EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 2, 2019, 270-278 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Some characterizations of β -paracompactness in ideal topological space

E. D. Yıldırım¹, O. B. Özbakır^{2,*} and A.Ç. Güler²

¹ Department of Mathematics, Faculty of Science and Letters, Yaşar University, İzmir, Turkey ² Department of Mathematics, Faculty of Science, Fac University, İzmir, Turkey

² Department of Mathematics, Faculty of Science, Ege University, İzmir, Turkey

Abstract. In this paper, we introduce β -paracompactness with respect to an ideal (*I*- β -paracompactness) as a weak form of β -paracompactness and *I*-paracompactness. We give some relations between this concept and some other types of paracompactness, and also we study some of its fundamental properties.

2010 Mathematics Subject Classifications: 54D20, 54A05, 54C10, 54G05

Key Words and Phrases: β -paracompact, ideal, *I*- β -paracompact, σ - β -locally finite

1. Introduction

Paracompactness is one of the important concepts of general topology. In literature, different kinds of generalized paracompactness such as S-paracompactness [5], P_3 paracompactness [6] and β -paracompactness [11] are studied.

The concept of *I*-paracompactness as generalization of paracompactness was given by Zahid [24]. Furthermore, this concept was studied by Hamlet et al. [13] and Sathiyasundari and Renukadevi [22]. Recently, S-paracompactness with respect to an ideal which is weaker form of I-paracompactness was studied by J. Sanabria et al. [21].

Here, we introduce I- β -paracompactness and we compare this concept with the other types of paracompactness. Then, we give counterexamples showing that the opposite directions of Proposition 1 and 2 do not hold. Furthermore, adding some conditions, we find that the reverse directions may happen to be true. Besides, we investigate some of its essential properties. Finally, we examine I- β -paracompactness under some functions.

© 2019 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i2.3394

Email addresses: esra.dalan@yasar.edu.tr (E. D. Yıldırım),

oya.ozbakir@ege.edu.tr (O. B. Özbakır), aysegul.caksu.guler@ege.edu.tr (A.Ç. Güler)

E. D. Yıldırım, O. B. Özbakır, A. Ç. Güler / Eur. J. Pure Appl. Math, **12** (2) (2019), 270-278 271

2. Preliminaries

Throughout this work, (X, τ) denotes a topological space on which no separation axioms are assumed unless clearly indicated. If A is a subset of (X, τ) , then the closure of A and the interior of A will be denoted by cl(A) and int(A), respectively. Also, the class of all subsets of X will be denoted by $\mathcal{P}(X)$. A subset A of (X, τ) is said to be semi-open [16] if there exists $U \in \tau$ such that $U \subseteq A \subseteq cl(U)$. This is equivalent to say that $A \subseteq cl(int(A))$. Also, A is said to be β -open [1] (preopen [18]) if $A \subseteq cl(int(cl(A)))(A \subseteq int(cl(A)))$. The concept of β -open sets is equal to that of semi-preopen sets in [7]. The family of all semiopen (resp. β -open and preopen) sets of (X, τ) is denoted by $SO(X, \tau)$ (resp. $\beta O(X, \tau)$ and $PO(X, \tau)$). The complement of a semi-open (resp. β -open and preopen) set is said to be semi-closed [10] (resp. β -closed [1, 7] and preclosed [18]). The semi-closure [10] (resp. β -closure [3, 7] and preclosure[18]) of A, denoted by scl(A) (resp. $\beta cl(A)$ and pcl(A)), is the intersection of all semi-closed (resp. β -closed and preclosed) sets containing A. Note that, $\beta cl(A)$ is β -closed [3, 7].

Lemma 1. [3, 7] For a subset A of a topological space (X, τ) , the following conditions hold:

(i) $x \in \beta cl(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in \beta O(X, \tau)$ containing x,

(ii) A is β -closed if and only if $A = \beta cl(A)$.

Theorem 1. [19] Let (X, τ) be a space, $A \subseteq Y \subseteq X$ and Y be β -open in (X, τ) . Then A is β -open in (X, τ) if and only if A is β -open in the subspace (Y, τ_Y) .

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be pre β -closed [17] (pre β -open [17]) if for every β -closed (β -open)set A of (X, τ) , f(A) is β -closed (β -open) in (Y, σ) and $f: (X, \tau) \to (Y, \sigma)$ is said to be β -irresolute [17] if for every β -open set B of (Y, σ) , $f^{-1}(B)$ is β -open in (X, τ) . If $f: (X, \tau) \to (Y, \sigma)$ is continuous and open, then f is β -irresolute and pre β -open.

