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Abstract. The G-weak graded rings are rings graded by a set G of left coset representatives for
the left action of a subgroup H of a finite group X. The main aim of this article is to study the
concept of G-weak graded rings and continue the investigation of their properties. Moreover, some
results concerning G-weak graded rings of fractions are derived. Finally, some additional examples
of G-weak graded rings are provided.
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1. Introduction

Recall that, for a group X and a ring R, R is called X-graded if, for each element g in
the group X, there is an additive subgroup Rg of R, such that R =

⊕
g∈X Rg and, for all

g, h ∈ X, we have RgRh ⊆ Rgh.

Group graded rings as well as Clifford theory for group graded rings were studied and
their properties were investigated by many mathematicians, see for exampl [8], [9],[10], [12],
[16], [21] and [22]. Nevertheless, rings and modules can be graded by using semigroups
instead of groups leading to more general results as we can see in [1], [11], [13], [14], [15]
and [19].

Many ways have been used to investigate the properties of these rings. In [7], Cohen and
Montgomery introduced an interesting way using duality theorems, see also [5]. Another
useful way is the associated graded ring construction which states that for a valuation ring
R, we can associate a ring RG graded by the valuation group G. This ring seems to be
easier to be studied and the properties can be lifted back from RG to R. This way is one
of the motivations for studying graded rings, see [16] for more details. Moreover, some
mathematicians introduced categorical methods to study these graded rings such as the
study of separable functors introduced in [17] and [20]. Most of these methods have been
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introduced for the finite group-grading. However, more additional investigations have been
done considering the infinite case, see for example [2].

In [6], a fixed set G of left coset representatives for the left action of a subgroup H on
a group X was constructed and a binary operation on G, which has a left identity and the
right division property, was defined. This binary operation is not associative in a travail
way. However, the associativity was considered by using a ”cocycle” f : G×G −→ H. The
dependence on the choice of representatives was shown as follows: For a given subgroup
H of a group X, different sets of representatives G and G for the left cosets can be chosen.
These cosets are related by an arbitrary function γ : X/H −→ H, so that if s ∈ G then
γ([s])s ∈ G, where [s] denotes the coset Hs.

In [3], the concept of group graded rings was extended by using a set G of left coset
representatives with specific binary operation. This new concept was called G-weak graded
rings. In [4], some properties of weak graded rings were investigated. Moreover, graded
rings by using the product H ×G were also discussed.

In this article, we consider the G-weak graded rings and continue the investigation of
their properties. More specifically, for a finite group X, a subgroup H, a fixed set of left
coset representatives (G, ∗) and a G-weak graded ring R with unity, the following results
are proved: (i) If K is a subring of R containing all of its G-homogeneous elements, then
K is a G-weak graded subring. (ii) If x is a unit element such that x ∈ Rs for some s ∈ G,
then x−1 ∈ RsL where sL is the left inverse of s. (iii) WGrU (R), the set of all weak graded
units of R, is a subgroup of U(R). Moreover, some results considering the G-weak graded
rings of fraction are proved. Finally, some additional examples of G-weak graded rings are
introduced.

Throughout this article, we shall assume that all groups are finite, all rings are com-
mutative with unities and all vector spaces are finite dimensional.

2. Preliminaries

In this section, we list some important definitions and results that will be used later
in this article.

Definition 1. [6] Let X be a group and H be a subgroup of X. We call G ⊂ X a set of
left coset representatives if, for every x ∈ X, there is a unique s ∈ G such that x ∈ Hs. In
addition, we call the decomposition x = us, for u ∈ H and s ∈ G, the unique factorization
of x.

In what follows, G stands for a fixed set of left coset representatives for the action of
the subgroup H of X on the group X and e is the identity element in X.

Definition 2. [6] For elements s, t ∈ G we define f(s, t) ∈ H and s ∗ t ∈ G by the unique
factorization st = f(s, t)(s ∗ t) in X, where f is the cocycle map. Moreover, the functions
. : G×H → H and / : G×H → G are defined by the unique factorization su = (s.u)(s/u)
for s, s / u ∈ G and u, s . u ∈ H.
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The binary operation ∗ on G has a unique left identity eG ∈ G and satisfying the
right division property, i.e., for all s, t ∈ G there is a unique solution p ∈ G satisfying the
equation p ∗ s = t [6]. If e ∈ G, then eG = e is also a right identity. Also, there is a unique
left inverse sL for every s ∈ G satisfying the equation sL ∗ s = eG.

