EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 11, No. 4, 2018, 976-1002 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Anti-type of hesitant fuzzy sets on UP-algebras^{*}

Phakawat Mosrijai¹, Aiyared Iampan^{1,†}

¹ Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand

Abstract. This paper aims to introduce the notions of anti-hesitant fuzzy UP-subalgebras of UP-algebras, anti-hesitant fuzzy UP-filters, anti-hesitant fuzzy UP-ideals, and anti-hesitant fuzzy strongly UP-ideals, and prove some results. Furthermore, we discuss the relationships between anti-hesitant fuzzy UP-subalgebras (resp., anti-hesitant fuzzy UP-filters, anti-hesitant fuzzy UP-ideals, anti-hesitant fuzzy strongly UP-ideals) and some level subsets of hesitant fuzzy sets on UP-algebras.

2010 Mathematics Subject Classifications: 03G25

Key Words and Phrases: UP-algebra, anti-hesitant fuzzy strongly UP-ideal, anti-hesitant fuzzy UP-ideal, anti-hesitant fuzzy UP-filter and anti-hesitant fuzzy UP-subalgebra

1. Introduction

The branch of the logical algebra, UP-algebras was introduced by Iampan [2] in 2017, and it is known that the class of KU-algebras [8] is a proper subclass of the class of UP-algebras. It have been examined by several researchers, for example, Somjanta et al. [14] introduced the notion of fuzzy sets in UP-algebras, the notion of intuitionistic fuzzy sets in UP-algebras was introduced by Kesorn et al. [5], Kaijae et al. [4] introduced the notions of anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras of UP-algebras, the notion of Q-fuzzy sets in UP-algebras was introduced by Tanamoon et al. [17], Sripaeng et al. [16] introduced the notion anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras, the notion of \mathcal{N} -fuzzy sets in UP-algebras was introduced by Songsaeng and Iampan [15], Senapati et al. [12, 13] applied cubic set and interval-valued intuitionistic fuzzy structure in UP-algebras, Romano [9] introduced the notion of proper UP-filters in UP-algebras, etc.

A hesitant fuzzy set on a set is a function from a reference set to a power set of the unit interval. The notion of a hesitant fuzzy set on a set was first considered by Torra [18] in 2010. The hesitant fuzzy set, which can be perfectly described in terms of the opinions

Email addresses: phakawat.mo@gmail.com (P. Mosrijai), aiyared.ia@up.ac.th (A. Iampan)

http://www.ejpam.com

© 2018 EJPAM All rights reserved.

^{*}This work was financially supported by the University of Phayao.

[†]Corresponding Author.

DOI: https://doi.org/10.29020/nybg.ejpam.v11i4.3335

of decision makers is a very useful tool to deal with uncertainty. The hesitant fuzzy set theories developed by Torra and others have found many applications in the domain of mathematics and elsewhere. In UP-algebras, Mosrijai et al. [6] extended the notion of fuzzy sets in UP-algebras to hesitant fuzzy sets on UP-algebras, and Satirad et al. [11] considered level subsets of a hesitant fuzzy set on UP-algebras in 2017. The notion of partial constant hesitant fuzzy sets on UP-algebras was introduced by Mosrijai et al. [7] afterwards.

In this paper, the notion of anti-hesitant fuzzy UP-subalgebras (resp., anti-hesitant fuzzy UP-filters, anti-hesitant fuzzy UP-ideals and anti-hesitant fuzzy strongly UP-ideals) of UP-algebras are introduced and proved some results. Further, we discuss the relation between anti-hesitant fuzzy UP-subalgebras (resp., anti-hesitant fuzzy UP-filters, anti-hesitant fuzzy UP-ideals and anti-hesitant fuzzy strongly UP-ideals) and level subsets of a hesitant fuzzy set.

2. Basic Results on UP-Algebras

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 1. [2] An algebra $A = (A, \cdot, 0)$ of type (2, 0) is called a UP-algebra where A is a nonempty set, \cdot is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following axioms: for any $x, y, z \in A$,

$$(\mathbf{UP-1}) \ (y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0,$$

(UP-2) $0 \cdot x = x$,

(UP-3) $x \cdot 0 = 0$, and

(UP-4) $x \cdot y = 0$ and $y \cdot x = 0$ imply x = y.

From [2], we know that the notion of UP-algebras is a generalization of KU-algebras.

Example 1. [10] Let X be a universal set and let $\Omega \in \mathcal{P}(X)$. Let $\mathcal{P}_{\Omega}(X) = \{A \in \mathcal{P}(X) \mid \Omega \subseteq A\}$. Define a binary operation \cdot on $\mathcal{P}_{\Omega}(X)$ by putting $A \cdot B = B \cap (A' \cup \Omega)$ for all $A, B \in \mathcal{P}_{\Omega}(X)$. Then $(\mathcal{P}_{\Omega}(X), \cdot, \Omega)$ is a UP-algebra and we shall call it the generalized power UP-algebra of type 1 with respect to Ω .

Example 2. [10] Let X be a universal set and let $\Omega \in \mathcal{P}(X)$. Let $\mathcal{P}^{\Omega}(X) = \{A \in \mathcal{P}(X) \mid A \subseteq \Omega\}$. Define a binary operation * on $\mathcal{P}^{\Omega}(X)$ by putting $A * B = B \cup (A' \cap \Omega)$ for all $A, B \in \mathcal{P}^{\Omega}(X)$. Then $(\mathcal{P}^{\Omega}(X), *, \Omega)$ is a UP-algebra and we shall call it the generalized power UP-algebra of type 2 with respect to Ω .

Example 3. Let $A = \{0, 1, 2, 3, 4\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3	4
0	0	1	2	3	4
1	0	0	1	3	3
2	0	0	0	3	3
3	0	0	0	0	3
4	0	0	0	0	0

Then $(A, \cdot, 0)$ is a UP-algebra which is not a KU-algebra because $(0 \cdot 2)((2 \cdot 4) \cdot (0 \cdot 4)) = 2 \cdot (3 \cdot 4) = 2 \cdot 3 = 3 \neq 0$ (see the definition in [8]).

In what follows, let A denote UP-algebras unless otherwise specified. The following proposition is very important for the study of UP-algebras.

Proposition 1. [2, 3] In a UP-algebra $A = (A, \cdot, 0)$, the following properties hold:

(1)
$$(\forall x \in A)(x \cdot x = 0),$$

(2)
$$(\forall x, y, z \in A)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0),$$

- (3) $(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0),$
- (4) $(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0),$

(5)
$$(\forall x, y \in A)(x \cdot (y \cdot x) = 0)$$

- (6) $(\forall x, y \in A)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x),$
- (7) $(\forall x, y \in A)(x \cdot (y \cdot y) = 0),$

(8)
$$(\forall a, x, y, z \in A)((x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0),$$

- $(9) \ (\forall a, x, y, z \in A)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0),$
- $(10) \ (\forall x,y,z\in A)(((x\cdot y)\cdot z)\cdot (y\cdot z)=0),$
- (11) $(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0),$
- (12) $(\forall x, y, z \in A)(((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0)$, and
- $(13) \ (\forall a, x, y, z \in A)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0).$

On a UP-algebra $A = (A, \cdot, 0)$, we define a binary relation \leq on A [2] as follows: for any $x, y \in A$,

$$x \leq y$$
 if and only if $x \cdot y = 0$.

Definition 2. [1, 2, 14] A nonempty subset S of a UP-algebra $(A, \cdot, 0)$ is called

(1) a UP-subalgebra of A if for any $x, y \in S, x \cdot y \in S$.

- (2) a UP-filter of A if
 - (i) the constant 0 of A is in S, and
 - (ii) for any $x, y \in A, x \cdot y \in S$ and $x \in S$ imply $y \in S$.
- (3) a UP-ideal of A if
 - (i) the constant 0 of A is in S, and
 - (ii) for any $x, y, z \in A, x \cdot (y \cdot z) \in S$ and $y \in S$ imply $x \cdot z \in S$.
- (4) a strongly UP-ideal of A if
 - (i) the constant 0 of A is in S, and
 - (ii) for any $x, y, z \in A, (z \cdot y) \cdot (z \cdot x) \in S$ and $y \in S$ imply $x \in S$.

Guntasow et al. [1] proved the generalization that the notion of UP-subalgebras is a generalization of UP-filters, the notion of UP-filters is a generalization of UP-ideals, and the notion of UP-ideals is a generalization of strongly UP-ideals. Moreover, they also proved that a UP-algebra A is the only one strongly UP-ideal of itself.

3. Basic Results on Hesitant Fuzzy Sets

Definition 3. [18] Let X be a reference set. A hesitant fuzzy set on X is defined in term of a function h_H that when applied to X return a subset of [0, 1], that is, $h_H: X \to \mathcal{P}([0, 1])$. A hesitant fuzzy set h_H can also be viewed as the following mathematical representation:

$$H := \{(x, h_H(x)) \mid x \in X\}$$

where $h_{\rm H}(x)$ is a set of some values in [0, 1], denoting the possible membership degrees of the elements $x \in X$ to the set H. We say that a hesitant fuzzy set H on X is a constant hesitant fuzzy set if its function $h_{\rm H}$ is constant.

Definition 4. [6] Let H be a hesitant fuzzy set on A. The hesitant fuzzy set \overline{H} defined by $h_{\overline{H}}(x) = [0,1] - h_{H}(x)$ for all $x \in A$ is said to be the complement of H on A.

Remark 1. [6] For all hesitant fuzzy set H on A, we have $H = \overline{\overline{H}}$.

Theorem 1. A hesitant fuzzy set H is a constant hesitant fuzzy set on A if and only if the complement of H is a constant hesitant fuzzy set on A.

Proof. Let H be a constant hesitant fuzzy set on A. Then $h_H(x) = h_H(0)$ for all $x \in A$. Thus $[0,1] - h_H(x) = [0,1] - h_H(0)$ for all $x \in A$. Therefore, $h_{\overline{H}}(x) = h_{\overline{H}}(0)$ for all $x \in A$. Hence, \overline{H} is a constant hesitant fuzzy set on A.

Conversely, let \overline{H} be a constant hesitant fuzzy set on A. Then $h_{\overline{H}}(x) = h_{\overline{H}}(0)$ for all $x \in A$. Thus $[0,1] - h_H(x) = [0,1] - h_H(0)$ for all $x \in A$. Therefore, $h_H(x) = h_H(0)$ for all $x \in A$. Hence, H is a constant hesitant fuzzy set on A.

Definition 5. [6] A hesitant fuzzy set H on a A is called

- (1) a hesitant fuzzy UP-subalgebra of A if it satisfies the following property: for any $x, y \in A$, $h_H(x \cdot y) \supseteq h_H(x) \cap h_H(y)$.
- (2) a hesitant fuzzy UP-filter of A if it satisfies the following properties: for any $x, y \in A$,
 - (1) $h_{\rm H}(0) \supseteq h_{\rm H}(x)$, and
 - (2) $h_{\mathrm{H}}(y) \supseteq h_{\mathrm{H}}(x \cdot y) \cap h_{\mathrm{H}}(x).$
- (3) a hesitant fuzzy UP-ideal of A if it satisfies the following properties: for any $x, y, z \in A$,
 - (1) $h_{\rm H}(0) \supseteq h_{\rm H}(x)$, and
 - (2) $h_{\mathrm{H}}(x \cdot z) \supseteq h_{\mathrm{H}}(x \cdot (y \cdot z)) \cap h_{\mathrm{H}}(y).$
- (4) a hesitant fuzzy strongly UP-ideal of A if it satisfies the following properties: for any $x, y, z \in A$,
 - (1) $h_{\rm H}(0) \supseteq h_{\rm H}(x)$, and
 - (2) $h_{\mathrm{H}}(x) \supseteq h_{\mathrm{H}}((z \cdot y) \cdot (z \cdot x)) \cap h_{\mathrm{H}}(y).$

Mosrijai et al. [6] proved that the notion of hesitant fuzzy UP-subalgebras of UPalgebras is a generalization of hesitant fuzzy UP-filters, the notion of hesitant fuzzy UPfilters of UP-algebras is a generalization of hesitant fuzzy UP-ideals, and the notion of hesitant fuzzy UP-ideals of UP-algebras is a generalization of hesitant fuzzy strongly UPideals.

Theorem 2. [6] A hesitant fuzzy set H on A is a hesitant fuzzy strongly UP-ideal of A if and only if it is a constant hesitant fuzzy set on A.

4. Anti-Type of Hesitant Fuzzy Sets

In this section, we introduce the notions of anti-hesitant fuzzy UP-subalgebras, antihesitant fuzzy UP-filters, anti-hesitant fuzzy UP-ideals and anti-hesitant fuzzy strongly UP-ideals of UP-algebras, provide the necessary examples and prove its generalizations.

Definition 6. A hesitant fuzzy set H on a A is called an anti-hesitant fuzzy UP-subalgebra of A if it satisfies the following property: for any $x, y \in A$,

$$h_{\mathrm{H}}(x \cdot y) \subseteq h_{\mathrm{H}}(x) \cup h_{\mathrm{H}}(y).$$

By Proposition 1 (1), we have $h_H(0) = h_H(x \cdot x) \subseteq h_H(x) \cup h_H(x) = h_H(x)$ for all $x \in A$.

Example 4. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_{\rm H}(0) = \emptyset, h_{\rm H}(1) = \{0.5\}, h_{\rm H}(2) = \{0.6\}, and h_{\rm H}(3) = [0.5, 0.6]$$

Using this data, we can show that H is an anti-hesitant fuzzy UP-subalgebra of A.

Definition 7. A hesitant fuzzy set H on a A is called an anti-hesitant fuzzy UP-filter of A if it satisfies the following properties: for any $x, y \in A$,

- (1) $h_{\rm H}(0) \subseteq h_{\rm H}(x)$, and
- (2) $h_{\mathrm{H}}(y) \subseteq h_{\mathrm{H}}(x \cdot y) \cup h_{\mathrm{H}}(x).$

Example 5. Let $A = \{0, 1, 2, 3, 4\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	4
2	0	0	0	3	3
3	0	1	2	0	3
4	0	1	2	0	0

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$\begin{split} h_H(0) &= \{0.8\}, h_H(1) = [0.8, 0.9), h_H(2) = [0.8, 0.9], h_H(3) = [0.6, 0.9], \text{ and} \\ h_H(4) &= [0.6, 0.9]. \end{split}$$

Using this data, we can show that H is an anti-hesitant fuzzy UP-filter of A.