Lemma 2. [11] Let $f : (X, \tau) \to (Y, \sigma)$ be a surjective function. Then f is pre β -closed if and only if for every $y \in Y$ and every β -open set U in (X, τ) which contains $f^{-1}(y)$, there exists a $V \in \beta O(Y, \sigma)$ such that $y \in V$ and $f^{-1}(V) \subseteq U$.

A space (X, τ) is called extremally disconnected[23](briefly, e. d.) if the closure of every open set in X is open and called submaximal [8] if each dense subset of X is open in X.

Lemma 3. [20] (X, τ) is submaximal if and only if every pre-open set is open.

Lemma 4. [9] (X, τ) is e.d. if and only if every β -open set is pre-open.

A collection \mathcal{V} of subsets of a space (X, τ) is said to be locally finite [23](resp. s-locally finite [4], β -locally finite [11] and p-locally finite[6]), if for each $x \in X$ there exists $U_x \in \tau$ (resp. $U_x \in SO(X, \tau), U_x \in \beta O(X, \tau)$ and $U_x \in PO(X, \tau)$) containing x and U_x intersects at most finitely many members of \mathcal{V} . Every locally finite collection of subsets of a space (X, τ) is β -locally finite[11] and p-locally finite[6]. Also, a collection \mathcal{A} of subsets of a space (X, τ) is said to be σ -locally finite if $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{A}_n$ where each \mathcal{A}_n is locally finite family [13].

Theorem 2. [11] Let (X, τ) be an e.d. submaximal space. Then every β -locally finite collection of subsets of X is locally finite.

A space (X, τ) is said to be β -compact [2] if every cover of X by β -open sets has a finite subcover. Also a space (X, τ) is said to be paracompact [23] (resp. S-paracompact [5], β -paracompact [11] and P_3 -paracompact [6]), if every open cover of X has a locally finite open (resp. locally finite semi-open, β -locally finite β -open and p-locally finite preopen) refinement which covers to X.

An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions:

(1) If $A \in I$ and $B \subseteq A$, then $B \in I$,

(2) If $A \in I$ and $B \in I$, then $A \cup B \in I$.

Given a topological space (X, τ) with an ideal I on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(.)^* : \mathcal{P}(X) \to \mathcal{P}(X)$, called a local function [15] of A with respect to τ and I is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in X : V \cap A \notin I \text{ for}$ every $V \in \tau(x)\}$ where $\tau(x) = \{V \in \tau : x \in V\}$. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ , is defined by $cl^*(A) = A \cup A^*(I, \tau)$ [14]. A basis $\beta(I, \tau)$ for $\tau^*(I, \tau)$ can be described as follows: $\beta(I, \tau) = \{V - J : V \in \tau$ and $J \in I\}$ [14]. We will simply write A^* for $A^*(I, \tau)$, τ^* or $\tau^*(I)$ for $\tau^*(I, \tau)$ and β for $\beta(I, \tau)$. If I is an ideal on X, then (X, τ, I) is called an ideal topological space.

A space (X, τ, I) is said to be *I*-paracompact [24] (*I*-*S*-paracompact [21]) if every open cover \mathcal{U} of X has a locally finite open (semi-open) refinement \mathcal{V} , not necessarily a cover, such that $X - \bigcup \{V : V \in \mathcal{V}\} \in I$. A collection \mathcal{V} of subsets of X such that $X - \bigcup \{V : V \in \mathcal{V}\} \in I$ is called an *I*-cover [24] of X. A space (X, τ, I) is said to be *I*-regular[12] if for each closed set F and a point $p \notin F$, there exist disjoint open sets Uand V such that $p \in U$ and $F - V \in I$.

3. I- β -paracompactness

Definition 1. A space (X, τ, I) is said to be *I*- β -paracompact or β -paracompact with respect to *I* if every open cover \mathcal{U} of *X* has a β -locally finite β -open refinement \mathcal{V} (not necessarily a cover) such that $X - \bigcup \{V : V \in \mathcal{V}\} \in I$.

A subset A of a space (X, τ, I) is called an I- β -paracompact set in (X, τ, I) if every open cover \mathcal{U} of A has a β -locally finite (with respect to τ) β -open refinement \mathcal{V} such that $A - \bigcup \{V : V \in \mathcal{V}\} \in I$.

Proposition 1. If (X, τ) is β -paracompact, then (X, τ, I) is I- β -paracompact. Proof. It is obvious since $\emptyset \in I$. E. D. Yıldırım, O. B. Özbakır, A. Ç. Güler / Eur. J. Pure Appl. Math, **12** (2) (2019), 270-278 273

Obviously, every compact space is I- β -paracompact since every compact space is β -paracompact [11].

The following example shows that the converse of Proposition 1 may not be true, in general.