Proposition 1. [6] The following identities between (G, ∗) and f are satisfied for all
s, t, p ∈ G and all u, v ∈ H:

s . (t . u) = f(s, t)
(
(s ∗ t

)
. u)f

(
s / (t . u), t / u

)−1
,

(s ∗ t) / u =
(
s / (t . u)

)
∗ (t / u) ,

s . uv = (s . u)
(
(s / u) . v

)
,

s / uv = (s / u) / v ,

f(p, s)f(p ∗ s, t) =
(
p . f(s, t)

)
f
(
p / f(s, t), s ∗ t

)
and (

p / f(s, t)
)
∗ (s ∗ t) = (p ∗ s) ∗ t.

Proposition 2. [6] The following identities between (G, ∗) and f are satisfied for all t ∈ G
and all v ∈ H:

eG / v = eG, eG . v = eGve
−1
G , t . e = e, t / e = t,

f(eG, t) = eG, t . e−1
G = f

(
t / e−1

G , eG
)−1

and
(
t / e−1

G

)
∗ eG = t.

Now, we include the definition of G-weak graded rings and some related results form
[3] where the binary operation ∗ is as in Definition 2.

Definition 3. [3], [4] Let X be a group, H be a subgroup of X and (G, ∗) be a fixed set
of left coset representatives for the left action of H on X. A ring R is called a G-weak
graded ring if

R =
⊕
s∈G

Rs (1)

and
RsRt ⊆ Rs∗t for all s, t ∈ G, (2)

where Rs is an additive subgroup for each s ∈ G. If (2) is replaced by

RsRt = Rs∗t for all s, t ∈ G, (3)

then, R is called a fully (or strongly) G-weak graded ring.
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It can be noted that any ring R can be put into a G-weak graded ring by placing
R = ReG and Rs = 0 for all s ∈ G with s 6= eG. This is called the trivial G-weak graded
ring.

Proposition 3. [3] Let G be a fixed set of left coset representatives for a subgroup H of
a group X and R be a G-weak graded ring with identity. Then, 1R ∈ ReG , where 1R is the
multiplicative identity of R.

Proposition 4. [3] Let R be a G-weak graded ring. Then the eG-component ReG is a
subring of R.

3. G-weak graded subrings and related results

In [3] and [4], the definition of weak graded rings was given and some of their properties
were derived. In this section, we continue the investigation of the properties of weak graded
rings. We start by giving a definition for a G-homogeneous element of a G-weak graded
ring R.

Definition 4. Let R be a G-weak graded ring. Then, a non-zero element rs ∈ R is said to
be a weak graded or G-homogeneous element of grade s if there exists an s-component Rs of
R such that rs ∈ Rs. The grade of rs is denoted by 〈rs〉 = s. The set of all G-homogeneous
elements of R is defined and written as h(R) = ∪s∈GRs.

Remark 1. By Definition 3, every element r ∈ R has a unique decomposition written as
r =

∑
s∈G rs with rs ∈ Rs for all s ∈ G. These {rs}s∈G are called the G-homogeneous

components of r. However, the sum
∑

s∈G rs is finite (in other words almost all rs are
zero).

Definition 5. Let K be a subring of a G-weak graded ring R. Then, K is said to be a
G-weak graded subring of R if K itself is a G-weak graded ring.

Theorem 1. Let K be a subring of a G-weak graded ring R. If K contains all the G-
homogeneous components for each k ∈ K, then K is a G-weak graded subring of R.

Proof. Clearly, we can write K as K =
∑

s∈GKs as additive subgroups. Then for
every k ∈ K, we have k =

∑
s∈G ks where ks ∈ Ks for all s ∈ G. We need to prove that

K =
⊕

s∈GKs and KsKt ⊆ Ks∗t which we do as follows:

(i) K =
⊕

s∈GKs.
Since K is a subring of R and R =

⊕
s∈GRs, we have Ks = K ∩ Rs for all s ∈

G. Also, as R is a G-weak graded ring, the direct sum condition implies that
Rs
⋂

(
∑

t∈GRt) = {0} for all s ∈ G with s 6= t, which consequently implies that
Ks
⋂

(
∑

t∈GKt) = {0}. Thus, K =
⊕

s∈GKs.