Definition 8. A hesitant fuzzy set H on a A is called an anti-hesitant fuzzy UP-ideal of A if it satisfies the following properties: for any $x, y, z \in A$,

- (1) $h_{\rm H}(0) \subseteq h_{\rm H}(x)$, and
- (2) $h_{\mathrm{H}}(x \cdot z) \subseteq h_{\mathrm{H}}(x \cdot (y \cdot z)) \cup h_{\mathrm{H}}(y).$

Example 6. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3
0	0	1	2	3
1	0	0	2	3
2	0	1	0	3
3	0	1	2	0

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_H(0) = \{1\}, h_H(1) = \{1\}, h_H(2) = \{0, 1\}, and h_H(3) = [0, 1].$$

Using this data, we can show that H is an anti-hesitant fuzzy UP-ideal of A.

Definition 9. A hesitant fuzzy set H on a A is called an anti-hesitant fuzzy strongly UP-ideal of A if it satisfies the following properties: for any $x, y, z \in A$,

- (1) $h_{\rm H}(0) \subseteq h_{\rm H}(x)$, and
- (2) $h_{\mathrm{H}}(x) \subseteq h_{\mathrm{H}}((z \cdot y) \cdot (z \cdot x)) \cup h_{\mathrm{H}}(y).$

Example 7. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3
0	0	1	2	3
1	0	0	2	2
2	0	1	0	1
3	0	0	0	0

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_{\rm H}(0) = \{0, 0.2\}, h_{\rm H}(1) = \{0, 0.2\}, h_{\rm H}(2) = \{0, 0.2\}, and h_{\rm H}(3) = \{0, 0.2\}.$$

Using this data, we can show that H is an anti-hesitant fuzzy strongly UP-ideal of A.

Theorem 3. A hesitant fuzzy set H on A is an anti-hesitant fuzzy strongly UP-ideal of A if and only if it is a constant hesitant fuzzy set on A.

Proof. Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. Then $h_H(0) \subseteq h_H(x)$ and $h_H(x) \subseteq h_H((z \cdot y) \cdot (z \cdot x)) \cup h_H(y)$ for all $x, y, z \in A$. For any $x \in A$, we choose z = x and y = 0. Then

$$\begin{aligned} \mathbf{h}_{\mathrm{H}}(x) &\subseteq \mathbf{h}_{\mathrm{H}}((x \cdot 0) \cdot (x \cdot x)) \cup \mathbf{h}_{\mathrm{H}}(0) \\ &= \mathbf{h}_{\mathrm{H}}(0 \cdot 0) \cup \mathbf{h}_{\mathrm{H}}(0) \\ &= \mathbf{h}_{\mathrm{H}}(0) \cup \mathbf{h}_{\mathrm{H}}(0) \end{aligned} \qquad ((\mathrm{UP-3}) \text{ and Proposition 1 (1)}) \\ &= \mathbf{h}_{\mathrm{H}}(0) \\ &\subseteq \mathbf{h}_{\mathrm{H}}(x), \end{aligned}$$

so $h_H(0) = h_H(x)$. Hence, H is a constant hesitant fuzzy set on A.

Conversely, assume that H is a constant hesitant fuzzy set on A. Then, for any $x \in A$, $h_H(0) = h_H(x)$, so $h_H(0) \subseteq h_H(x)$. For any $x, y, z \in A$, $h_H(x) = h_H((z \cdot y) \cdot (z \cdot x)) = h_H(y)$, so $h_H(x) = h_H((z \cdot y) \cdot (z \cdot x)) \cup h_H(y)$. Thus $h_H(x) \subseteq h_H((z \cdot y) \cdot (z \cdot x)) \cup h_H(y)$. Hence, H is an anti-hesitant fuzzy strongly UP-ideal of A.

Corollary 1. For UP-algebras, we can conclude that the notions of anti-hesitant fuzzy strongly UP-ideals and hesitant fuzzy strongly UP-ideals coincide.

982

Proof. It is straightforward by Theorem 2 and 3.

Corollary 2. A hesitant fuzzy set H on A is an anti-hesitant fuzzy strongly UP-ideal of A if and only if \overline{H} on A is an anti-hesitant fuzzy strongly UP-ideal of A.

Proof. It is straightforward by Theorem 1 and 3.

By Using Corollary 1, we can show that a hesitant fuzzy set H on A is an anti-hesitant fuzzy strongly UP-ideal of A if and only if \overline{H} on A is an anti-hesitant fuzzy strongly UP-ideal of A.

Theorem 4. Every anti-hesitant fuzzy UP-filter of A is an anti-hesitant fuzzy UP-subalgebra of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-filter of A. Then for any $x, y \in A$,

$$\begin{split} \mathbf{h}_{\mathrm{H}}(x \cdot y) &\subseteq \mathbf{h}_{\mathrm{H}}(y \cdot (x \cdot y)) \cup \mathbf{h}_{\mathrm{H}}(y) & (\text{Definition 7 (2)}) \\ &= \mathbf{h}_{\mathrm{H}}(0) \cup \mathbf{h}_{\mathrm{H}}(y) & (\text{Proposition 1 (5)}) \\ &= \mathbf{h}_{\mathrm{H}}(y) & (\text{Definition 7 (1)}) \\ &\subseteq \mathbf{h}_{\mathrm{H}}(x) \cup \mathbf{h}_{\mathrm{H}}(y). \end{split}$$

Hence, H is an anti-hesitant fuzzy UP-subalgebra of A.

The converse of Theorem 4 is not true in general. By Example 4, we obtain H is an anti-hesitant fuzzy UP-subalgebra of A. Since $h_H(1) = \{0.5\} \notin \{0.6\} = \emptyset \cup \{0.6\} = h_H(0) \cup h_H(2) = h_H(2 \cdot 1) \cup h_H(2)$, we have H is not an anti-hesitant fuzzy UP-filter of A. Therefore, the notion of anti-hesitant fuzzy UP-subalgebras of UP-algebras is generalization of anti-hesitant fuzzy UP-filters.

Theorem 5. Every anti-hesitant fuzzy UP-ideal of A is an anti-hesitant fuzzy UP-filter of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Then for any $x, y \in A$, $h_{\rm H}(0) \subseteq h_{\rm H}(x)$ and

$$\begin{aligned} \mathbf{h}_{\mathrm{H}}(y) &= \mathbf{h}_{\mathrm{H}}(0 \cdot y) & ((\mathrm{UP-2})) \\ &\subseteq \mathbf{h}_{\mathrm{H}}(0 \cdot (x \cdot y)) \cup \mathbf{h}_{\mathrm{H}}(x) & (\mathrm{Definition} \ 8 \ (2)) \\ &= \mathbf{h}_{\mathrm{H}}(x \cdot y) \cup \mathbf{h}_{\mathrm{H}}(x). & ((\mathrm{UP-2})) \end{aligned}$$

Hence, H is an anti-hesitant fuzzy UP-filter of A.

The converse of Theorem 5 is not true in general. By Example 5, we obtain H is an anti-hesitant fuzzy UP-filter of A. Since $h_H(3 \cdot 4) = h_H(3) = [0.6, 0.9] \notin [0.8, 0.9) =$ $\{0.8\} \cup [0.8, 0.9) = h_H(0) \cup h_H(2) = h_H(3 \cdot (2 \cdot 4)) \cup h_H(2)$, we have H is not an anti-hesitant fuzzy UP-ideal of A. Therefore, the notion of anti-hesitant fuzzy UP-filters of UP-algebras is generalization of anti-hesitant fuzzy UP-ideals.

983

Theorem 6. Every anti-hesitant fuzzy strongly UP-ideal of A is an anti-hesitant fuzzy UP-ideal of A.

Proof. Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. Then for any $x, y \in A$, $h_H(0) \subseteq h_H(x)$ and

$$\begin{aligned} \mathbf{h}_{\mathrm{H}}(x \cdot z) &\subseteq \mathbf{h}_{\mathrm{H}}((z \cdot y) \cdot (z \cdot (x \cdot z))) \cap \mathbf{h}_{\mathrm{H}}(y) & (\text{Definition 9 (2)}) \\ &= \mathbf{h}_{\mathrm{H}}((z \cdot y) \cdot 0) \cap \mathbf{h}_{\mathrm{H}}(y) & (\text{Proposition 1 (5)}) \\ &= \mathbf{h}_{\mathrm{H}}(0) \cap \mathbf{h}_{\mathrm{H}}(y) & ((\mathrm{UP-3})) \\ &= \mathbf{h}_{\mathrm{H}}(y) & (\mathrm{Definition 9 (1)}) \\ &= \mathbf{h}_{\mathrm{H}}(x \cdot (y \cdot z)) \cap \mathbf{h}_{\mathrm{H}}(y). \end{aligned}$$

Hence, H is an anti-hesitant fuzzy UP-ideal of A.

The converse of Theorem 6 is not true in general. By Theorem 3, we obtain an antihesitant fuzzy strongly UP-ideal is a constant hesitant fuzzy set. But anti-hesitant fuzzy UP-ideal is not a constant hesitant fuzzy set in general. Therefore, the notion of antihesitant fuzzy UP-ideals of UP-algebras is generalization of anti-hesitant fuzzy strongly UP-ideals.

Proposition 2. Let H be an anti-hesitant fuzzy UP-filter (and also anti-hesitant fuzzy UP-ideal, anti-hesitant fuzzy strongly UP-ideal) of A. Then for any $x, y \in A$,

 $x \leq y$ implies $h_{\mathrm{H}}(x) \supseteq h_{\mathrm{H}}(y) \supseteq h_{\mathrm{H}}(x \cdot y)$.

Proof. Let $x, y \in A$ be such that $x \leq y$. Then $x \cdot y = 0$. Since H is an anti-hesitant fuzzy UP-filter (resp., anti-hesitant fuzzy UP-ideal, anti-hesitant fuzzy strongly UP-ideal) of A, we have

$$h_{\mathrm{H}}(y) \subseteq h_{\mathrm{H}}(x \cdot y) \cup h_{\mathrm{H}}(x) = h_{\mathrm{H}}(0) \cup h_{\mathrm{H}}(x) = h_{\mathrm{H}}(x).$$

By Proposition 1 (5), we obtain $y \leq x \cdot y$ and thus $h_H(y) \supseteq h_H(x \cdot y)$.

5. Level Subsets of a Hesitant Fuzzy Set

Definition 10. [11] Let H be a hesitant fuzzy set on A. For any $\varepsilon \in \mathcal{P}([0,1])$, the sets

$$U(\mathbf{H};\varepsilon) = \{x \in A \mid \mathbf{h}_{\mathbf{H}}(x) \supseteq \varepsilon\} \text{ and } U^{+}(\mathbf{H};\varepsilon) = \{x \in A \mid \mathbf{h}_{\mathbf{H}}(x) \supset \varepsilon\}$$

are called an upper ε -level subset and an upper ε -strong level subset of H, respectively. The sets

$$L(\mathbf{H};\varepsilon) = \{x \in A \mid \mathbf{h}_{\mathbf{H}}(x) \subseteq \varepsilon\} \text{ and } L^{-}(\mathbf{H};\varepsilon) = \{x \in A \mid \mathbf{h}_{\mathbf{H}}(x) \subset \varepsilon\}$$

are called a lower ε -level subset and a lower ε -strong level subset of H, respectively. The set

$$E(\mathbf{H};\varepsilon) = \{x \in A \mid \mathbf{h}_{\mathbf{H}}(x) = \varepsilon\}$$

is called an equal ε -level subset of H. Then

 $U(\mathrm{H};\varepsilon) = U^+(\mathrm{H};\varepsilon) \cup E(\mathrm{H};\varepsilon)$ and $L(\mathrm{H};\varepsilon) = L^-(\mathrm{H};\varepsilon) \cup E(\mathrm{H};\varepsilon)$.

Proposition 3. Let H be a hesitant fuzzy set on A and let $\varepsilon \in \mathcal{P}([0,1])$. Then the following statements hold:

- (1) $U(\mathbf{H};\varepsilon) = L(\overline{\mathbf{H}};[0,1]-\varepsilon),$
- (2) $U^+(\mathbf{H};\varepsilon) = L^-(\overline{\mathbf{H}};[0,1]-\varepsilon),$
- (3) $L(\mathbf{H};\varepsilon) = U(\overline{\mathbf{H}};[0,1]-\varepsilon)$, and
- (4) $L^{-}(\mathbf{H};\varepsilon) = U^{+}(\overline{\mathbf{H}};[0,1]-\varepsilon).$

Proof. (1) Let $x \in A$ and let $\varepsilon \in \mathcal{P}([0,1])$. Then $x \in U(\mathrm{H};\varepsilon)$ if and only if $h_{\mathrm{H}}(x) \supseteq \varepsilon$ if and only if $[0,1] - h_{\mathrm{H}}(x) \subseteq [0,1] - \varepsilon$ if and only if $h_{\overline{\mathrm{H}}}(x) \subseteq [0,1] - \varepsilon$ if and only if $x \in L(\overline{\mathrm{H}};[0,1] - \varepsilon)$. Therefore, $U(\mathrm{H};\varepsilon) = L(\overline{\mathrm{H}};[0,1] - \varepsilon)$.

(2) Let $x \in A$ and let $\varepsilon \in \mathcal{P}([0,1])$. Then $x \in U^+(\mathrm{H};\varepsilon)$ if and only if $h_{\mathrm{H}}(x) \supset \varepsilon$ if and only if $[0,1] - h_{\mathrm{H}}(x) \subset [0,1] - \varepsilon$ if and only if $h_{\overline{\mathrm{H}}}(x) \subset [0,1] - \varepsilon$ if and only if $x \in L^-(\overline{\mathrm{H}};[0,1] - \varepsilon)$. Therefore, $U^+(\mathrm{H};\varepsilon) = L^-(\overline{\mathrm{H}};[0,1] - \varepsilon)$.

(3) Let $x \in A$ and let $\varepsilon \in \mathcal{P}([0,1])$. Then $x \in L(\mathrm{H};\varepsilon)$ if and only if $h_{\mathrm{H}}(x) \subseteq \varepsilon$ if and only if $[0,1] - h_{\mathrm{H}}(x) \supseteq [0,1] - \varepsilon$ if and only if $h_{\overline{\mathrm{H}}}(x) \supseteq [0,1] - \varepsilon$ if and only if $x \in U(\overline{\mathrm{H}};[0,1] - \varepsilon)$. Therefore, $L(\mathrm{H};\varepsilon) = U(\overline{\mathrm{H}};[0,1] - \varepsilon)$.