Example 1. Let $X = \mathbb{N}$ be the set of natural numbers with the topology $\tau = \{G \subseteq \mathbb{N} : 5 \in G\} \cup \{\emptyset\}$ and the ideal $I = \{U \subseteq \mathbb{N} : 5 \notin U\}$. Observe that (X, τ, I) is I- β -paracompact space but (X, τ) is not β -paracompact since the collection $\{\{5, x\} : x \in \mathbb{N}\}$ is an open cover of X which admits no β -locally finite β -open refinement in X.

Remark 1.

(1) If $I = \{\emptyset\}$, then (X, τ, I) is I- β -paracompact if and only if (X, τ) is β -paracompact. (2) If $I = \{\emptyset\}$ and (X, τ, I) is an e.d. space, then (X, τ, I) is I- β -paracompact if and only if (X, τ) is P_3 -paracompact.

Proposition 2. If (X, τ, I) is I-S-paracompact then it is I- β -paracompact.

Proof. Since every locally finite collection of subsets of X is β -locally finite and every semi-open set is β -open, it is clear.

Clearly, every S-paracompact space is I- β -paracompact since every S-paracompact space is I-S-paracompact[21]. Also, every I-paracompact space is I- β -paracompact since every I-paracompact space is I-S-paracompact[21].

The following example shows that the converse of Proposition 2 may not be true, in general.

Example 2. Let $X = [0,2] \cup [3,10]$ with the topology $\tau = \{U \subseteq X : [0,2] \subseteq U\} \cup \{\emptyset\}$ and the ideal $I = \{A : A \subseteq [0,2]\}$. Then (X, τ, I) is I- β -paracompact since every open cover of X has β -locally finite β -open refinement $\mathcal{V} = \{\{x\} : x \in [0,2]\} \cup \{\{y,z\} : y \in [0,2], z \in [3,10]\}$ such that $X - \bigcup \{V : V \in \mathcal{V}\} \in I$. But it is not I-S-paracompact since $\tau = SO(X)$.

Theorem 3. If (X, τ, I) is an e.d. submaximal I- β -paracompact space, then it is I-S-paracompact.

Proof. It is obvious from Lemma 3, Lemma 4 and Theorem 2.

Theorem 4. If (X, τ, I) is I- β -paracompact and J is an ideal on X with $I \subseteq J$, then (X, τ, J) is J- β -paracompact.

Proof. Let (X, τ, I) be I- β -paracompact and $I \subseteq J$. And let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of X. Since (X, τ, I) is I- β -paracompact, \mathcal{U} has a β -locally finite β -open refinement \mathcal{V} such that $X - \bigcup \{V : V \in \mathcal{V}\} \in I$. Since $I \subseteq J, X - \bigcup \{V : V \in \mathcal{V}\} \in J$. Thus, (X, τ, J) is J- β -paracompact.

Lemma 5. [11]Let $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ be a collection of subsets of a space (X, τ) . \mathcal{V} is β -locally finite if and only if $\{\beta cl(V_{\lambda}) : \lambda \in \Lambda\}$ is β -locally finite.

Lemma 6. If a cover $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ of a space (X, τ, I) has a β - locally finite β -open refinement \mathcal{V} such that $X - \bigcup \{V : V \in \mathcal{V}\} \in I$ then there exists a β -locally finite precise β - open refinement $\mathcal{H} = \{H_{\lambda} : \lambda \in \Lambda\}$ of \mathcal{U} such that $X - \bigcup \{H_{\lambda} : H_{\lambda} \in \mathcal{H}\} \in I$.

Proof. The proof is similar to that of Lemma 1.3 in [21].

Definition 2. A collection \mathcal{A} of subsets of a space (X, τ) is said to be σ - β -locally finite if $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{A}_n$ where each collection \mathcal{A}_n is a β - locally finite family.

Lemma 7. Every β -locally finite collection of subsets of a space (X, τ) is σ - β -locally finite. Proof. It is obvious.

Theorem 5. Let (X, τ) be a regular space. If (X, τ, I) is I- β -paracompact, then every open cover of X has a β -closed β -locally finite I-cover refinement.