(ii) KsKt ⊆ Ks∗t.
Let Ks = K ∩Rs and Kt = K ∩Rt for some s and t in G. Hence,

KsKt = (K ∩Rs)(K ∩Rt) ⊆ K ∩ (RsRt) ⊆ K ∩ (Rs∗t) = Ks∗t,
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which completes the proof.

It can be noted that the last two lines in part (i) of the proof can be, equivalently,
written as follows:

Ks ∩ (
∑
t∈G

Kt) = (K ∩Rs) ∩ (
∑
t∈G

K ∩Rt) = K ∩ (Rs ∩
∑
t∈G

Rt) = K ∩ {0} = {0},

for all s ∈ G with s 6= t.

Corollary 1. A subring K of a G-weak graded ring R is a G-weak graded subring if and
only if K =

⊕
s∈G(K ∩Rs).

Theorem 2. Let X be a group, H be a subgroup of X and (G, ∗) be a fixed set of left
coset representatives. Suppose that G has a right inverse sR for each s ∈ G and that
sR = sL = s−1. Then, the G-weak graded ring R is fully if and only if 1R ∈ RsLRs for all
s ∈ G.

Proof. Let R be a fully G-weak graded ring. Then, we have

1R ∈ ReG = RsL∗s = RsLRs.

On the other hand, let 1R ∈ RsLRs. Since R is G-weak graded ring, we have RtRs ⊆ Rt∗s.
So, we only need to show that Rt∗s ⊆ RtRs which we do as follows:

Rt∗s = Rt∗s1R ⊆ Rt∗sRsLRs ⊆ R(t∗s)∗sLRs = R(
t/f(s,sL)

)
∗(s∗sL)

Rs

= R(
t/f(s,sL)

)
∗eG

Rs

= R(t/e−1
G )∗eGRs

= RtRs,

as required.

Theorem 3. If R is a G-weak graded ring and I is an ideal of ReG, then IR ∩ReG = I.

Proof. We have to show that I ⊆ IR ∩ ReG and IR ∩ ReG ⊆ I. It is obvious that
I ⊆ IR∩ReG as, for any i ∈ I, we can write i = i1R ∈ IR as well as i ∈ ReG since I ⊆ ReG .

So, it is enough to show that IR ∩ ReG ⊆ I which we do as follows: Suppose that
x ∈ IR ∩ReG which implies that x ∈ IR and x ∈ ReG . Since x ∈ IR, we can write x as

x =
∑
finite

ir, (4)

for i ∈ I and r ∈ R. As R is a G-weak graded ring, equation (4) can be rewritten as

x =
∑
finite

irs , for s ∈ G,

where rs ∈ Rs. Also, as x ∈ ReG , hence x can be written as x = ireG . Thus, x ∈ I since I
is an ideal of ReG . Therefore, IR ∩ReG ⊆ I which completes the proof.
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Definition 6. For a G-weak graded ring R, a unit x ∈ U(R) is said to be weak graded
unit or a G-homogeneous unit if x ∈ Rs for some s ∈ G, where U(R) is the group of all
units in R. The set of all weak graded units in R is denoted by WGrU (R).

Theorem 4. Let R be a G-weak graded ring with unity and let x be an element in U(R).
If x ∈ Rs, for some s ∈ G, then x−1 ∈ RsL.

Proof. Let x ∈ Rs for some s ∈ G and let x−1 =
∑

t∈G rt where rt ∈ Rt such that all
but a finite number of them are zero. Hence,

rtx ∈ RtRs ⊆ Rt∗s for any t ∈ G.

Thus, x−1x =
∑

t∈G rtx is the unique expansion for x−1x in the direct sumR =
⊕

t∈GRt∗s
which is equivalent to R =

⊕
s∈GRs since G is closed under the binary operation ∗. But,

on the other side, we have
x−1x = 1R ∈ ReG = RsL∗s.

Consequently,
∑

t∈G rtx = 1R which implies that rt = 0 for all t 6= sL. So, if we put
t = sL we get rsLx = 1R. Therefore, rsL = x−1 ∈ RsL as required.

Theorem 5. If R is a G-weak graded ring, then the set of all its weak graded units,
WGrU (R), is a subgroup of U(R) and the map 〈−〉 : WGrU (R) −→ G, satisfies the
homomorphism property of groups with 〈−〉−1(eG) = WGrU(ReG), where 〈−〉 is the G-
grade.