(4) Let $x \in A$ and let $\varepsilon \in \mathcal{P}([0,1])$. Then $x \in L^{-}(\mathrm{H};\varepsilon)$ if and only if $h_{\mathrm{H}}(x) \subset \varepsilon$ if and only if $[0,1] - h_{\mathrm{H}}(x) \supset [0,1] - \varepsilon$ if and only if $h_{\overline{\mathrm{H}}}(x) \supset [0,1] - \varepsilon$ if and only if $x \in U^{+}(\overline{\mathrm{H}};[0,1] - \varepsilon)$. Therefore, $L^{-}(\mathrm{H};\varepsilon) = U^{+}(\overline{\mathrm{H}};[0,1] - \varepsilon)$.

Lemma 1. [11] Let H be a hesitant fuzzy set on A. Then the following statements hold: for any $x, y \in A$,

- (1) $[0,1] (h_H(x) \cup h_H(y)) = ([0,1] h_H(x)) \cap ([0,1] h_H(y)), and$
- (2) $[0,1] (h_H(x) \cap h_H(y)) = ([0,1] h_H(x)) \cup ([0,1] h_H(y)).$

5.1. Lower ε -Level Subsets

Theorem 7. A hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-subalgebra of A if and only if for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L(\mathrm{H};\varepsilon)$ of A is a UP-subalgebra of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $L(\mathrm{H};\varepsilon) \neq \emptyset$, and let $x, y \in A$ be such that $x \in L(\mathrm{H};\varepsilon)$ and $y \in L(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) \subseteq \varepsilon$ and $\mathrm{h}_{\mathrm{H}}(y) \subseteq \varepsilon$. Since H is an anti-hesitant fuzzy UP-subalgebra of A, we have $\mathrm{h}_{\mathrm{H}}(x \cdot y) \subseteq \mathrm{h}_{\mathrm{H}}(x) \cup \mathrm{h}_{\mathrm{H}}(y) \subseteq \varepsilon$ and thus $x \cdot y \in L(\mathrm{H};\varepsilon)$. Hence, $L(\mathrm{H};\varepsilon)$ is a UP-subalgebra of A.

985

Conversely, assume that for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L(\mathrm{H};\varepsilon)$ of A is a UPsubalgebra of A. Let $x, y \in A$. Then $\mathrm{h}_{\mathrm{H}}(x), \mathrm{h}_{\mathrm{H}}(y) \in \mathcal{P}([0,1])$. Choose $\varepsilon = \mathrm{h}_{\mathrm{H}}(x) \cup \mathrm{h}_{\mathrm{H}}(y) \in \mathcal{P}([0,1])$. Then $\mathrm{h}_{\mathrm{H}}(x) \subseteq \varepsilon$ and $\mathrm{h}_{\mathrm{H}}(y) \subseteq \varepsilon$. Thus $x, y \in L(\mathrm{H};\varepsilon) \neq \emptyset$. By assumption, $L(\mathrm{H};\varepsilon)$ is a UP-subalgebra of A and thus $x \cdot y \in L(\mathrm{H};\varepsilon)$. Therefore, $\mathrm{h}_{\mathrm{H}}(x \cdot y) \subseteq \varepsilon = \mathrm{h}_{\mathrm{H}}(x) \cup \mathrm{h}_{\mathrm{H}}(y)$. Hence, H is an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 8. A hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-filter of A if and only if for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L(\mathrm{H};\varepsilon)$ of A is a UP-filter of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-filter of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $L(\mathrm{H};\varepsilon) \neq \emptyset$ and let $x \in A$ be such that $x \in L(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) \subseteq \varepsilon$. Since H is an anti-hesitant fuzzy UP-filter of A, we have $\mathrm{h}_{\mathrm{H}}(0) \subseteq \mathrm{h}_{\mathrm{H}}(x) \subseteq \varepsilon$ and thus $0 \in L(\mathrm{H};\varepsilon)$.

Next, let $x, y \in A$ be such that $x \cdot y \in L(\mathrm{H}; \varepsilon)$ and $x \in L(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot y) \subseteq \varepsilon$ and $h_{\mathrm{H}}(x) \subseteq \varepsilon$. Since H is an anti-hesitant fuzzy UP-filter of A, we have $h_{\mathrm{H}}(y) \subseteq h_{\mathrm{H}}(x \cdot y) \cup h_{\mathrm{H}}(x) \subseteq \varepsilon$ and thus $y \in L(\mathrm{H}; \varepsilon)$. Hence, $L(\mathrm{H}; \varepsilon)$ is a UP-filter of A.

Conversely, assume that for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L(\mathrm{H};\varepsilon)$ of A is a UP-filter of A. Let $x \in A$. Then $h_{\mathrm{H}}(x) \in \mathcal{P}([0,1])$. Choose $\varepsilon = h_{\mathrm{H}}(x) \in \mathcal{P}([0,1])$. Then $h_{\mathrm{H}}(x) \subseteq \varepsilon$. Thus $x \in L(\mathrm{H};\varepsilon)$. By assumption, we have $L(\mathrm{H};\varepsilon)$ is a UP-filter of A and so $0 \in L(\mathrm{H};\varepsilon)$. Therefore, $h_{\mathrm{H}}(0) \subseteq \varepsilon = h_{\mathrm{H}}(x)$.

Next, let $x, y \in A$. Then $h_H(x \cdot y), h_H(x) \in \mathcal{P}([0, 1])$. Choose $\varepsilon = h_H(x \cdot y) \cup h_H(x) \in \mathcal{P}([0, 1])$. Then $h_H(x \cdot y) \subseteq \varepsilon$ and $h_H(x) \subseteq \varepsilon$. Thus $x \cdot y, x \in L(H; \varepsilon) \neq \emptyset$. By assumption, we have $L(H; \varepsilon)$ is a UP-filter of A and so $y \in L(H; \varepsilon)$. Therefore, $h_H(y) \subseteq \varepsilon = h_H(x \cdot y) \cup h_H(x)$. Hence, H is an anti-hesitant fuzzy UP-filter of A.

Theorem 9. A hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-ideal of A if and only if for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L(\mathrm{H};\varepsilon)$ of A is a UP-ideal of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $L(\mathrm{H};\varepsilon) \neq \emptyset$ and let $x \in A$ be such that $x \in L(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) \subseteq \varepsilon$. Since H is an anti-hesitant fuzzy UP-ideal of A, we have $\mathrm{h}_{\mathrm{H}}(0) \subseteq \mathrm{h}_{\mathrm{H}}(x) \subseteq \varepsilon$ and thus $0 \in L(\mathrm{H};\varepsilon)$.

Next, let $x, y, z \in A$ be such that $x \cdot (y \cdot z) \in L(\mathrm{H}; \varepsilon)$ and $y \in L(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot (y \cdot z)) \subseteq \varepsilon$ and $h_{\mathrm{H}}(y) \subseteq \varepsilon$. Since H is an anti-hesitant fuzzy UP-ideal of A, we have $h_{\mathrm{H}}(x \cdot z) \subseteq h_{\mathrm{H}}(x \cdot (y \cdot z)) \cup h_{\mathrm{H}}(y) \subseteq \varepsilon$ and thus $x \cdot z \in L(\mathrm{H}; \varepsilon)$. Hence, $L(\mathrm{H}; \varepsilon)$ is a UP-ideal of A.

Conversely, assume that for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L(\mathrm{H};\varepsilon)$ of A is a UP-ideal of A. Let $x \in A$. Then $\mathrm{h}_{\mathrm{H}}(x) \in \mathcal{P}([0,1])$. Choose $\varepsilon = \mathrm{h}_{\mathrm{H}}(x) \in \mathcal{P}([0,1])$. Then $\mathrm{h}_{\mathrm{H}}(x) \subseteq \varepsilon$. Thus $x \in L(\mathrm{H};\varepsilon) \neq \emptyset$. By assumption, we have $L(\mathrm{H};\varepsilon)$ is a UP-ideal of A and so $0 \in L(\mathrm{H};\varepsilon)$. Therefore, $\mathrm{h}_{\mathrm{H}}(0) \subseteq \varepsilon = \mathrm{h}_{\mathrm{H}}(x)$.

Next, let $x, y, z \in A$. Then $h_H(x \cdot (y \cdot z)), h_H(y) \in \mathcal{P}([0, 1])$. Choose $\varepsilon = h_H(x \cdot (y \cdot z)) \cup$ $h_H(y) \in \mathcal{P}([0, 1])$. Then $h_H(x \cdot (y \cdot z)) \subseteq \varepsilon$ and $h_H(y) \subseteq \varepsilon$. Thus $x \cdot (y \cdot z), y \in L(H; \varepsilon) \neq \emptyset$. By assumption, we have $L(H; \varepsilon)$ is a UP-ideal of A and so $x \cdot z \in L(H; \varepsilon)$. Therefore, $h_H(x \cdot z) \subseteq \varepsilon = h_H(x \cdot (y \cdot z)) \cup h_H(y)$. Hence, H is an anti-hesitant fuzzy UP-ideal of A. **Theorem 10.** Let H be a hesitant fuzzy set on A. Then the following statements are equivalent:

- (1) H is an anti-hesitant fuzzy strongly UP-ideal of A,
- (2) a nonempty subset $L(\mathbf{H}; \varepsilon)$ of A is a strongly UP-ideal of A for all $\varepsilon \in \mathcal{P}([0, 1])$, and
- (3) a nonempty subset $U(\mathbf{H};\varepsilon)$ of A is a strongly UP-ideal of A for all $\varepsilon \in \mathcal{P}([0,1])$.

Proof. (1) \Rightarrow (2) Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. By Theorem 3, we obtain H is a constant hesitant fuzzy set on A and so $h_H(x) = h_H(y)$ for all $x, y \in A$. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $L(H;\varepsilon) \neq \emptyset$. There exists $a \in L(H;\varepsilon)$ be such that $h_H(a) \subseteq \varepsilon$. Thus $h_H(x) = h_H(a) \subseteq \varepsilon$ for all $x \in A$ and so $x \in L(H;\varepsilon)$ for all $x \in A$. Therefore, $L(H;\varepsilon) = A$. Hence, $L(H;\varepsilon)$ is a strongly UP-ideal of A.

 $(2) \Rightarrow (3)$ Assume that for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L(\mathrm{H};\varepsilon)$ of A is a strongly UP-ideal of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $U(\mathrm{H};\varepsilon) \neq \emptyset$. If $U(\mathrm{H};\varepsilon) \neq A$, then there exist $x \in U(\mathrm{H};\varepsilon)$ and $y \notin U(\mathrm{H};\varepsilon)$. So $h_{\mathrm{H}}(x) \supseteq \varepsilon$ and $h_{\mathrm{H}}(y) \not\supseteq \varepsilon$. Consider, $\varepsilon_y = h_{\mathrm{H}}(y) \in$ $\mathcal{P}([0,1])$. Then $y \in L(\mathrm{H};\varepsilon_y)$ and $\varepsilon_y \not\supseteq \varepsilon$. By assumption, we have $L(\mathrm{H};\varepsilon_y)$ is a strongly UP-ideal of A and so $L(\mathrm{H};\varepsilon_y) = A$. Thus $h_{\mathrm{H}}(x) \subseteq \varepsilon_y$. Since $h_{\mathrm{H}}(x) \supseteq \varepsilon$, we have $\varepsilon_y \supseteq \varepsilon$, a contradiction. Therefore, $U(\mathrm{H};\varepsilon) = A$. Hence, $U(\mathrm{H};\varepsilon)$ is a strongly UP-ideal of A.

 $(3)\Rightarrow(1)$ Assume that for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U(\mathrm{H};\varepsilon)$ of A is a strongly UP-ideal of A. Assume that H is not a constant hesitant fuzzy set on A. There exist $x, y \in A$ be such that $\mathrm{h}_{\mathrm{H}}(x) \neq \mathrm{h}_{\mathrm{H}}(y)$. Now, $x \in U(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(x)) \neq \emptyset$ and $y \in U(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(y)) \neq \emptyset$. By assumption, we have $U(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(x))$ and $U(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(y))$ are strongly UP-ideals of A and thus $U(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(x)) = A = U(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(y))$. Then $x \in U(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(y))$ and $y \in U(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(x))$. Thus $\mathrm{h}_{\mathrm{H}}(x) \supseteq \mathrm{h}_{\mathrm{H}}(y)$ and $\mathrm{h}_{\mathrm{H}}(y) \supseteq \mathrm{h}_{\mathrm{H}}(x)$. So $\mathrm{h}_{\mathrm{H}}(x) = \mathrm{h}_{\mathrm{H}}(y)$, a contradiction. Therefore, H is a constant hesitant fuzzy set on A. By Theorem 3, we obtain H is an anti-hesitant fuzzy strongly UP-ideal of A.

5.2. Lower ε -Strong Level Subsets

Theorem 11. Let H be a hesitant fuzzy set on A. Then the following statements hold:

- (1) if H is an anti-hesitant fuzzy UP-subalgebra of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, $L^{-}(H;\varepsilon)$ is a UP-subalgebra of A if $L^{-}(H;\varepsilon)$ is nonempty, and
- (2) if Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L^{-}(H;\varepsilon)$ of A is a UP-subalgebra of A, then H is an anti-hesitant fuzzy UP-subalgebra of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $L^{-}(\mathrm{H};\varepsilon) \neq \emptyset$, and let $x, y \in A$ be such that $x \in L^{-}(\mathrm{H};\varepsilon)$ and $y \in L^{-}(\mathrm{H};\varepsilon)$. Then $h_{\mathrm{H}}(x) \subset \varepsilon$ and $h_{\mathrm{H}}(y) \subset \varepsilon$. Since H is an anti-hesitant fuzzy UP-subalgebra of A, we have $h_{\mathrm{H}}(x \cdot y) \subseteq h_{\mathrm{H}}(x) \cup h_{\mathrm{H}}(y) \subset \varepsilon$ and thus $x \cdot y \in L^{-}(\mathrm{H};\varepsilon)$. Hence, $L^{-}(\mathrm{H};\varepsilon)$ is a UP-subalgebra of A.

