) \\
& =\frac{1}{4}(x+y) \\
& \geq 0
\end{aligned}
$$

If $0 \leq x \leq 1$ and $y>1$, then $\zeta(\alpha(x, y) \beta(x, y) \sigma(f x, f y), \sigma(x, y)) \geq 0$ since $\alpha(x, y)=$ $\beta(x, y)=0$. Consequently, all assumptions of Corollary 1 are satisfied and hence f has a unique fixed point, which is $u=0$.

We also notice that (19) is not satisfied. In fact, for $x=1, y=2$, we get

$$
\sigma(f 1, f 2)=\left(\frac{33}{4}\right)^{2}>3=\sigma(x, y)
$$

Example 4. Consider $X=\{0,1,3\}$ and define $\sigma: X \times X \rightarrow \mathbb{R}^{+}$as follows:
$\sigma(0,0)=0, \sigma(1,0)=\sigma(0,1)=\frac{1}{10}, \sigma(0,3)=\sigma(3,0)=\frac{1}{2}, \sigma(1,3)=\sigma(3,1)=\frac{2}{3}, \sigma(1,1)=$ $\frac{1}{2}, \sigma(3,3)=\frac{7}{2}$.
Note that $\sigma(3,3) \neq 0$, so (X, σ) is not a metric and $\sigma(3,3)>\sigma(0,3)$, so (X, σ) is not a partial metric. Clearly, (X, σ) is metric-like space. Let $f: X \rightarrow X$ be defined by $f 0=f 1=0$ and $f 3=1$. Take $\alpha, \beta: X \times X \rightarrow \mathbb{R}^{+}$given as

$$
\begin{aligned}
& \alpha(x, y)= \begin{cases}\frac{5}{2}, & \text { if } x \in\{0,1,3\} \\
0, & \text { otherwise }\end{cases} \\
& \beta(x, y)= \begin{cases}1, & \text { if } x \in\{0,1,3\} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Take $\zeta: X \times X \rightarrow \mathbb{R}^{+}$by $\zeta(t, s)=\frac{1}{2} s-t$. Let $x, y \in X$ be such that $\alpha(x, y) \geq 1$ and $\beta(x, y) \geq 1$, then $\alpha(f x, f y) \geq 1$ and $\beta(f x, f y) \geq 1$, that is, f is (α, β)-admissible. Now, we consider the following cases:
(i) Case 1: $x=0$ and $y=0$. We have

$$
\zeta(\alpha(0,0) \beta(0,0) \sigma(f 0, f 0), \sigma(0,0))=\zeta\left(\frac{5}{2} .1 .0,0\right)=\zeta(0,0)=0
$$

(ii) Case 2: $x=0$ and $y=1$. Here,

$$
\zeta(\alpha(0,1) \beta(0,1) \sigma(f 0, f 1), \sigma(0,1))=\zeta\left(\frac{5}{2} .1 .0,1\right)=\zeta\left(0, \frac{1}{10}\right)=\frac{1}{20}>0
$$

(iii) Case 3: $x=0$ and $y=3$. We have

$$
\zeta(\alpha(0,3) \beta(0,3) \sigma(f 0, f 3), \sigma(0,3))=\zeta\left(\frac{5}{2} \cdot \frac{1}{10}, \frac{1}{2}\right)=\zeta\left(\frac{1}{4}, \frac{1}{2}\right)=0
$$

(iv) Case 4: $x=1$ and $y=1$. Here,

$$
\zeta(\alpha(1,1) \beta(1,1) \sigma(f 1, f 1), \sigma(1,1))=\zeta\left(\frac{5}{2} \cdot 1.0, \frac{1}{2}\right)=\zeta\left(0, \frac{1}{2}\right)=\frac{1}{4}>0
$$

(v) Case 5: $x=1$ and $y=3$. We have

$$
\zeta(\alpha(1,3) \beta(1,3) \sigma(f 1, f 3), \sigma(1,3))=\zeta\left(\frac{5}{2} \cdot 1 \cdot \frac{1}{10}, \frac{2}{3}\right)=\zeta\left(\frac{1}{4}, \frac{2}{3}\right)=\frac{1}{12}>0
$$

(vi) Case 6: $x=3$ and $y=3$. Here,

$$
\zeta(\alpha(3,3) \beta(3,3) \sigma(f 3, f 3), \sigma(3,3))=\zeta\left(\frac{5}{2} \cdot 1 \cdot \frac{1}{2}, \frac{7}{2}\right)=\zeta\left(\frac{5}{4}, \frac{7}{2}\right)=\frac{1}{2}>0
$$

Thus, f is an (α, β)-admissible \mathcal{Z}-contraction with respect to ζ. Hence all conditions of Theorem 2 are satisfied and f has a unique fixed point, which is, $u=0$.

Acknowledgements

The authors would like to acknowledge the grant: UKM Grant DIP-2017-011 and Ministry of Education, Malaysia grant FRGS/1/2017/STG06/UKM/01/1 for financial support.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the manuscript.