Proof. First, to show that the set WGrU (R) is a subgroup of U(R), let x, y ∈
WGrU (R). Then x ∈ Rs and y ∈ Rt for some s, t ∈ G. Now, since R is a G-weak
graded ring, we have

xy ∈ RsRt ⊆ Rs∗t.

Also, as G is closed under the operation ∗, we can put s ∗ t = p for some p ∈ G. Hence,
xy is weak graded for all x, y ∈WGrU (R). In addition, as x, y ∈WGrU (R) ⊆ U(R) and
that U(R) is a group under the ring multiplication, then xy ∈ U(R). Thus xy is a weak
graded unit for any x, y ∈WGrU (R), i.e., xy ∈WGrU (R). Moreover, if x ∈WGrU (R),
then, by Theorem 4, x−1 ∈WGrU (R).

Next, to show that the map 〈−〉 satisfies the homomorphism property of groups, let
x, y ∈WGrU (R) and suppose that x ∈ Rs and y ∈ Rt for some s, t ∈ G, i.e. 〈x〉 = s and
〈y〉 = t. Thus, xy ∈ RsRt ⊆ Rs∗t = Rp, for some p ∈ G. Consequently,

〈xy〉 = p = s ∗ t = 〈x〉 ∗ 〈y〉.
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Finally,

〈−〉−1(eG) = {x ∈WGrU (R) : 〈x〉 = eG}
= {x ∈WGrU (R) : x ∈ ReG}
= WGrU(ReG),

as required.

It should be noted that G is, in general, neither a group nor even a monoid.

Proposition 5. If a ring R is a G-weak graded ring, then the conjugation in R defines
an action given by

ϕR : reG , x −→ rxeG = x−1reGx

of the group WGrU (R) as automorphisms of the subring ReG, where reG ∈ ReG and
x ∈WGrU (R).

Proof. The conjugation by a weak graded unit x in Rs for some s ∈ G is an automor-
phism of the ring R satisfying:

Rx
eG

= x−1ReGx ⊆ RsLReGRs ⊆ RsLReG∗s = RsLRs ⊆ ReG .

Since WGrU (R) is a group, the proof is completed.

4. G-weak graded rings of fractions

We start this section by recalling the following well known results [18]:
(a) Let R be a ring and K be a multiplicatively closed subset of R such that 1R ∈ K, 0 /∈ K.
Then the left ring of fractions with respect to K, K−1R, exists if and only if R satisfies
the left Ore conditions with respect to K, i.e.:

(i) If rk = 0, for some k ∈ K and r ∈ R, then there is an element k′ ∈ K such that
k′r = 0.

(ii) For r ∈ R and k ∈ K, there are elements r′ ∈ R and k′ ∈ K such that k′r = r′k.

If Ore conditions with respect to K are satisfied, then

K−1R = RK =
{

r
k : r ∈ R, k ∈ K

}
.

The addition and multiplication operations on RK are defined, respectively, by r
k + r′

k′ =
k′r+kr′

kk′ and r
k ·

r′

k′ = r1r′

k′1k
for k′1 ∈ K, r1 ∈ R with k′1r = r1k

′.

(b) For every M in R-Mod, we can construct a fraction K−1M which is a left K−1R-
module. Moreover, K−1M ∼= K−1R⊗R M .

Now, we prove the following lemma which will be used to prove the the next theorem.
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Lemma 1. Let X be a group, H be a subgroup of X and G ⊂ X be a set of left coset
representatives. Then, for all s, t ∈ G, the multiplication s∗ t in G has a left inverse given
by:

(s ∗ t)L =
(
tL / f

(
sL / f(s, t), s ∗ t

)−1
)
∗
(
sL / f(s, t)

)
.

Proof. We have to show that((
tL / f

(
sL / f(s, t), s ∗ t

)−1
)
∗
(
sL / f(s, t)

))
∗ (s ∗ t) = eG. (5)

To do so, we start with the left hand side of equation (5) as follows:((
tL / f

(
sL / f(s, t), s ∗ t

)−1
)
∗
(
sL / f(s, t)

))
∗ (s ∗ t) =((

tL / f
(
sL / f(s, t), s ∗ t

)−1)
/ f
(
sL / f(s, t), s ∗ t

))
∗
(

(sL / f(s, t)) ∗ (s ∗ t)
)

=(
tL / f

(
sL / f(s, t), s ∗ t

)−1
f
(
sL / f(s, t), s ∗ t

))
∗
(

(sL ∗ s) ∗ t
)

=

tL ∗ t = eG.