(2) Assume that Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0, 1])$, a nonempty subset $L^{-}(\mathrm{H}; \varepsilon)$ of A is a UP-subalgebra of A. Assume that there exist $x, y \in A$ such that $h_{\mathrm{H}}(x \cdot y) \not\subseteq$

 $h_{\rm H}(x) \cup h_{\rm H}(y)$. Since Im(H) is a chain, we have $h_{\rm H}(x \cdot y) \supset h_{\rm H}(x) \cup h_{\rm H}(y)$. Choose $\varepsilon = h_{\rm H}(x \cdot y) \in \mathcal{P}([0,1])$. Then $h_{\rm H}(x) \subset \varepsilon$ and $h_{\rm H}(y) \subset \varepsilon$. Thus $x, y \in L^-({\rm H}; \varepsilon) \neq \emptyset$. By assumption, we have $L^-({\rm H}; \varepsilon)$ is a UP-subalgebra of A and so $x \cdot y \in L^-({\rm H}; \varepsilon)$. Thus $h_{\rm H}(x \cdot y) \subset \varepsilon = h_{\rm H}(x \cdot y)$, a contradiction. Therefore, $h_{\rm H}(x \cdot y) \subseteq h_{\rm H}(x) \cup h_{\rm H}(y)$ for all $x, y \in A$. Hence, H is an anti-hesitant fuzzy UP-subalgebra of A.

Example 8. Let $A = \{0, 1, 2, 3, 4\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3	4
0	0	1	2	3	4
1	0	0	0	0	0
2	0	2	0	0	0
3	0	2	2	0	0
4	0	2	2	4	0

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_{\rm H}(0) = (0,1), h_{\rm H}(1) = [0,1), h_{\rm H}(2) = (0,1], h_{\rm H}(3) = [0,1), and h_{\rm H}(4) = [0,1].$$

Then Im(H) is not a chain. If $\varepsilon \subseteq (0,1)$, then $L^-(H;\varepsilon) = \emptyset$. If $\varepsilon = [0,1)$ or $\varepsilon = (0,1]$, then $L^-(H;\varepsilon) = \{0\}$. If $\varepsilon = [0,1]$, then $L^-(H;\varepsilon) = \{0,1,2,3\}$. Using this data, we can show that all nonempty subset $L^-(H;\varepsilon)$ of A is a UP-subalgebra of A. Since $h_H(3\cdot 1) = h_H(2) = (0,1] \notin [0,1) = h_H(3) \cup h_H(1)$, we have H is not an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 12. Let H be a hesitant fuzzy set on A. Then the following statements hold:

- (1) if H is an anti-hesitant fuzzy UP-filter of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, $L^{-}(\mathrm{H};\varepsilon)$ is a UP-filter of A if $L^{-}(\mathrm{H};\varepsilon)$ is nonempty, and
- (2) if Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L^{-}(H;\varepsilon)$ of A is a UP-filter of A, then H is an anti-hesitant fuzzy UP-filter of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy UP-filter of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $L^{-}(\mathrm{H};\varepsilon) \neq \emptyset$ and let $x \in A$ be such that $x \in L^{-}(\mathrm{H};\varepsilon)$. Then $h_{\mathrm{H}}(x) \subset \varepsilon$. Since H is an anti-hesitant fuzzy UP-filter of A, we have $h_{\mathrm{H}}(0) \subseteq h_{\mathrm{H}}(x) \subset \varepsilon$ and thus $0 \in L^{-}(\mathrm{H};\varepsilon)$.

Next, let $x, y \in A$ be such that $x \cdot y \in L^{-}(\mathrm{H}; \varepsilon)$ and $x \in L^{-}(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot y) \subset \varepsilon$ and $h_{\mathrm{H}}(x) \subset \varepsilon$. Since H is an anti-hesitant fuzzy UP-filter of A, we have $h_{\mathrm{H}}(y) \subseteq h_{\mathrm{H}}(x \cdot y) \cup h_{\mathrm{H}}(x) \subset \varepsilon$ and thus $y \in L^{-}(\mathrm{H}; \varepsilon)$. Hence, $L^{-}(\mathrm{H}; \varepsilon)$ is a UP-filter of A.

(2) Assume that Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0, 1])$, a nonempty subset $L^{-}(\mathrm{H}; \varepsilon)$ of A is a UP-filter of A. Assume that there exists $x \in A$ such that $h_{\mathrm{H}}(0) \not\subseteq h_{\mathrm{H}}(x)$. Since Im(H) is a chain, we have $h_{\mathrm{H}}(0) \supset h_{\mathrm{H}}(x)$. Choose $\varepsilon = h_{\mathrm{H}}(0) \in \mathcal{P}([0, 1])$. Then $h_{\mathrm{H}}(x) \subset h_{\mathrm{H}}(0) = \varepsilon$. Thus $x \in L^{-}(\mathrm{H}; \varepsilon) \neq \emptyset$. By assumption, we have $L^{-}(\mathrm{H}; \varepsilon)$ is a UPfilter of A and so $0 \in L^{-}(\mathrm{H}; \varepsilon)$. Therefore, $h_{\mathrm{H}}(0) \subset \varepsilon = h_{\mathrm{H}}(0)$, a contradiction. Hence, $h_{\mathrm{H}}(0) \subseteq h_{\mathrm{H}}(x)$ for all $x \in A$. Next, assume that there exist $x, y \in A$ such that $h_H(y) \nsubseteq h_H(x \cdot y) \cup h_H(x)$. Since Im(H) is a chain, we have $h_H(y) \supset h_H(x \cdot y) \cup h_H(x)$. Choose $\varepsilon = h_H(y) \in \mathcal{P}([0,1])$. Then $h_H(x \cdot y) \subset \varepsilon$ and $h_H(x) \subset \varepsilon$. Thus $x \cdot y, x \in L^-(H; \varepsilon) \neq \emptyset$. By assumption, we have $L^-(H; \varepsilon)$ is a UP-filter of A and so $y \in L^-(H; \varepsilon)$. Thus $h_H(y) \subset \varepsilon = h_H(y)$, a contradiction. Therefore, $h_H(y) \subseteq h_H(x \cdot y) \cup h_H(x)$ for all $x, y \in A$. Hence, H is an anti-hesitant fuzzy UP-filter of A.

Example 9. Let $A = \{0, 1, 2, 3, 4\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3	4
0	0	1	2	3	4
1	0	0	1	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	0	0	0	0	0

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_{\rm H}(0) = (0,1), h_{\rm H}(1) = [0,1), h_{\rm H}(2) = (0,1], h_{\rm H}(3) = [0,1], and h_{\rm H}(4) = [0,1].$$

Then Im(H) is not a chain. If $\varepsilon \subseteq (0,1)$, then $L^-(H;\varepsilon) = \emptyset$. If $\varepsilon = [0,1)$ or $\varepsilon = (0,1]$, then $L^-(H;\varepsilon) = \{0\}$. If $\varepsilon = [0,1]$, then $L^-(H;\varepsilon) = \{0,1,2\}$. Using this data, we can show that all nonempty subset $L^-(H;\varepsilon)$ of A is a UP-filter of A. Since $h_H(2) = (0,1] \nsubseteq [0,1) =$ $h_H(1) \cup h_H(1) = h_H(1 \cdot 2) \cup h_H(1)$, we have H is not an anti-hesitant fuzzy UP-filter of A.

Theorem 13. Let H be a hesitant fuzzy set on A. Then the following statements hold:

- (1) if H is an anti-hesitant fuzzy UP-ideal of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, $L^{-}(\mathrm{H};\varepsilon)$ is a UP-ideal of A if $L^{-}(\mathrm{H};\varepsilon)$ is nonempty, and
- (2) if Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L^{-}(H;\varepsilon)$ of A is a UP-ideal of A, then H is an anti-hesitant fuzzy UP-ideal of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $L^{-}(\mathrm{H};\varepsilon) \neq \emptyset$ and let $x \in A$ be such that $x \in L^{-}(\mathrm{H};\varepsilon)$. Then $h_{\mathrm{H}}(x) \subset \varepsilon$. Since H is an anti-hesitant fuzzy UP-ideal of A, we have $h_{\mathrm{H}}(0) \subseteq h_{\mathrm{H}}(x) \subset \varepsilon$ and thus $0 \in L^{-}(\mathrm{H};\varepsilon)$.

Next, let $x, y, z \in A$ be such that $x \cdot (y \cdot z) \in L^{-}(\mathrm{H}; \varepsilon)$ and $y \in L^{-}(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot (y \cdot z)) \subset \varepsilon$ and $h_{\mathrm{H}}(y) \subset \varepsilon$. Since H is an anti-hesitant fuzzy UP-ideal of A, we have $h_{\mathrm{H}}(x \cdot z) \subseteq h_{\mathrm{H}}(x \cdot (y \cdot z)) \cup h_{\mathrm{H}}(y) \subset \varepsilon$ and thus $x \cdot z \in L^{-}(\mathrm{H}; \varepsilon)$. Hence, $L^{-}(\mathrm{H}; \varepsilon)$ is a UP-ideal of A.

(2) Assume that Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0, 1])$, a nonempty subset $L^{-}(\mathrm{H}; \varepsilon)$ of A is a UP-ideal of A. Assume that there exists $x \in A$ such that $h_{\mathrm{H}}(0) \notin h_{\mathrm{H}}(x)$. Since Im(H) is a chain, we have $h_{\mathrm{H}}(0) \supset h_{\mathrm{H}}(x)$. Choose $\varepsilon = h_{\mathrm{H}}(0) \in \mathcal{P}([0, 1])$. Then $h_{\mathrm{H}}(x) \subset h_{\mathrm{H}}(0) = \varepsilon$. Thus $x \in L^{-}(\mathrm{H}; \varepsilon) \neq \emptyset$. By assumption, we have $L^{-}(\mathrm{H}; \varepsilon)$ is a UPideal of A and so $0 \in L^{-}(\mathrm{H}; \varepsilon)$. Therefore, $h_{\mathrm{H}}(0) \subset \varepsilon = h_{\mathrm{H}}(0)$, a contradiction. Hence, $h_{\mathrm{H}}(0) \subseteq h_{\mathrm{H}}(x)$ for all $x \in A$. Next, assume that there exist $x, y, z \in A$ such that $h_H(x \cdot z) \nsubseteq h_H(x \cdot (y \cdot z)) \cup h_H(y)$. Since Im(H) is a chain, we have $h_H(x \cdot z) \supset h_H(x \cdot (y \cdot z)) \cup h_H(y)$. Choose $\varepsilon = h_H(x \cdot z) \in \mathcal{P}([0, 1])$. Then $h_H(x \cdot (y \cdot z)) \subset \varepsilon$ and $h_H(y) \subset \varepsilon$. Thus $x \cdot (y \cdot z), y \in L^-(H; \varepsilon) \neq \emptyset$. By assumption, we have $L^-(H; \varepsilon)$ is a UP-ideal of A and so $x \cdot z \in L^-(H; \varepsilon)$. Thus $h_H(x \cdot z) \subset \varepsilon = h_H(x \cdot z)$, a contradiction. Therefore, $h_H(x \cdot z) \subseteq h_H(x \cdot (y \cdot z)) \cup h_H(y)$ for all $x, y, z \in A$. Hence, H is an anti-hesitant fuzzy UP-ideal of A.

Example 10. Let $A = \{0, 1, 2, 3, 4\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	4
2	0	0	0	3	4
3	0	0	2	0	4
4	0	0	0	0	0

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_{\rm H}(0) = (0,1), h_{\rm H}(1) = [0,1), h_{\rm H}(2) = [0,1], h_{\rm H}(3) = (0,1], and h_{\rm H}(4) = [0,1].$$

Then Im(H) is not a chain. If $\varepsilon \subseteq (0,1)$, then $L^-(\mathrm{H};\varepsilon) = \emptyset$. If $\varepsilon = [0,1)$ or $\varepsilon = (0,1]$, then $L^-(\mathrm{H};\varepsilon) = \{0\}$. If $\varepsilon = [0,1]$, then $L^-(\mathrm{H};\varepsilon) = \{0,1,3\}$. Using this data, we can show that all nonempty subset $L^-(\mathrm{H};\varepsilon)$ of A is a UP-ideal of A. Since $h_{\mathrm{H}}(0\cdot 1) = h_{\mathrm{H}}(1) = [0,1) \notin (0,1] = h_{\mathrm{H}}(0) \cup h_{\mathrm{H}}(3) = h_{\mathrm{H}}(0\cdot(3\cdot 1)) \cup h_{\mathrm{H}}(3)$, we have H is not an anti-hesitant fuzzy UP-ideal of A.

Theorem 14. Let H be a hesitant fuzzy set on A. Then the following statements hold:

- (1) if H is an anti-hesitant fuzzy strongly UP-ideal of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, $L^{-}(\mathrm{H};\varepsilon)$ is a strongly UP-ideal of A if $L^{-}(\mathrm{H};\varepsilon)$ is nonempty, and
- (2) if Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $L^{-}(H;\varepsilon)$ of A is a strongly UP-ideal of A, then H is an anti-hesitant fuzzy strongly UP-ideal of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. By Theorem 3, we obtain H is a constant hesitant fuzzy set on A and so $h_{\rm H}(x) = h_{\rm H}(y)$ for all $x, y \in A$. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $L^-({\rm H};\varepsilon) \neq \emptyset$. There exists $a \in L^-({\rm H};\varepsilon)$ be such that $h_{\rm H}(a) \subset \varepsilon$. Thus $h_{\rm H}(x) = h_{\rm H}(a) \subset \varepsilon$ for all $x \in A$ and so $x \in L^-({\rm H};\varepsilon)$ for all $x \in A$. Therefore, $L^-({\rm H};\varepsilon) = A$. Hence, $L^-({\rm H};\varepsilon)$ is a strongly UP-ideal of A.