References

[1] H. Alsamir, M.S.M. Noorani, W. Shatanawi, On new fixed point theorems for three types of $(\alpha, \beta)-(\psi, \theta, \phi)$-multivalued contractive mappings in metric spaces, Cogent Mathematics, 3(1), 1257473.
[2] H. Alsamir, M.S.M. Noorani, W. Shatanawi, On fixed points of (η, θ)-quasicontraction mappings in generalized metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 4651-4658.
[3] H.H. Alsulami, E. Karapinar, F. Khojasteh, A.F. Roldan-Lopez-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dynamics in Nature and Society, Article ID 269286, 10 pages (2014).
[4] H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8 (2015), 1082-1094.
[5] H. Aydi, A. Felhi, E. Karapinar, S. Sahmim, A Nadler-type fixed point theorem in dislocated spaces and applications, Miscolc Math. Notes, 19 (1), (2018), 111-124.
[6] H. Aydi, A. Felhi, Best proximity points for cyclic Kannan-Chatterjea- Ciric type contractions on metric-like spaces, J. Nonlinear Sci. Appl. 9 (2016), 2458-2466.
[7] H. Aydi, A. Felhi, On best proximity points for various α-proximal contractions on metric-like spaces, Journal of Nonlinear Sciences Appl. 9 (2016), 5202-5218.
[8] H. Aydi, A. Felhi, H. Afshari, New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl. 10 (2017), 780-788.
[9] H. Aydi, A. Felhi, S. Sahmim, On common fixed points for (α, ψ)-contractions and generalized cyclic contractions in b-metric-like spaces and consequences, J. Nonlinear Sci. Appl. 9 (2016), 2492-2510.
[10] H. Aydi, A. Felhi, S. Sahmim, Common fixed points via implicit contractions on b-metric-like spaces, J. Nonlinear Sci. Appl. 10 (2017), 1524-1537.
[11] H. Aydi, E. Karapinar, and B. Samet, Fixed points for generalized (α, ψ)-contractions on generalized metric spaces, Journal of Inequalities and Applications, vol. 2014, article 229, 2014.
[12] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3 (1922), 133-181.
[13] I.A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal. 30 (1989) 26-37.
[14] S. Chandok, Some fixed point theorems for (α, β)-admissible Geraghty type contractive mappings and related results, Mathematical Sciences, 9.3 (2015), 127-135.
[15] A. Felhi, H. Aydi, D. Zhang, Fixed points for α-admissible contractive mappings via simulation functions, J. Nonlinear Sci. Appl. 9 (10) (2016), 5544-5560.
[16] A.A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012 (2012), 10 pages.
[17] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull. 16 (1973), 201-206.
[18] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
[19] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (2015), 1189-1194.
[20] H. Lakzian, H. Aydi, B.E. Rhoades, Fixed points for (ϕ, ψ, p)-weakly contractive mappings in metric spaces with w-distance, Applied Math. Comput. 219 (2013), 6777-6782.
[21] S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.
[22] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 2018, 6(10), 194.
[23] N. Mlaiki, K. Abodayeh, H. Aydi, T. Abdeljawad, M. Abuloha, Rectangular metriclike type spaces and related fixed points, Volume 2018, Article ID 3581768, 7 pages.
[24] Z. Mustafa, H. Aydi, E. Karapinar, Generalized Meir-Keeler type contractions on G-metric spaces, Applied Math. Comput. 219 (2013), 10441-10447.
[25] S. Reich, Some remarks concerning contraction mappings, Can. math. Bull. 14 (1971), 121-124.
[26] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha-\psi$-contractive type mappings, J. Nonlinear. Anal., 75 (2012), 215-2165.
[27] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, H. Alsamir, Common fixed points for pairs of triangular $(\alpha)-a d m i s s i b l e ~ m a p p i n g s, ~ J o u r n a l ~ o f ~ N o n l i n e a r ~ S c i e n c e s ~ a n d ~$ Application, 10, 6192-6204 (2017)
[28] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, K. Abodayeh, H. Alsamir, Common fixed points for pairs of triangular (α)-admissible mappings, Journal of Mathematical Analysis, 9(1), 38-51, (2018)
[29] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, Fixed Point Results for Geraghty Type Generalized F-contraction for Weak alpha-admissible Mapping in Metric-like Spaces, European Journal of Pure and Applied Mathematics, 11 (2018), 702-716.
[30] W. Shatanawi, M.S.M. Norani, J. Ahmad, H. Alsamir, M.A. Kutbi, Some common fixed points of multivalued mappings on complex-valued metric spaces with homotopy result, J. Nonlinear Sci. Appl. 10 (2017), 3381-3396.
[31] A.F. Roldan-López-de-Hierro, E. Karapinar, C. Roldán-López-de-Hierro, J. Martíinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015), 345-355.

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v12i1.3331
 Email addresses: h.alsamer@gmail.com (H. Alsamir), msn@ukm.my (M.S. Noorani), swasfi@hu.edu.jo (W. Shatanawi), wshatanawi@psu.edu.sa (W. Shatanawi), hmaydi@iau.edu.sa (H. Aydi), habibulla@uum.edu.my (H. Akhadkulov), haitham.math77@gmail.com (H. Qawaqneh), sunshine-w@hotmail.com (K. Alanazi)