The right division property yields
(
tL / f

(
sL / f(s, t), s ∗ t

)−1
)
∗
(
sL / f(s, t)

)
= (s ∗ t)L

as required.

Theorem 6. Let R be a G-weak graded ring and K be a multiplicatively closed set of
G-homogeneous elements not containing 0. Then the localization RK can be written as the
direct sum of its G-components as follows:

RK =
⊕
s∈G

(RK)s, (as additive subgroups)

with,
RK =

{
r
k : r ∈ R, k ∈ K

}
and

(RK)s =
{

r
k ∈ RK : r and k are G-homogeneous and 〈k〉L ∗ 〈r〉 = s

}
such that f(s, t) = f(s, p) for all s, t, p ∈ G, where 〈k〉, 〈r〉 are the G-grades of k and r
respectively.

Proof. We begin the proof by showing that (RK)s is an additive subgroup of RK as

follows: If r
k ,

r′

k′ ∈ (RK)s, then 〈k〉L ∗ 〈r〉 = s = 〈k′〉L ∗ 〈r′〉. Hence, r
k + r′

k′ = k′r+kr′

kk′ .
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Consequently,

〈k
′r + kr′

kk′
〉 = 〈kk′〉L ∗ 〈kr′〉

=
(
〈k〉 ∗ 〈k′〉

)L ∗ (〈k〉 ∗ 〈r′〉)
=
((
〈k′〉L / f

(
〈k〉L / f(〈k〉, 〈k′〉), 〈k〉 ∗ 〈k′〉

)−1) ∗ (〈k〉L / f(〈k〉, 〈k′〉)
))
∗
(
〈k〉 ∗ 〈r′〉

)
=
((
〈k′〉L / f

(
〈k〉L / f(〈k〉, 〈k′〉), 〈k〉 ∗ 〈k′〉

)−1)
/ f
(
〈k〉L / f(〈k〉, 〈k′〉), 〈k〉 ∗ 〈r′〉

))
∗
(
〈k〉L / f(〈k〉, 〈k′〉) ∗

(
〈k〉 ∗ 〈r′〉

))
=
(
〈k′〉L / f

(
〈k〉L / f(〈k〉, 〈k′〉), 〈k〉 ∗ 〈k′〉

)−1
f
(
〈k〉L / f(〈k〉, 〈k′〉), 〈k〉 ∗ 〈r′〉

)
∗
((
〈k〉L ∗ 〈k〉

)
∗ 〈r′〉

))
= 〈k′〉L ∗ (eG ∗ 〈r′〉) = 〈k′〉L ∗ 〈r′〉 = s.

Also, if r
k ∈ (RK)s, then −( r

k ) = −r
k ∈ (RK)s . Indeed, if r

k ∈ (RK)s, then 〈k〉L ∗ 〈r〉 = s =
〈k〉L ∗ 〈−r〉 as r is a G-homogeneous element, i.e. r is contained in fixed component and since
each component are additive subgroup of R yields −r has the same G-grade. Hence, (RK)s is an
additive subgroup of RK for all s ∈ G.

Next, we have to show that RK =
⊕

s∈G(RK)s. It is obvious that RK =
∑

s∈G(RK)s.
So, let r

k ∈ (RK)sj
⋂
{(RK)s1 + . . . + (RK)sj−1

+ (RK)sj+1
+ . . . + (RK)sn} for all sj 6=

s1, . . . , sj−1, sj+1, . . . , sn. Thus,

〈k〉L ∗ 〈r〉 = sj and 〈k〉L ∗ 〈r〉 = si ,

where i = 1, ..., j−1, j+1, ..., n. This means that, either (RK)sj = (RK)si which is a contradiction
or r

k = 0RK
which implies RK =

⊕
s∈G(RK)s as required.

5. Additional examples of G-weak graded rings

In this section, we give additional examples of G-weak and fully G-weak graded rings
that are not trivially constructed.

Example 1. Consider a ring R to be the ring of all 2× 2 matrices over the field R, i.e.,

R = M2(R) =

{(
a b
c d

)
: a, b, c, d ∈ R

}
.