(2) Assume that Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0, 1])$, a nonempty subset $L^{-}(\mathrm{H}; \varepsilon)$ of A is a strongly UP-ideal of A. Assume that H is not a constant hesitant fuzzy set on A. There exist $x, y \in A$ be such that $h_{\mathrm{H}}(x) \neq h_{\mathrm{H}}(y)$. Since Im(H) is a chain, we have $h_{\mathrm{H}}(x) \subset h_{\mathrm{H}}(y)$ or $h_{\mathrm{H}}(x) \supset h_{\mathrm{H}}(y)$. Without loss of generality, assume that $h_{\mathrm{H}}(x) \subset h_{\mathrm{H}}(y)$, then $x \in L^{-}(\mathrm{H}; h_{\mathrm{H}}(y)) \neq \emptyset$. By assumption, we have $L^{-}(\mathrm{H}; h_{\mathrm{H}}(y))$ is a strongly UP-ideal of A and so $L^{-}(\mathrm{H}; h_{\mathrm{H}}(y)) = A$. Thus $y \in A = L^{-}(\mathrm{H}; h_{\mathrm{H}}(y))$ and so $h_{\mathrm{H}}(y) \subset h_{\mathrm{H}}(y)$, a contradiction. Therefore, H is a constant hesitant fuzzy set on A. By Theorem 3, we obtain H is an anti-hesitant fuzzy strongly UP-ideal of A. **Example 11.** Let $A = \{0, 1\}$ be a set with a binary operation \cdot defined by the following Cayley table:

$$\begin{array}{c|ccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}$$

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_{\rm H}(0) = (0, 1], and h_{\rm H}(1) = [0, 1).$$

Then Im(H) is not a chain. If $\varepsilon \subseteq [0,1]$ or $\varepsilon \subseteq (0,1]$, then $L^-(H;\varepsilon) = \emptyset$. If $\varepsilon = [0,1]$, then $L^-(H;\varepsilon) = A$. Thus a nonempty subset $L^-(H;\varepsilon)$ of A is a strongly UP-ideal of A. By Theorem 3 and H is not a constant hesitant fuzzy set on A, we have H is not an anti-hesitant fuzzy strongly UP-ideal of A.

5.3. Upper ε -Level Subsets

Theorem 15. A hesitant fuzzy set $\overline{\mathbf{H}}$ on A is an anti-hesitant fuzzy UP-subalgebra of A if and only if for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U(\mathbf{H};\varepsilon)$ of A is a UP-subalgebra of A.

Proof. Assume that $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-subalgebra of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $U(\mathrm{H};\varepsilon) \neq \emptyset$, and let $x, y \in A$ be such that $x \in U(\mathrm{H};\varepsilon)$ and $y \in U(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) \supseteq \varepsilon$ and $\mathrm{h}_{\mathrm{H}}(y) \supseteq \varepsilon$. Since $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-subalgebra of A, we obtain $\mathrm{h}_{\overline{\mathrm{H}}}(x \cdot y) \subseteq \mathrm{h}_{\overline{\mathrm{H}}}(x) \cup \mathrm{h}_{\overline{\mathrm{H}}}(y)$. By Lemma 1 (2), we have $[0,1] - \mathrm{h}_{\mathrm{H}}(x \cdot y) \subseteq$ $([0,1]-\mathrm{h}_{\mathrm{H}}(x))\cup([0,1]-\mathrm{h}_{\mathrm{H}}(y)) = [0,1]-(\mathrm{h}_{\mathrm{H}}(x)\cap\mathrm{h}_{\mathrm{H}}(y))$. Thus $\mathrm{h}_{\mathrm{H}}(x \cdot y) \supseteq \mathrm{h}_{\mathrm{H}}(x)\cap\mathrm{h}_{\mathrm{H}}(y) \supseteq \varepsilon$. Therefore, $x \cdot y \in U(\mathrm{H};\varepsilon)$. Hence, $U(\mathrm{H};\varepsilon)$ is a UP-subalgebra of A.

Conversely, assume that for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U(\mathrm{H};\varepsilon)$ of A is a UPsubalgebra of A. Let $x, y \in A$. Choose $\varepsilon = \mathrm{h}_{\mathrm{H}}(x) \cap \mathrm{h}_{\mathrm{H}}(y) \in \mathcal{P}([0,1])$. Then $\mathrm{h}_{\mathrm{H}}(x) \supseteq \varepsilon$ and $\mathrm{h}_{\mathrm{H}}(y) \supseteq \varepsilon$. Thus $x, y \in U(\mathrm{H};\varepsilon) \neq \emptyset$. By assumption, we have $U(\mathrm{H};\varepsilon)$ is a UP-subalgebra of A and so $x \cdot y \in U(\mathrm{H};\varepsilon)$. Therefore, $\mathrm{h}_{\mathrm{H}}(x \cdot y) \supseteq \varepsilon = \mathrm{h}_{\mathrm{H}}(x) \cap \mathrm{h}_{\mathrm{H}}(y)$. By Lemma 1 (2), we have

$$\begin{split} \mathbf{h}_{\overline{\mathbf{H}}}(x \cdot y) &= [0,1] - \mathbf{h}_{\mathbf{H}}(x \cdot y) \\ &\subseteq [0,1] - (\mathbf{h}_{\mathbf{H}}(x) \cap \mathbf{h}_{\mathbf{H}}(y)) \\ &= ([0,1] - \mathbf{h}_{\mathbf{H}}(x)) \cup ([0,1] - \mathbf{h}_{\mathbf{H}}(y)) \\ &= \mathbf{h}_{\overline{\mathbf{H}}}(x) \cup \mathbf{h}_{\overline{\mathbf{H}}}(y). \end{split}$$

Hence, $\overline{\mathbf{H}}$ is an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 16. A hesitant fuzzy set \overline{H} on A is an anti-hesitant fuzzy UP-filter of A if and only if for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U(H;\varepsilon)$ of A is a UP-filter of A.

Proof. Assume that \overline{H} is an anti-hesitant fuzzy UP-filter of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $U(\mathrm{H};\varepsilon) \neq \emptyset$, and let $x \in A$ be such that $x \in U(\mathrm{H};\varepsilon)$. Then $h_{\mathrm{H}}(x) \supseteq \varepsilon$. Since

 $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-filter of A, we have $\mathrm{h}_{\overline{\mathrm{H}}}(0) \subseteq \mathrm{h}_{\overline{\mathrm{H}}}(x)$. Thus $[0,1] - \mathrm{h}_{\mathrm{H}}(0) \subseteq [0,1] - \mathrm{h}_{\mathrm{H}}(x)$. Therefore, $\mathrm{h}_{\mathrm{H}}(0) \supseteq \mathrm{h}_{\mathrm{H}}(x) \supseteq \varepsilon$. Hence, $0 \in U(\mathrm{h}_{\mathrm{H}};\varepsilon)$.

Next, let $x, y \in A$ be such that $x \cdot y \in U(\mathrm{H}; \varepsilon)$ and $x \in U(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot y) \supseteq \varepsilon$ and $h_{\mathrm{H}}(x) \supseteq \varepsilon$. Since $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-filter of A, we have $h_{\overline{\mathrm{H}}}(y) \subseteq h_{\overline{\mathrm{H}}}(x \cdot y) \cup h_{\overline{\mathrm{H}}}(x)$. By Lemma 1 (2), we have $[0,1] - h_{\mathrm{H}}(y) \subseteq ([0,1] - h_{\mathrm{H}}(x \cdot y)) \cup ([0,1] - h_{\mathrm{H}}(x)) = [0,1] - (h_{\mathrm{H}}(x \cdot y) \cap h_{\mathrm{H}}(x))$. Thus $h_{\mathrm{H}}(y) \supseteq h_{\mathrm{H}}(x \cdot y) \cap h_{\mathrm{H}}(x) \supseteq \varepsilon$. Therefore, $y \in U(\mathrm{H};\varepsilon)$. Hence, $U(\mathrm{H};\varepsilon)$ is a UP-filter of A.

Conversely, assume that for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U(\mathrm{H};\varepsilon)$ of A is a UP-filter of A. Let $x \in A$. Choose $\varepsilon = \mathrm{h}_{\mathrm{H}}(x) \in \mathcal{P}([0,1])$. Then $\mathrm{h}_{\mathrm{H}}(x) \supseteq \varepsilon$. Thus $x \in U(\mathrm{H};\varepsilon) \neq \emptyset$. By assumption, we have $U(\mathrm{H};\varepsilon)$ is a UP-filter of A and so $0 \in U(\mathrm{H};\varepsilon)$. Therefore, $\mathrm{h}_{\mathrm{H}}(0) \supseteq \varepsilon = \mathrm{h}_{\mathrm{H}}(x)$. Hence, $\mathrm{h}_{\overline{\mathrm{H}}}(0) = [0,1] - \mathrm{h}_{\mathrm{H}}(0) \subseteq [0,1] - \mathrm{h}_{\mathrm{H}}(x) = \mathrm{h}_{\overline{\mathrm{H}}}(x)$.

Next, let $x, y \in A$. Choose $\varepsilon = h_H(x \cdot y) \cap h_H(x) \in \mathcal{P}([0,1])$. Then $h_H(x \cdot y) \supseteq \varepsilon$ and $h_H(x) \supseteq \varepsilon$. Thus $x \cdot y, x \in U(H; \varepsilon) \neq \emptyset$. By assumption, we have $U(H; \varepsilon)$ is a UP-filter of A and so $y \in U(H; \varepsilon)$. Therefore, $h_H(y) \supseteq \varepsilon = h_H(x \cdot y) \cap h_H(x)$. By Lemma 1 (2), we have

$$\begin{split} \mathbf{h}_{\overline{\mathbf{H}}}(y) &= [0,1] - \mathbf{h}_{\mathbf{H}}(y) \\ &\subseteq [0,1] - (\mathbf{h}_{\mathbf{H}}(x \cdot y) \cap \mathbf{h}_{\mathbf{H}}(x)) \\ &= ([0,1] - \mathbf{h}_{\mathbf{H}}(x \cdot y)) \cup ([0,1] - \mathbf{h}_{\mathbf{H}}(x)) \\ &= \mathbf{h}_{\overline{\mathbf{H}}}(x \cdot y) \cup \mathbf{h}_{\overline{\mathbf{H}}}(x). \end{split}$$

Hence, H is an anti-hesitant fuzzy UP-filter of A.

Theorem 17. A hesitant fuzzy set \overline{H} on A is an anti-hesitant fuzzy UP-ideal of A if and only if for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U(\mathrm{H};\varepsilon)$ of A is a UP-ideal of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $U(\mathrm{H};\varepsilon) \neq \emptyset$, and let $x \in A$ be such that $x \in U(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) \supseteq \varepsilon$. Since $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-ideal of A, we have $\mathrm{h}_{\overline{\mathrm{H}}}(0) \subseteq \mathrm{h}_{\overline{\mathrm{H}}}(x)$. Thus $[0,1] - \mathrm{h}_{\mathrm{H}}(0) \subseteq$ $[0,1] - \mathrm{h}_{\mathrm{H}}(x)$. Therefore, $\mathrm{h}_{\mathrm{H}}(0) \supseteq \mathrm{h}_{\mathrm{H}}(x) \supseteq \varepsilon$. Hence, $0 \in U(\mathrm{H};\varepsilon)$.

Next, let $x, y, z \in A$ be such that $x \cdot (y \cdot z) \in U(\mathrm{H}; \varepsilon)$ and $y \in U(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot (y \cdot z)) \supseteq \varepsilon$ and $h_{\mathrm{H}}(y) \supseteq \varepsilon$. Since $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-ideal of A, we obtain $h_{\overline{\mathrm{H}}}(x \cdot z) \subseteq h_{\overline{\mathrm{H}}}(x \cdot (y \cdot z)) \cup h_{\overline{\mathrm{H}}}(y)$. By Lemma 1 (2), we have $[0, 1] - h_{\mathrm{H}}(x \cdot z) \subseteq ([0, 1] - h_{\mathrm{H}}(x \cdot (y \cdot z))) \cup ([0, 1] - h_{\mathrm{H}}(y)) = [0, 1] - (h_{\mathrm{H}}(x \cdot (y \cdot z)) \cap h_{\mathrm{H}}(y))$. Thus $h_{\mathrm{H}}(x \cdot z) \supseteq h_{\mathrm{H}}(x \cdot (y \cdot z)) \cup h_{\mathrm{H}}(y) \supseteq \varepsilon$. Therefore, $x \cdot z \in U(\mathrm{H}; \varepsilon)$. Hence, $U(\mathrm{H}; \varepsilon)$ is a UP-ideal of A.

Conversely, assume that for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U(\mathrm{H};\varepsilon)$ of A is a UP-ideal of A. Let $x \in A$. Choose $\varepsilon = \mathrm{h}_{\mathrm{H}}(x) \in \mathcal{P}([0,1])$. Then $\mathrm{h}_{\mathrm{H}}(x) \supseteq \varepsilon$. Thus $x \in U(\mathrm{H};\varepsilon) \neq \emptyset$. By assumption, we have $U(\mathrm{H};\varepsilon)$ is a UP-ideal of A and so $0 \in U(\mathrm{H};\varepsilon)$. Therefore, $\mathrm{h}_{\mathrm{H}}(0) \supseteq \varepsilon = \mathrm{h}_{\mathrm{H}}(x)$. Hence, $\mathrm{h}_{\overline{\mathrm{H}}}(0) = [0,1] - \mathrm{h}_{\mathrm{H}}(0) \subseteq [0,1] - \mathrm{h}_{\mathrm{H}}(x) = \mathrm{h}_{\overline{\mathrm{H}}}(x)$.

Next, let $x, y, z \in A$. Choose $\varepsilon = h_H(x \cdot (y \cdot z)) \cap h_H(y) \in \mathcal{P}([0, 1])$. Then $h_H(x \cdot (y \cdot z)) \supseteq \varepsilon$ and $h_H(y) \supseteq \varepsilon$. Thus $x \cdot (y \cdot z), y \in U(H; \varepsilon) \neq \emptyset$. By assumption, we have $U(H; \varepsilon)$ is a UP-ideal of A and so $x \cdot z \in U(H; \varepsilon)$. Therefore, $h_H(x \cdot z) \supseteq \varepsilon = h_H(x \cdot (y \cdot z)) \cap h_H(y)$. By Lemma 1 (2), we have

$$h_{\overline{H}}(x \cdot z) = [0, 1] - h_{H}(x \cdot z)$$

$$\begin{split} &\subseteq [0,1] - (\mathbf{h}_{\mathbf{H}}(x \cdot (y \cdot z)) \cap \mathbf{h}_{\mathbf{H}}(y)) \\ &= ([0,1] - \mathbf{h}_{\mathbf{H}}(x \cdot (y \cdot z))) \cup ([0,1] - \mathbf{h}_{\mathbf{H}}(y)) \\ &= \mathbf{h}_{\overline{\mathbf{H}}}(x \cdot (y \cdot z)) \cup \mathbf{h}_{\overline{\mathbf{H}}}(y). \end{split}$$

Hence, \overline{H} is an anti-hesitant fuzzy UP-ideal of A.

Theorem 18. Let H be a hesitant fuzzy set on A. Then the following statements are equivalent:

- (1) \overline{H} is an anti-hesitant fuzzy strongly UP-ideal of A,
- (2) a nonempty subset $U(\mathbf{H}; \varepsilon)$ of A is a strongly UP-ideal of A for all $\varepsilon \in \mathcal{P}([0, 1])$, and
- (3) a nonempty subset $L(\mathbf{H}; \varepsilon)$ of A is a strongly UP-ideal of A for all $\varepsilon \in \mathcal{P}([0, 1])$.