Let X be the dihedral group D6 = < x, y : x6 = y2 = 1, xy = yx5 > and H be the
non-normal subgroup {1, x3, y, x3y}. Choose G = {1, x, x5} to be the set of left coset
representatives. Then the ∗ and f operations as well as the actions / and . are given by
the following tables:

Thus, R = R1 ⊕Rx ⊕Rx5, where

R1 =

{(
a 0
0 d

)
: a, d ∈ R

}
,
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Table 1: ∗ and f operations.

∗ 1 x x5

1 1 x x5

x x x5 1
x5 x5 1 x

f 1 x x5

1 1 1 1
x 1 x3 1
x5 1 1 x3

Table 2: . and / actions.

s.u 1 x3 y x3y

1 1 x3 y x3y
x 1 x3 y x3y
x5 1 x3 y x3y

s/u 1 x3 y x3y

1 1 1 1 1
x x x x5 x5

x5 x5 x5 x x

Rx =

{(
0 0
c 0

)
: c ∈ R

}
and

Rx5 =

{(
0 b
0 0

)
: b ∈ R

}
.

Moreover, the inclusion property RsRt ⊆ Rs∗t is satisfied for all s, t ∈ G. This can be
detailed as follows:

(i) R1R1 ⊆ R1∗1 = R1, as for all

(
a1 0
0 d1

)
,

(
a2 0
0 d2

)
∈ R1, we have

(
a1 0
0 d1

)(
a2 0
0 d2

)
=

(
a1a2 0

0 d1d2

)
∈ R1 = R1∗1.

(ii) R1Rx ⊆ R1∗x = Rx, as for all

(
a 0
0 d

)
∈ R1 and

(
0 0
c 0

)
∈ Rx, we have

(
a 0
0 d

)(
0 0
c 0

)
=

(
0 0
dc 0

)
∈ Rx = R1∗x.

(iii) R1Rx5 ⊆ R1∗x5 = Rx5, as for all

(
a 0
0 d

)
∈ R1 and

(
0 b
0 0

)
∈ Rx5, we have

(
a 0
0 d

)(
0 b
0 0

)
=

(
0 ab
0 0

)
∈ Rx5 = R1∗x5 .

(iv) RxR1 ⊆ Rx∗1 = Rx, as for all

(
0 0
c 0

)
∈ Rx and

(
a 0
0 d

)
∈ R1, we have

(
0 0
c 0

)(
a 0
0 d

)
=

(
0 0
ca 0

)
∈ Rx = Rx∗1.



Najla Al-Subaie, M. M. Al-Shomrani / Eur. J. Pure Appl. Math, 12 (2) (2019), 332-347 342

(v) RxRx ⊆ Rx∗x = Rx5, as for all

(
0 0
c1 0

)
,

(
0 0
c2 0

)
∈ Rx, we have

(
0 0
c1 0

)(
0 0
c2 0

)
=

(
0 0
0 0

)
∈ Rx5 = Rx∗x.

(vi) RxRx5 ⊆ Rx∗x5 = R1, as for all

(
0 0
c 0

)
∈ Rx and

(
0 b
0 0

)
∈ Rx5, we have

(
0 0
c 0

)(
0 b
0 0

)
=

(
0 0
0 cb

)
∈ R1 = Rx∗x5 .

(vii) Rx5R1 ⊆ Rx5∗1 = Rx5, as for all

(
0 b
0 0

)
∈ Rx5 and

(
a 0
0 d

)
∈ R1, we have

(
0 b
0 0

)(
a 0
0 d

)
=

(
0 bd
0 0

)
∈ Rx5 = Rx5∗1.

(viii) Rx5Rx ⊆ Rx5∗x = R1, as for all

(
0 b
0 0

)
∈ Rx5 and

(
0 0
c 0

)
∈ Rx, we have

(
0 b
0 0

)(
0 0
c 0

)
=

(
bc 0
0 0

)
∈ R1 = Rx5∗x.

(ix) Rx5Rx5 ⊆ Rx5∗x5 = Rx, as for all

(
0 b1
0 0

)
,

(
0 b2
0 0

)
∈ Rx5, we have

(
0 b1
0 0

)(
0 b2
0 0

)
=

(
0 0
0 0

)
∈ Rx = Rx5∗x5 .

Therefore, R is a G-weak graded ring. However, it is not a fully G-weak graded ring. For
instance, Rx5Rx5 6= Rx5∗x5 since Rx = Rx5∗x5 * Rx5Rx5.

Example 2. Let X = (Z6,+) and H =< 3 >= {0, 3}. Choose the set of left coset
representatives to be G = {1, 3, 5}. Then the ∗ and f operations as well as the actions /, .
are given by the following tables:

If we consider the Morita ring T =

(
R M
N S

)
, then we have:

T = T1 ⊕ T3 ⊕ T5 ,

where

T1 =

(
0 M
0 0

)
, T3 =

(
R 0
0 S

)
and T5 =

(
0 0
N 0

)
.
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Table 3: ∗ and f operations.

∗ 3 1 5

3 3 1 5
1 1 5 3
5 5 3 1

f 3 1 5

3 3 3 3
1 3 3 3
5 3 3 3

Table 4: . and / actions.

s . u 0 3

3 0 3
1 0 3
5 0 3

s / u 0 3

3 3 3
1 1 1
5 5 5

Moreover, the inclusion property TsTt ⊆ Ts∗t is satisfied for all s, t ∈ G which can
illustrated as follows:

(i) T3T3 ⊆ T3∗3 = T3, as for all

(
r1 0
0 s1

)
and

(
r2 0
0 s2

)
∈ T3, we have

(
r1 0
0 s1

)(
r2 0
0 s2

)
=

(
r1r2 0

0 s1s2

)
∈ T3 = T3∗3.

(ii) T3T1 ⊆ T3∗1 = T1, as for all

(
r 0
0 s

)
∈ T3 and

(
0 m
0 0

)
∈ T1, we have

(
r 0
0 s

)(
0 m
0 0

)
=

(
0 rm
0 0

)
∈ T1 = T3∗1.

(iii) T3T5 ⊆ T3∗5 = T5, as for all

(
r 0
0 s

)
∈ T3 and

(
0 0
s 0

)
∈ T5, we have

(
r 0
0 s

)(
0 0
s 0

)
=

(
0 0
sn 0

)
∈ T5 = T3∗5.

(iv) T1T3 ⊆ T1∗3 = T1, as for all

(
0 m
0 0

)
∈ T1 and

(
r 0
0 s

)
∈ T3, we have

(
0 m
0 0

)(
r 0
0 s

)
=

(
0 ms
0 0

)
∈ T1 = T1∗3.

(v) T1T1 ⊆ T1∗1 = T5, as for all

(
0 m1

0 0

)
and

(
0 m2

0 0

)
∈ T1, we have

(
0 m1

0 0

)(
0 m2

0 0

)
=

(
0 0
0 0

)
∈ T5 = T1∗1.
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(vi) T1T5 ⊆ T1∗5 = T3, as for all

(
0 m
0 0

)
∈ T1 and

(
0 0
n 0

)
∈ T5, we have

(
0 m
0 0

)(
0 0
n 0

)
=

(
mn 0
0 0

)
∈ T3 = T1∗5.

(vii) T5T3 ⊆ T5∗3 = T5, as for all

(
0 0
n 0

)
∈ T5 and

(
r 0
0 s

)
∈ T3, we have

(
0 0
n 0

)(
r 0
0 s

)
=

(
0 0
nr 0

)
∈ T5 = T5∗3.

(viii) T5T1 ⊆ T5∗1 = T3, as for all

(
0 0
n 0

)
∈ T5 and

(
0 m
0 0

)
∈ T1, we have

(
0 0
n 0

)(
0 m
0 0

)
=

(
0 0
0 mn

)
∈ T3 = T5∗1.

(ix) T5T5 ⊆ T5∗5 = T1, as for all

(
0 0
n1 0

)
and

(
0 0
n2 0

)
∈ T5, we have

(
0 0
n1 0

)(
0 0
n2 0

)
=

(
0 0
0 0

)
∈ T1 = T5∗5.

Thus, T is a G-weak graded ring. However, it is not a fully G-weak graded ring. For
instance, T5T5 6= T5∗5 since T1 = T5∗5 * T5T5.

Example 3. Consider the ring of real quaternions (H,+, ·). Let

X = D6 = {1, x, x2, x3, x4, x5, y, xy, x2y, x3y, x4y, x5y}

and H = {1, x2, x4} be an additive subgroup of the group X. Take the set of left coset
representatives to be G = {1, y, x5, xy}. Then the ∗ and f operations as well as the actions
/, . are given by the following tables:

Table 5: ∗ and f operations.