Proof. It is straightforward by Theorem 10 and Corollary 2.

5.4. Upper ε -Strong Level Subsets

Theorem 19. Let H be a hesitant fuzzy set on A. Then the following statements hold:

- (1) if H is an anti-hesitant fuzzy UP-subalgebra of A, then for all $\varepsilon \in \mathcal{P}([0,1]), U^+(\mathrm{H};\varepsilon)$ is a UP-subalgebra of A if $U^+(\mathrm{H};\varepsilon)$ is nonempty, and
- (2) if Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U^+(H;\varepsilon)$ of A is a UP-subalgebra of A, then \overline{H} is an anti-hesitant fuzzy UP-subalgebra of A.

Proof. (1) Assume that $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-subalgebra of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $U^+(\mathrm{H};\varepsilon) \neq \emptyset$, and let $x, y \in A$ be such that $x \in U^+(\mathrm{H};\varepsilon)$ and $y \in U^+(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) \supset \varepsilon$ and $\mathrm{h}_{\mathrm{H}}(y) \supset \varepsilon$. Since $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-subalgebra of A, we obtain $\mathrm{h}_{\overline{\mathrm{H}}}(x \cdot y) \subseteq \mathrm{h}_{\overline{\mathrm{H}}}(x) \cup \mathrm{h}_{\overline{\mathrm{H}}}(y)$. By Lemma 1 (2), we have $[0,1] - \mathrm{h}_{\mathrm{H}}(x \cdot y) \subseteq ([0,1] - \mathrm{h}_{\mathrm{H}}(x)) \cup ([0,1] - \mathrm{h}_{\mathrm{H}}(y)) = [0,1] - (\mathrm{h}_{\mathrm{H}}(x) \cap \mathrm{h}_{\mathrm{H}}(y))$. Thus $\mathrm{h}_{\mathrm{H}}(x \cdot y) \supseteq \mathrm{h}_{\mathrm{H}}(x) \cap \mathrm{h}_{\mathrm{H}}(y) \supset \varepsilon$. Therefore, $x \cdot y \in U^+(\mathrm{H};\varepsilon)$. Hence, $U^+(\mathrm{H};\varepsilon)$ is a UP-subalgebra of A.

(2) Assume that Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U^+(\mathrm{H};\varepsilon)$ of A is a UP-subalgebra of A. Assume that there exist $x, y \in A$ such that $h_{\overline{\mathrm{H}}}(x \cdot y) \not\subseteq h_{\overline{\mathrm{H}}}(x) \cup h_{\overline{\mathrm{H}}}(y)$. Since Im(H) is a chain, we have $h_{\overline{\mathrm{H}}}(x \cdot y) \supset h_{\overline{\mathrm{H}}}(x) \cup h_{\overline{\mathrm{H}}}(y)$. By Lemma 1 (2), we have $[0,1] - h_{\mathrm{H}}(x \cdot y) \supset ([0,1] - h_{\mathrm{H}}(x)) \cup ([0,1] - h_{\mathrm{H}}(y)) = [0,1] - (h_{\mathrm{H}}(x) \cap h_{\mathrm{H}}(y))$. Thus $h_{\mathrm{H}}(x \cdot y) \subset h_{\mathrm{H}}(x) \cap h_{\mathrm{H}}(y)$. Choose $\varepsilon = h_{\mathrm{H}}(x \cdot y) \in \mathcal{P}([0,1])$. Then $h_{\mathrm{H}}(x) \supset \varepsilon$ and $h_{\mathrm{H}}(y) \supset \varepsilon$. Thus $x, y \in U^+(\mathrm{H};\varepsilon) \neq \emptyset$. By assumption, we have $U^+(\mathrm{H};\varepsilon)$ is a UPsubalgebra of A and so $x \cdot y \in U^+(\mathrm{H};\varepsilon)$. Thus $h_{\mathrm{H}}(x \cdot y) \supset \varepsilon = h_{\mathrm{H}}(x \cdot y)$, a contradiction. Therefore, $h_{\overline{\mathrm{H}}}(x \cdot y) \subseteq h_{\overline{\mathrm{H}}}(x) \cup h_{\overline{\mathrm{H}}}(y)$ for all $x, y \in A$. Hence, $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-subalgebra of A.

Example 12. Let $A = \{0, 1, 2, 3, 4\}$ be a set with a binary operation \cdot defined by the Cayley table from Example 8. Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_H(0) = \{0, 1\}, h_H(1) = \{1\}, h_H(2) = \{0\}, h_H(3) = \{1\}, and h_H(4) = \emptyset.$$

Then Im(H) is not a chain. If $\varepsilon = \{1\}$ or $\varepsilon = \{0\}$, then $U^+(H; \varepsilon) = \{0\}$. If $\varepsilon = \emptyset$, then $U^+(H; \varepsilon) = \{0, 1, 3\}$. Otherwise, $U^+(H; \varepsilon) = \emptyset$. Using this data, we can show that all nonempty subset $U^+(H; \varepsilon)$ of A is a UP-subalgebra of A. By Definition 4, we have

$$h_{\overline{H}}(0) = (0,1), h_{\overline{H}}(1) = [0,1), h_{\overline{H}}(2) = (0,1], h_{\overline{H}}(3) = [0,1), and h_{\overline{H}}(3) = [0,1]$$

Since $h_{\overline{H}}(3 \cdot 1) = h_{\overline{H}}(2) = (0,1] \nsubseteq [0,1) = h_{\overline{H}}(3) \cup h_{\overline{H}}(1)$, we have H is not an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 20. Let H be a hesitant fuzzy set on A. Then the following statements hold:

- (1) if \overline{H} is an anti-hesitant fuzzy UP-filter of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, $U^+(H;\varepsilon)$ is a UP-filter of A if $U^+(H;\varepsilon)$ is nonempty, and
- (2) if Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U^+(H;\varepsilon)$ of A is a UP-filter of A, then \overline{H} is an anti-hesitant fuzzy UP-filter of A.

Proof. (1) Assume that $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-filter of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $U^+(\mathrm{H};\varepsilon) \neq \emptyset$, and let $x \in A$ be such that $x \in U^+(\mathrm{H};\varepsilon)$. Then $h_{\mathrm{H}}(x) \supset \varepsilon$. Since $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-filter of A, we have $h_{\overline{\mathrm{H}}}(0) \subseteq h_{\overline{\mathrm{H}}}(x)$. Thus $[0,1] - h_{\mathrm{H}}(0) \subseteq$ $[0,1] - h_{\mathrm{H}}(x)$. Therefore, $h_{\mathrm{H}}(0) \supseteq h_{\mathrm{H}}(x) \supset \varepsilon$. Hence, $0 \in U^+(h_{\mathrm{H}};\varepsilon)$.

Next, let $x, y \in A$ be such that $x \cdot y \in U^+(\mathrm{H}; \varepsilon)$ and $x \in U^+(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot y) \supset \varepsilon$ and $h_{\mathrm{H}}(x) \supset \varepsilon$. Since $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-filter of A, we have $h_{\overline{\mathrm{H}}}(y) \subseteq h_{\overline{\mathrm{H}}}(x \cdot y) \cup h_{\overline{\mathrm{H}}}(x)$. By Lemma 1 (2), we have $[0,1] - h_{\mathrm{H}}(y) \subseteq ([0,1] - h_{\mathrm{H}}(x \cdot y)) \cup ([0,1] - h_{\mathrm{H}}(x)) = [0,1] - (h_{\mathrm{H}}(x \cdot y) \cap h_{\mathrm{H}}(x))$. Thus $h_{\mathrm{H}}(y) \supseteq h_{\mathrm{H}}(x \cdot y) \cap h_{\mathrm{H}}(x) \supset \varepsilon$. Therefore, $y \in U^+(\mathrm{H};\varepsilon)$. Hence, $U^+(\mathrm{H};\varepsilon)$ is a UP-filter of A.

(2) Assume that Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U^+(\mathrm{H};\varepsilon)$ of A is a UP-filter of A. Assume that there exists $x \in A$ such that $h_{\overline{\mathrm{H}}}(0) \not\subseteq h_{\overline{\mathrm{H}}}(x)$. Since Im(H) is a chain, we have $h_{\overline{\mathrm{H}}}(0) \supset h_{\overline{\mathrm{H}}}(x)$. and thus $[0,1] - h_{\mathrm{H}}(0) \supset [0,1] - h_{\mathrm{H}}(x)$. So $h_{\mathrm{H}}(0) \subset h_{\mathrm{H}}(x)$. Choose $\varepsilon = h_{\mathrm{H}}(0) \in \mathcal{P}([0,1])$. Then $h_{\mathrm{H}}(x) \supset \varepsilon$. Thus $x \in U^+(\mathrm{H};\varepsilon) \neq \emptyset$. By assumption, we have $U^+(\mathrm{H};\varepsilon)$ is a UP-filter of A and so $0 \in L^-(\mathrm{H};\varepsilon)$. Therefore, $h_{\mathrm{H}}(0) \supset \varepsilon = h_{\mathrm{H}}(0)$, a contradiction. Hence, $h_{\overline{\mathrm{H}}}(0) \subseteq h_{\overline{\mathrm{H}}}(x)$ for all $x \in A$.

Next, assume that there exist $x, y \in A$ such that $h_{\overline{H}}(y) \nsubseteq h_{\overline{H}}(x \cdot y) \cup h_{\overline{H}}(x)$. Since Im(H) is a chain, we have $h_{\overline{H}}(y) \supset h_{\overline{H}}(x \cdot y) \cup h_{\overline{H}}(x)$. By Lemma 1 (2), we have $[0,1] - h_H(y) \supset ([0,1] - h_H(x \cdot y)) \cup ([0,1] - h_H(x)) = [0,1] - (h_H(x \cdot y) \cap h_H(x))$. Thus $h_H(y) \subset h_H(x \cdot y) \cap h_H(x)$. Choose $\varepsilon = h_H(y) \in \mathcal{P}([0,1])$. Then $h_H(x \cdot y) \supset \varepsilon$ and $h_H(x) \supset \varepsilon$. Thus $x \cdot y, x \in U^+(H;\varepsilon) \neq \emptyset$. By assumption, we have $U^+(H;\varepsilon)$ is a UP-filter of A and so $y \in U^+(H;\varepsilon)$. Thus $h_H(y) \supset \varepsilon = h_H(y)$, a contradiction. Therefore, $h_{\overline{H}}(y) \subseteq h_{\overline{H}}(x \cdot y) \cup h_{\overline{H}}(x)$ for all $x, y \in A$. Hence, \overline{H} is an anti-hesitant fuzzy UP-filter of A.

Example 13. Let $A = \{0, 1, 2, 3, 4\}$ be a set with a binary operation \cdot defined by the Cayley table from Example 9. Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_{H}(0) = \{0, 1\}, h_{H}(1) = \{1\}, h_{H}(2) = \{0\}, h_{H}(3) = \emptyset, and h_{H}(4) = \emptyset.$$

Then Im(H) is not a chain. If $\varepsilon = \{1\}$ or $\varepsilon = \{0\}$, then $U^+(H; \varepsilon) = \{0\}$. If $\varepsilon = \emptyset$, then $U^+(H; \varepsilon) = \{0, 1, 2\}$. Otherwise, $U^+(H; \varepsilon) = \emptyset$. Using this data, we can show that all nonempty subset $U^+(H; \varepsilon)$ of A is a UP-filter of A. By Definition 4, we have

$$h_{\overline{H}}(0) = (0,1), h_{\overline{H}}(1) = [0,1), h_{\overline{H}}(2) = (0,1], h_{\overline{H}}(3) = [0,1], and h_{\overline{H}}(4) = [0,1].$$

Since $h_{\overline{H}}(2) = (0,1] \nsubseteq [0,1) = h_{\overline{H}}(1) \cup h_{\overline{H}}(1) = h_{\overline{H}}(1 \cdot 2) \cup h_{\overline{H}}(1)$, we have \overline{H} is not an anti-hesitant fuzzy UP-filter of A.

Theorem 21. Let H be a hesitant fuzzy set on A. Then the following statements hold:

- (1) if \overline{H} is an anti-hesitant fuzzy UP-ideal of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, $U^+(H;\varepsilon)$ is a UP-ideal of A if $U^+(H;\varepsilon)$ is nonempty, and
- (2) if Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U^+(H;\varepsilon)$ of A is a UP-ideal of A, then \overline{H} is an anti-hesitant fuzzy UP-ideal of A.

Proof. (1) Assume that $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-ideal of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $U^+(\mathrm{H};\varepsilon) \neq \emptyset$, and let $x \in A$ be such that $x \in U(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) \supset \varepsilon$. Since $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-ideal of A, we have $\mathrm{h}_{\overline{\mathrm{H}}}(0) \subseteq \mathrm{h}_{\overline{\mathrm{H}}}(x)$. Thus $[0,1] - \mathrm{h}_{\mathrm{H}}(0) \subseteq$ $[0,1] - \mathrm{h}_{\mathrm{H}}(x)$. Therefore, $\mathrm{h}_{\mathrm{H}}(0) \supseteq \mathrm{h}_{\mathrm{H}}(x) \supset \varepsilon$. Hence, $0 \in U^+(\mathrm{H};\varepsilon)$.

Next, let $x, y, z \in A$ be such that $x \cdot (y \cdot z) \in U^+(\mathrm{H}; \varepsilon)$ and $y \in U^+(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot (y \cdot z)) \supset \varepsilon$ and $h_{\mathrm{H}}(y) \supset \varepsilon$. Since $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy UP-ideal of A, we obtain $h_{\overline{\mathrm{H}}}(x \cdot z) \subseteq h_{\overline{\mathrm{H}}}(x \cdot (y \cdot z)) \cup h_{\overline{\mathrm{H}}}(y)$. By Lemma 1 (2), we have $[0, 1] - h_{\mathrm{H}}(x \cdot z) \subseteq ([0, 1] - h_{\mathrm{H}}(x \cdot (y \cdot z))) \cup ([0, 1] - h_{\mathrm{H}}(y)) = [0, 1] - (h_{\mathrm{H}}(x \cdot (y \cdot z)) \cap h_{\mathrm{H}}(y))$. Thus $h_{\mathrm{H}}(x \cdot z) \supseteq h_{\mathrm{H}}(x \cdot (y \cdot z)) \cap h_{\mathrm{H}}(y) \supset \varepsilon$. Therefore, $x \cdot z \in U^+(\mathrm{H}; \varepsilon)$. Hence, $U^+(\mathrm{H}; \varepsilon)$ is a UP-ideal of A.

(2) Assume that Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U^+(\mathrm{H};\varepsilon)$ of A is a UP-ideal of A. Assume that there exists $x \in A$ such that $h_{\overline{\mathrm{H}}}(0) \not\subseteq h_{\overline{\mathrm{H}}}(x)$. Since Im(H) is a chain, we have $h_{\overline{\mathrm{H}}}(0) \supset h_{\overline{\mathrm{H}}}(x)$. Then $[0,1] - h_{\mathrm{H}}(0) \supset [0,1] - h_{\mathrm{H}}(x)$. Thus $h_{\mathrm{H}}(0) \subset h_{\mathrm{H}}(x)$. Choose $\varepsilon = h_{\mathrm{H}}(0) \in \mathcal{P}([0,1])$. Then $h_{\mathrm{H}}(x) \supset \varepsilon$. Thus $x \in U^+(\mathrm{H};\varepsilon) \neq \emptyset$. By assumption, we have $U^+(\mathrm{H};\varepsilon)$ is a UP-ideal of A and so $0 \in U^+(\mathrm{H};\varepsilon)$. Therefore, $h_{\mathrm{H}}(0) \supset \varepsilon = h_{\mathrm{H}}(0)$, a contradiction. Hence, $h_{\overline{\mathrm{H}}}(0) \subseteq h_{\overline{\mathrm{H}}}(x)$ for any $x \in A$.

Next, assume that there exist $x, y, z \in A$ such that $h_{\overline{H}}(x \cdot z) \nsubseteq h_{\overline{H}}(x \cdot (y \cdot z)) \cup h_{\overline{H}}(y)$. Since Im(H) is a chain, we have $h_{\overline{H}}(x \cdot z) \supset h_{\overline{H}}(x \cdot (y \cdot z)) \cup h_{\overline{H}}(y)$. By Lemma 1 (2), we have $[0,1] - h_{H}(x \cdot z) \supset ([0,1] - h_{H}(x \cdot (y \cdot z))) \cup ([0,1] - h_{H}(y)) = [0,1] - (h_{H}(x \cdot (y \cdot z)) \cap h_{H}(y))$. Thus $h_{H}(x \cdot z) \subset h_{H}(x \cdot (y \cdot z)) \cap h_{H}(y)$. Choose $\varepsilon = h_{H}(x \cdot z) \in \mathcal{P}([0,1])$. Then $h_{H}(x \cdot (y \cdot z)) \supset \varepsilon$ and $h_{H}(y) \supset \varepsilon$. Thus $x \cdot (y \cdot z), y \in U^{+}(H; \varepsilon) \neq \emptyset$. By assumption, we have $U^{+}(H; \varepsilon)$ is a UP-ideal of A and so $x \cdot z \in L^{-}(H; \varepsilon)$. Thus, $h_{H}(x \cdot z) \supset \varepsilon = h_{H}(x \cdot z)$, a contradiction. Therefore, $h_{\overline{H}}(x \cdot z) \subseteq h_{\overline{H}}(x \cdot (y \cdot z)) \cup h_{\overline{H}}(y)$ for all $x, y, z \in A$. Hence, \overline{H} is an anti-hesitant fuzzy UP-ideal of A.

Example 14. Let $A = \{0, 1, 2, 3, 4\}$ be a set with a binary operation \cdot defined by the Cayley table from Example 10. Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_H(0) = \{0, 1\}, h_H(1) = \{1\}, h_H(2) = \emptyset, h_H(3) = \{0\}, and h_H(4) = \emptyset$$

Then Im(H) is not a chain. If $\varepsilon = \{1\}$ or $\varepsilon = \{0\}$, then $U^+(H; \varepsilon) = \{0\}$. If $\varepsilon = \emptyset$, then $U^+(H; \varepsilon) = \{0, 1, 3\}$. Otherwise, $U^+(H; \varepsilon) = \emptyset$. Using this data, we can show that all nonempty subset $U^+(H; \varepsilon)$ of A is a UP-ideal of A. By Definition 4, we have

$$\mathbf{h}_{\overline{\mathbf{H}}}(0) = (0,1), \\ \mathbf{h}_{\overline{\mathbf{H}}}(1) = [0,1), \\ \mathbf{h}_{\overline{\mathbf{H}}}(2) = [0,1], \\ \mathbf{h}_{\overline{\mathbf{H}}}(3) = (0,1], \text{ and } \\ \mathbf{h}_{\overline{\mathbf{H}}}(4) = [0,1].$$

Since $h_{\overline{H}}(0 \cdot 1) = h_{\overline{H}}(1) = [0, 1) \notin (0, 1] = h_{\overline{H}}(0) \cup h_{\overline{H}}(3) = h_{\overline{H}}(0 \cdot (3 \cdot 1)) \cup h_{\overline{H}}(3)$, we have \overline{H} is not an anti-hesitant fuzzy UP-ideal of A.

Theorem 22. Let H be a hesitant fuzzy set on A. Then the following statements hold:

- (1) if \overline{H} is an anti-hesitant fuzzy strongly UP-ideal of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, $U^+(\mathrm{H};\varepsilon)$ is a strongly UP-ideal of A if $U^+(\mathrm{H};\varepsilon)$ is nonempty, and
- (2) if Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U^+(H;\varepsilon)$ of A is a strongly UP-ideal of A, then \overline{H} is an anti-hesitant fuzzy strongly UP-ideal of A.

Proof. (1) Assume that \overline{H} is an anti-hesitant fuzzy strongly UP-ideal of A. By Theorem 3, we obtain \overline{H} is a constant hesitant fuzzy set on A. By Corollary 2, we have H is a constant hesitant fuzzy set on A and so $h_H(x) = h_H(y)$ for all $x, y \in A$. Let $\varepsilon \in \mathcal{P}([0, 1])$ be such that $U^+(H; \varepsilon) \neq \emptyset$. There exists $a \in U^+(H; \varepsilon)$ be such that $h_H(a) \supset \varepsilon$. Thus $h_H(x) = h_H(a) \supset \varepsilon$ for all $x \in A$ and so $x \in U^+(H; \varepsilon)$ for all $x \in A$. Therefore, $U^+(H; \varepsilon) = A$. Hence, $U^+(H; \varepsilon)$ is a strongly UP-ideal of A.

(2) Assume that Im(H) is a chain and for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $U^+(\mathrm{H};\varepsilon)$ of A is a strongly UP-ideal of A. Assume that $\overline{\mathrm{H}}$ is not a constant hesitant fuzzy set on A. By Corollary 2, we have H is not a constant hesitant fuzzy set on A. There exist $x, y \in A$ be such that $h_{\mathrm{H}}(x) \neq h_{\mathrm{H}}(y)$. Since Im(H) is a chain, we have $h_{\mathrm{H}}(x) \subset$ $h_{\mathrm{H}}(y)$ or $h_{\mathrm{H}}(x) \supset h_{\mathrm{H}}(y)$. Without loss of generality, assume that $h_{\mathrm{H}}(x) \subset h_{\mathrm{H}}(y)$, then $y \in U^+(\mathrm{H}; h_{\mathrm{H}}(x)) \neq \emptyset$. By assumption, we have $U^+(\mathrm{H}; h_{\mathrm{H}}(x))$ is a strongly UP-ideal of A and so $U^+(\mathrm{H}; h_{\mathrm{H}}(x)) = A$. Thus $x \in A = U^+(\mathrm{H}; h_{\mathrm{H}}(x))$ and so $h_{\mathrm{H}}(x) \subset h_{\mathrm{H}}(x)$, a contradiction. Therefore, $\overline{\mathrm{H}}$ is a constant hesitant fuzzy set on A. By Theorem 3, we obtain $\overline{\mathrm{H}}$ is an anti-hesitant fuzzy strongly UP-ideal of A.

Example 15. Let $A = \{0, 1\}$ be a set with a binary operation \cdot defined by the Cayley table from Example 11. Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_{\rm H}(0) = \{0\}, and h_{\rm H}(1) = \{1\}.$$

Then Im(H) is not a chain. If $\varepsilon = \emptyset$, then $U^+(H; \varepsilon) = A$. Otherwise, $U^+(H; \varepsilon) = \emptyset$. Thus a nonempty subset $U^+(H; \varepsilon)$ of A is a strongly UP-ideal of A. By Definition 4, we have

$$h_{\overline{H}}(0) = (0, 1], and h_{\overline{H}}(1) = [0, 1).$$

By Theorem 3 and because \overline{H} is not a constant hesitant fuzzy set on A, we have \overline{H} is not an anti-hesitant fuzzy strongly UP-ideal of A.

996

5.5. Equal ε -Level Subsets

Theorem 23. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-subalgebra of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $E(\mathrm{H};\varepsilon)$ of A is a UP-subalgebra of A where $L^{-}(\mathrm{H};\varepsilon)$ is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $E(\mathrm{H};\varepsilon) \neq \emptyset$ but $L^{-}(\mathrm{H};\varepsilon) = \emptyset$, and let $x, y \in A$ be such that $x \in E(\mathrm{H};\varepsilon)$ and $y \in E(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) = \varepsilon$ and $\mathrm{h}_{\mathrm{H}}(y) = \varepsilon$. Because H is an anti-hesitant fuzzy UP-subalgebra of A, we have $\mathrm{h}_{\mathrm{H}}(x \cdot y) \subseteq \mathrm{h}_{\mathrm{H}}(x) \cup \mathrm{h}_{\mathrm{H}}(y) = \varepsilon$. Thus $x \cdot y \in L(\mathrm{H};\varepsilon)$. Since $L^{-}(\mathrm{H};\varepsilon)$ is empty, we obtain $L(\mathrm{H};\varepsilon) = L^{-}(\mathrm{H};\varepsilon) \cup E(\mathrm{H};\varepsilon) = \emptyset \cup E(\mathrm{H};\varepsilon) = E(\mathrm{H};\varepsilon)$. Therefore, $x \cdot y \in E(\mathrm{H};\varepsilon)$. Hence, $E(\mathrm{H};\varepsilon)$ is a UP-subalgebra of A.

The following example show that the converse of Theorem 23 is not true in general.

Example 16. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

·	0	1	2	3
0	0	1	2	3
1	0	0	1	3
2	0	0	0	3
3	0	1	1	0

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_{\rm H}(0) = \emptyset, h_{\rm H}(1) = [0, 0.6], h_{\rm H}(2) = [0, 0.3], and h_{\rm H}(3) = [0, 0.3].$$

If $\varepsilon \neq \emptyset$, then $L^-(\mathrm{H}; \varepsilon) \neq \emptyset$. If $\varepsilon = \emptyset$, then $L^-(\mathrm{H}; \varepsilon) = \emptyset$ and $E(\mathrm{H}; \varepsilon) = \{0\}$. Thus $E(\mathrm{H}; \varepsilon)$ is clearly a UP-subalgebra of A. Since $h_{\mathrm{H}}(3 \cdot 2) = h_{\mathrm{H}}(1) = [0, 0.6] \nsubseteq [0, 0.3] = h_{\mathrm{H}}(3) \cup h_{\mathrm{H}}(2)$, we have H is not an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 24. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-filter of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $E(\mathrm{H};\varepsilon)$ of A is a UP-filter of A where $L^{-}(\mathrm{H};\varepsilon)$ is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-filter of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $E(\mathrm{H};\varepsilon) \neq \emptyset$ but $L^{-}(\mathrm{H};\varepsilon) = \emptyset$, and let $x \in A$ be such that $x \in E(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) = \varepsilon$. Because H is an anti-hesitant fuzzy UP-filter of A, we obtain $\mathrm{h}_{\mathrm{H}}(0) \subseteq \mathrm{h}_{\mathrm{H}}(x) = \varepsilon$ and thus $0 \in L(\mathrm{H};\varepsilon)$. Since $L^{-}(\mathrm{H};\varepsilon)$ is empty, we have $0 \in L(\mathrm{H};\varepsilon) = E(\mathrm{H};\varepsilon)$.

Next, let $x, y \in A$ be such that $x \cdot y \in E(\mathrm{H}; \varepsilon)$ and $x \in E(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot y) = \varepsilon$ and $h_{\mathrm{H}}(x) = \varepsilon$. Because H is an anti-hesitant fuzzy UP-filter of A, we have $h_{\mathrm{H}}(y) \subseteq h_{\mathrm{H}}(x \cdot y) \cup h_{\mathrm{H}}(x) = \varepsilon$. Thus $y \in L(\mathrm{H}; \varepsilon)$. Since $L^{-}(\mathrm{H}; \varepsilon)$ is empty, we obtain $L(\mathrm{H}; \varepsilon) = E(\mathrm{H}; \varepsilon)$. Therefore, $y \in E(\mathrm{H}; \varepsilon)$. Hence, $E(\mathrm{H}; \varepsilon)$ is a UP-filter of A.

The converse of Theorem 24 is not true in general. By Example 16, we still have $E(\mathrm{H};\varepsilon) = \{0\}$ is a UP-filter of A. Since $h_{\mathrm{H}}(1) = [0, 0.6] \notin [0, 0.3] = h_{\mathrm{H}}(0) \cup h_{\mathrm{H}}(2) = h_{\mathrm{H}}(2 \cdot 1) \cup h_{\mathrm{H}}(2)$, we have H is not an anti-hesitant fuzzy UP-filter of A.

Theorem 25. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-ideal of A, then $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $E(\mathrm{H};\varepsilon)$ of A is a UP-ideal of A where $L^{-}(\mathrm{H};\varepsilon)$ is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $E(\mathrm{H};\varepsilon) \neq \emptyset$ but $L^{-}(\mathrm{H};\varepsilon) = \emptyset$, and let $x \in A$ be such that $x \in E(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) = \varepsilon$. Because H is an anti-hesitant fuzzy UP-ideal of A, we obtain $\mathrm{h}_{\mathrm{H}}(0) \subseteq \mathrm{h}_{\mathrm{H}}(x) = \varepsilon$ and thus $0 \in L(\mathrm{H};\varepsilon)$. Since $L^{-}(\mathrm{H};\varepsilon)$ is empty, we have $0 \in L(\mathrm{H};\varepsilon) = E(\mathrm{H};\varepsilon)$.