∗ 1 y x5 xy

1 1 y x5 xy
y y 1 xy x5

x5 x5 xy 1 y
xy xy x5 y 1

f 1 y x5 xy

1 1 1 1 1
y 1 1 1 1
x5 1 x4 x4 1
xy 1 x2 x2 1
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Table 6: . and / actions.

s . u 1 x2 x4

1 1 x2 x4

y 1 x4 x2

x5 1 x2 x4

xy 1 x4 x2

s / u 1 x2 x4

1 1 1 1
y y y y
x5 x5 x5 x5

xy xy xy xy

Thus, H = R1 ⊕ Ry ⊕ Rx5 ⊕ Rxy where, R1 = R, Ry = Ri, Rx5 = Rj and Rxy = Rk.
The inclusion property can be checked as follows for any r, r′ ∈ R:

(i) R1R1 ⊆ R1∗1 = R1, as for all r, r′ ∈ R1, we have
(r)(r′) = rr′ ∈ R1 = R1∗1.

(ii) R1Ry ⊆ R1∗y = Ry, as for all r ∈ R1, r
′i ∈ Ry, we have

(r)(r′i) = (rr′)i ∈ Ry = R1∗y.

(iii) R1Rx5 ⊆ R1∗x5 = Rx5, as for all r ∈ R1, r
′j ∈ Rx5, we have

(r)(r′j) = (rr′)j ∈ Rx5 = R1∗x5 .

(iv) R1Rxy ⊆ R1∗xy = Rxy, as for all r ∈ R1, r
′k ∈ Rxy, we have

(r)(r′k) = (rr′)k ∈ Rxy = R1∗xy.

(v) RyR1 ⊆ Ry∗1 = Ry, as for all ri ∈ Ry, r
′ ∈ R1, we have

(ri)(r′) = (rr′)i ∈ Ry = Ry∗1.

(vi) RyRy ⊆ Ry∗y = R1, as for all ri, r′i ∈ Ry, we have
(ri)(r′i) = (−rr′) ∈ R1 = Ry∗y.

(vii) RyRx5 ⊆ Ry∗x5 = Rxy, as for all ri ∈ Ry, r
′j ∈ Rx5, we have

(ri)(r′j) = (rr′)k ∈ Rxy = Ry∗x5 .

(viii) RyRxy ⊆ Ry∗xy = Rx5, as for all ri ∈ Ry, r
′k ∈ Rxy, we have

(ri)(r′k) = (−rr′)j ∈ Rx5 = Ry∗xy.

(ix) Rx5R1 ⊆ Rx5∗1 = Rx5, as for all rj ∈ Rx5 , r′ ∈ R1, we have
(rj)(r′) = (rr′)j ∈ Rx5 = Rx5∗1.

(x) Rx5Ry ⊆ Rx5∗y = Rxy, as for all rj ∈ Rx5 , r′i ∈ Ry, we have
(rj)(r′i) = (−rr′)k ∈ Rxy = Rx5∗y.

(xi) Rx5Rx5 ⊆ Rx5∗x5 = R1, as for all rj, r′j ∈ Rx5, we have
(rj)(r′j) = (−rr′) ∈ R1 = Rx5∗x5 .

(xii) Rx5Rxy ⊆ Rx5∗xy = Ry, as for all rj ∈ Rx5 , r′k ∈ Rxy, we have
(rj)(r′k) = (rr′)i ∈ Ry = Rx5∗xy.

(xiii) RxyR1 ⊆ Rxy∗1 = Rxy, as for all rk ∈ Rxy, r
′ ∈ R1, we have

(rk)(r′) = (rr′)k ∈ Rxy = Rxy∗1.
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(xiv) RxyRy ⊆ Rxy∗y = Rx5, as for all rk ∈ Rxy, r
′i ∈ Ry, we have

(rk)(r′i) = (rr′)j ∈ Rx5 = Rxy∗y.

(xv) RxyRx5 ⊆ Rxy∗x5 = Ry, as for all rk ∈ Rxy, r
′j ∈ Rx5, we have

(rk)(r′j) = (−rr′)i ∈ Ry = Rxy∗x5 .

(xvi) RxyRxy ⊆ Rxy∗xy = R1, as for all rk, r′k ∈ Rxy, we have
(rk)(r′k) = (−rr′) ∈ R1 = Rxy∗xy.

Therefore, H is a fully G-weak graded ring.
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