Next, let $x, y, z \in A$ be such that $x \cdot (y \cdot z) \in E(\mathrm{H}; \varepsilon)$ and $y \in E(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot (y \cdot z)) = \varepsilon$ and $h_{\mathrm{H}}(y) = \varepsilon$. Because H is an anti-hesitant fuzzy UP-ideal of A, we have $h_{\mathrm{H}}(x \cdot z) \subseteq h_{\mathrm{H}}(x \cdot (y \cdot z)) \cup h_{\mathrm{H}}(y) = \varepsilon$. Thus $x \cdot z \in L(\mathrm{H}; \varepsilon)$. Since $L^{-}(\mathrm{H}; \varepsilon)$ is empty, we obtain $L(\mathrm{H}; \varepsilon) = E(\mathrm{H}; \varepsilon)$. Therefore, $x \cdot z \in E(\mathrm{H}; \varepsilon)$. Hence, $E(\mathrm{H}; \varepsilon)$ is a UP-ideal of A.

The converse of Theorem 25 is not true in general. By Example 16, we still have $E(\mathrm{H};\varepsilon) = \{0\}$ is a UP-ideal of A. Since $h_{\mathrm{H}}(0 \cdot 1) = h_{\mathrm{H}}(1) = [0, 0.6] \notin [0, 0.3] = h_{\mathrm{H}}(0) \cup h_{\mathrm{H}}(2) = h_{\mathrm{H}}(0 \cdot (2 \cdot 1)) \cup h_{\mathrm{H}}(2)$, we have H is not an anti-hesitant fuzzy UP-ideal of A.

Theorem 26. A hesitant fuzzy set H on A is an anti-hesitant fuzzy strongly UP-ideal of A if and only if $E(H; h_H(0))$ is a strongly UP-ideal of A.

Proof. Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. By Theorem 3, we obtain H is a constant hesitant fuzzy set on A and so $h_H(x) = h_H(0)$ for all $x \in A$. Then $E(H; h_H(0)) = A$. Hence, $E(H; h_H(0))$ is a strongly UP-ideal of A.

Conversely, assume that $E(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(0))$ is a strongly UP-ideal of A. Then $E(\mathrm{H}; \mathrm{h}_{\mathrm{H}}(0)) = A$ and so $\mathrm{h}_{\mathrm{H}}(x) = \mathrm{h}_{\mathrm{H}}(0)$ for all $x \in A$. Therefore, H is a constant hesitant fuzzy set on A. By Theorem 3, H is an anti-hesitant fuzzy strongly UP-ideal of A.

Moreover, we still obtain theorems of equal ε -level subsets with a hesitant fuzzy UP-subalgebra. (resp., hesitant fuzzy UP-filter, hesitant fuzzy UP-ideal, hesitant fuzzy strongly UP-ideal)

Theorem 27. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-subalgebra of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $E(\mathrm{H};\varepsilon)$ of A is a UP-subalgebra of A where $U^+(\mathrm{H};\varepsilon)$ is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let $\varepsilon \in \mathcal{P}([0, 1])$ be such that $E(\mathrm{H}; \varepsilon) \neq \emptyset$ but $U^+(\mathrm{H}; \varepsilon) = \emptyset$, and let $x, y \in A$ be such that $x \in E(\mathrm{H}; \varepsilon)$ and $y \in E(\mathrm{H}; \varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) = \varepsilon$ and $\mathrm{h}_{\mathrm{H}}(y) = \varepsilon$. Since H is an anti-hesitant fuzzy UP-subalgebra of A, we have $\mathrm{h}_{\mathrm{H}}(x \cdot y) \supseteq \mathrm{h}_{\mathrm{H}}(x) \cap \mathrm{h}_{\mathrm{H}}(y) = \varepsilon$. Thus $x \cdot y \in U(\mathrm{H}; \varepsilon)$. Since $U^+(\mathrm{H}; \varepsilon)$ is empty, we obtain $U(\mathrm{H}; \varepsilon) = U^+(\mathrm{H}; \varepsilon) \cup E(\mathrm{H}; \varepsilon) = \emptyset \cup E(\mathrm{H}; \varepsilon) = E(\mathrm{H}; \varepsilon)$. Therefore, $x \cdot y \in E(\mathrm{H}; \varepsilon)$. Hence, $E(\mathrm{H}; \varepsilon)$ is a UP-subalgebra of A.

The following example show that the converse of Theorem 27 is not true in general.

Example 17. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following

Cayley table:

Then $(A, \cdot, 0)$ is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

$$h_H(0) = [0, 1], h_H(1) = \{0\}, h_H(2) = [0, 0.1], and h_H(3) = [0, 0.1].$$

If $\varepsilon \neq [0,1]$, then $U^+(\mathrm{H};\varepsilon) \neq \emptyset$. If $\varepsilon = [0,1]$, then $U^+(\mathrm{H};\varepsilon) = \emptyset$ and $E(\mathrm{H};\varepsilon) = \{0\}$. Thus $E(\mathrm{H};\varepsilon)$ is clearly a UP-subalgebra of A. Since $h_{\mathrm{H}}(3 \cdot 2) = h_{\mathrm{H}}(1) = \{0\} \not\supseteq [0,0.1] = h_{\mathrm{H}}(3) \cap h_{\mathrm{H}}(2)$, we have H is not an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 28. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-filter of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $E(\mathrm{H};\varepsilon)$ of A is a UP-filter of A where $U^+(\mathrm{H};\varepsilon)$ is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-filter of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $E(\mathrm{H};\varepsilon) \neq \emptyset$ but $U^+(\mathrm{H};\varepsilon) = \emptyset$, and let $x \in A$ be such that $x \in E(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) = \varepsilon$. Because H is an anti-hesitant fuzzy UP-filter of A, we obtain $\mathrm{h}_{\mathrm{H}}(0) \supseteq \mathrm{h}_{\mathrm{H}}(x) = \varepsilon$ and thus $0 \in U(\mathrm{H};\varepsilon)$. Since $U^+(\mathrm{H};\varepsilon)$ is empty, we have $0 \in U(\mathrm{H};\varepsilon) = E(\mathrm{H};\varepsilon)$.

Next, let $x, y \in A$ be such that $x \cdot y \in E(\mathrm{H}; \varepsilon)$ and $x \in E(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot y) = \varepsilon$ and $h_{\mathrm{H}}(x) = \varepsilon$. Because H is an anti-hesitant fuzzy UP-filter of A, we have $h_{\mathrm{H}}(y) \supseteq h_{\mathrm{H}}(x \cdot y) \cap h_{\mathrm{H}}(x) = \varepsilon$. Thus $y \in L(\mathrm{H}; \varepsilon)$. Since $U^+(\mathrm{H}; \varepsilon)$ is empty, we obtain $U(\mathrm{H}; \varepsilon) = E(\mathrm{H}; \varepsilon)$. Therefore, $y \in E(\mathrm{H}; \varepsilon)$. Hence, $E(\mathrm{H}; \varepsilon)$ is a UP-filter of A.

The converse of Theorem 28 is not true in general. By Example 17, we still have $E(\mathrm{H};\varepsilon) = \{0\}$ is a UP-filter of A. Since $h_{\mathrm{H}}(1) = \{0\} \not\supseteq [0,0.1] = h_{\mathrm{H}}(0) \cap h_{\mathrm{H}}(3) = h_{\mathrm{H}}(3 \cdot 1) \cap h_{\mathrm{H}}(3)$, we have H is not an anti-hesitant fuzzy UP-filter of A.

Theorem 29. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-ideal of A, then for all $\varepsilon \in \mathcal{P}([0,1])$, a nonempty subset $E(\mathrm{H};\varepsilon)$ of A is a UP-ideal of A where $U^+(\mathrm{H};\varepsilon)$ is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let $\varepsilon \in \mathcal{P}([0,1])$ be such that $E(\mathrm{H};\varepsilon) \neq \emptyset$ but $U^+(\mathrm{H};\varepsilon) = \emptyset$, and let $x \in A$ be such that $x \in E(\mathrm{H};\varepsilon)$. Then $\mathrm{h}_{\mathrm{H}}(x) = \varepsilon$. Because H is an anti-hesitant fuzzy UP-filter of A, we obtain $\mathrm{h}_{\mathrm{H}}(0) \supseteq \mathrm{h}_{\mathrm{H}}(x) = \varepsilon$ and thus $0 \in U(\mathrm{H};\varepsilon)$. Since $U^+(\mathrm{H};\varepsilon)$ is empty, we have $0 \in U(\mathrm{H};\varepsilon) = E(\mathrm{H};\varepsilon)$.

Next, let $x, y, z \in A$ be such that $x \cdot (y \cdot z) \in E(\mathrm{H}; \varepsilon)$ and $y \in E(\mathrm{H}; \varepsilon)$. Then $h_{\mathrm{H}}(x \cdot (y \cdot z)) = \varepsilon$ and $h_{\mathrm{H}}(y) = \varepsilon$. Since H is an anti-hesitant fuzzy UP-ideal of A, we have $h_{\mathrm{H}}(x \cdot z) \supseteq h_{\mathrm{H}}(x \cdot (y \cdot z)) \cap h_{\mathrm{H}}(y) = \varepsilon$. Thus $x \cdot z \in U(\mathrm{H}; \varepsilon)$. Since $L^{-}(\mathrm{H}; \varepsilon)$ is empty, we obtain $U(\mathrm{H}; \varepsilon) = E(\mathrm{H}; \varepsilon)$. Therefore, $x \cdot z \in E(\mathrm{H}; \varepsilon)$. Hence, $E(\mathrm{H}; \varepsilon)$ is a UP-ideal of A.

The converse of Theorem 29 is not true in general. By Example 17, we still have $E(\mathrm{H};\varepsilon) = \{0\}$ is a UP-ideal of A. Since $h_{\mathrm{H}}(3\cdot 2) = h_{\mathrm{H}}(1) = \{0\} \not\supseteq [0,0.1] = h_{\mathrm{H}}(0) \cap h_{\mathrm{H}}(2) = h_{\mathrm{H}}(3\cdot(2\cdot 2)) \cap h_{\mathrm{H}}(2)$, we have H is not an anti-hesitant fuzzy UP-ideal of A.

Theorem 30. A hesitant fuzzy set H on A is an anti-hesitant fuzzy strongly UP-ideal of A if and only if $E(H; h_H(0))$ is a strongly UP-ideal of A.

Proof. It is straightforward by Theorem 26 and 3.

6. Conclusions and Future Work

In this paper, we have introduced the notion of anti-hesitant fuzzy UP-subalgebras (resp., anti-hesitant fuzzy UP-filters, anti-hesitant fuzzy UP-ideals and anti-hesitant fuzzy strongly UP-ideals) of UP-algebras and investigated some of its important properties. Then we have the diagram of anti-type of hesitant fuzzy sets on UP-algebras below.

In our future study of UP-algebras, may be the following topics should be considered:

- To get more results in anti-hesitant fuzzy UP-subalgebras, anti-hesitant fuzzy UPfilters, anti-hesitant fuzzy UP-ideals, and anti-hesitant fuzzy strongly UP-ideals of UP-algebras.
- To define anti-hesitant fuzzy soft UP-subalgebras, anti-hesitant fuzzy soft UP-filters, anti-hesitant fuzzy soft UP-ideals, and anti-hesitant fuzzy soft strongly UP-ideals over UP-algebras.
- To define operations of hesitant fuzzy soft sets over UP-algebras.

Acknowledgements

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

- T. Guntasow, S. Sajak, A. Jomkham, and A. Iampan. Fuzzy translations of a fuzzy set in UP-algebras. J. Indones. Math. Soc., 23(2):1–19, 2017.
- [2] A. Iampan. A new branch of the logical algebra: UP-algebras. J. Algebra Relat. Top., 5(1):35–54, 2017.
- [3] A. Iampan. Introducing fully UP-semigroups. Manuscript accepted for publication in Discuss. Math., Gen. Algebra Appl., September 2018.
- [4] W. Kaijae, P. Poungsumpao, S. Arayarangsi, and A. Iampan. UP-algebras characterized by their anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. *Ital. J. Pure Appl. Math.*, 36:667–692, 2016.
- [5] B. Kesorn, K. Maimun, W. Ratbandan, and A. Iampan. Intuitionistic fuzzy sets in UP-algebras. *Ital. J. Pure Appl. Math.*, 34:339–364, 2015.
- [6] P. Mosrijai, W. Kamti, A. Satirad, and A. Iampan. Hesitant fuzzy sets on UPalgebras. *Konuralp J. Math.*, 5(2):268–280, 2017.
- [7] P. Mosrijai, A. Satirad, and A. Iampan. Partial constant hesitant fuzzy sets on UPalgebras. J. New Theory, 22:39–50, 2018.
- [8] C. Prabpayak and U. Leerawat. On ideals and congruences in KU-algebras. Sci. Magna, 5(1):54–57, 2009.
- [9] D. A. Romano. Proper UP-filters of UP-algebra. Univ. J. Math. Appl., 1(2):98–100, 2018.
- [10] A. Satirad, P. Mosrijai, and A. Iampan. Generalized power UP-algebras. Manuscript accepted for publication in Int. J. Math. Comput. Sci., May 2018.
- [11] A. Satirad, P. Mosrijai, W. Kamti, and A. Iampan. Level subsets of a hesitant fuzzy set on UP-algebras. Ann. Fuzzy Math. Inform., 14(3):279–302, 2017.
- [12] T. Senapati, Y. B. Jun, and K. P. Shum. Cubic set structure applied in UP-algebras. Discrete Math. Algorithms Appl., 10(4):1850049, 2018.
- [13] T. Senapati, G. Muhiuddin, and K. P. Shum. Representation of UP-algebras in interval-valued intuitionistic fuzzy environment. *Ital. J. Pure Appl. Math.*, 38:497– 517, 2017.
- [14] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, and A. Iampan. Fuzzy sets in UPalgebras. Ann. Fuzzy Math. Inform., 12(6):739–756, 2016.
- [15] M. Songsaeng and A. Iampan. N-fuzzy UP-algebras and its level subsets. J. Algebra Relat. Top., 6(1):1–24, 2018.

- [16] S. Sripaeng, K. Tanamoon, and A. Iampan. On anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras. J. Inf. Optim. Sci., 39(5):1095–1127, 2018.
- [17] K. Tanamoon, S. Sripaeng, and A. Iampan. Q-fuzzy sets in UP-algebras. Songklanakarin J. Sci. Technol., 40(1):9–29, 2018.
- [18] V. Torra. Hesitant fuzzy sets. Int. J. Intell. Syst., 25(6):529–539, 2010.