Proof. Let \mathcal{U} be an open cover of X. By regularity of X, for each $x \in X$ and $U_x \in \mathcal{U}$ containing x, there exists an open set G_x of x such that $cl(G_x) \subseteq U_x$. Then $\mathcal{U}_1 = \{G_x : x \in X\}$ is an open cover of X. Since X is I- β -paracompact, \mathcal{U}_1 has β -locally finite β -open refinement $\mathcal{V}_1 = \{V_\lambda : \lambda \in \Lambda\}$ such that $X - \bigcup\{V_\lambda : \lambda \in \Lambda\} \in I$. Then $X - \bigcup\{\beta cl(V_\lambda) : \lambda \in \Lambda\} \in I$. By Lemma 5, $\mathcal{V} = \{\beta cl(V_\lambda) : V_\lambda \in \mathcal{V}_1\}$ is β -locally finite. Since \mathcal{V}_1 refines \mathcal{U}_1 , for every $\lambda \in \Lambda$, there is some $G_x \in \mathcal{U}_1$ such that $V_\lambda \subseteq G_x$. Then $\beta cl(V_\lambda) \subseteq cl(V_\lambda) \subseteq cl(G_x)$ implies $\beta cl(V_\lambda) \subset U_x$. Hence \mathcal{V} refines \mathcal{U} . So, $\mathcal{V} = \{\beta cl(V_\lambda) : V_\lambda \in \mathcal{V}_1\}$ is β -closed β -locally finite I-cover refinement.

Remark 2. If (X, τ, I) is considered to be e.d. submaximal regular space, then the Theorem 5 becomes the Theorem 2.20 in [22].

Theorem 6. If (X, τ, I) is I- β -paracompact, then every open cover of X has a β -open σ - β -locally finite I-cover refinement.

Proof. It is obvious by Lemma 7.

Theorem 7. Let (X, τ, I) be a regular space and $\beta O(X, \tau)$ be closed under finite intersection. Then, (X, τ, I) is I- β -paracompact if and only if every open cover of X has a β -open σ - β -locally finite I-cover refinement.

Proof. To show sufficiency, let \mathcal{U} be an open cover of X. By hypothesis, there exists a σ - β -locally finite β -open refinement \mathcal{V} of \mathcal{U} such that $X - \bigcup \{V : V \in \mathcal{V}\} \in I$. Also, $\mathcal{V} = \bigcup_{n=1}^{\infty} \mathcal{V}_n$ where each collection \mathcal{V}_n is a β - locally finite. For each $n \in \mathbb{N}$, let H_n $= \bigcup \{V : V \in \mathcal{V}_n\}$ so that $X - \bigcup \{H_n : n \in \mathbb{N}\} \in I$. For each $n \in \mathbb{N}$, let $G_n = H_n - \bigcup_{i=1}^{n-1} H_i$. Then $\{G_n : n \in \mathbb{N}\}$ refines $\{H_n : n \in \mathbb{N}\}$. Let $x \in X$, and let n be the smallest member of $\{n \in \mathbb{N} : x \in H_n\}$. Then $x \in G_n$ and $X - \bigcup \{G_n : n \in \mathbb{N}\} \in I$. Also, G_{nx} is a β -open set containing x that intersects only finite family number of members of G_n so E. D. Yıldırım, O. B. Özbakır, A. Ç. Güler / Eur. J. Pure Appl. Math, **12** (2) (2019), 270-278 275

that $\{G_n : n \in \mathbb{N}\}$ is β -locally finite. Let $\mathcal{O} = \{V \cap G_n : V \in \mathcal{V}_n \text{ and } n \in \mathbb{N}\}$. Since $\{G_n : n \in \mathbb{N}\}$ is β -locally finite, \mathcal{O} is β -locally finite. Also, since $\beta O(X, \tau)$ is closed under finite intersection and \mathcal{V} is β -open refinement of \mathcal{U} , \mathcal{O} is β -open refinement of \mathcal{U} . Then, $X - \bigcup \{V \cap G_n : n \in \mathbb{N}\} \in I$ because $X - \bigcup \{G_n : n \in \mathbb{N}\} \in I$. Thus, (X, τ, I) is I- β -paracompact.

Remark 3. If (X, τ, I) is considered to be e.d. submaximal regular space, then Theorem 7 becomes Theorem 2.22 in [22].

Theorem 8. For any ideal topological space (X, τ, I) , the following are equivalent:

- (i) For every closed subset A of X and every $x \notin A$, there exist disjoint β -open sets U and V such that $x \in U$ and $A V \in I$.
- (ii) For every open subset G of X and every $x \in G$, there exists a β -open set U such that $x \in U$ and $\beta cl(U) G \in I$.

Proof. (i) \Rightarrow (ii) Let $G \subseteq X$ be open and $x \in G$. Then X - G = A is closed and $x \notin A$. From (i), there exist disjoint β -open sets U and V such that $x \in U$ and $A - V \in I$. Since U and V are disjoint, we have $\beta cl(U) \subseteq X - V$. Thus, $A \cap \beta cl(U) \subseteq A - V$. Then, $\beta cl(U) \cap (X - G) \in I$. Therefore, $\beta cl(U) - G \in I$.

(ii) \Rightarrow (i) Let $A \subseteq X$ be closed and $x \notin A$. Then, X - A = G is open and $x \in G$. From (ii), there exists a β -open set U such that $x \in U$ and $\beta cl(U) - G \in I$. Thus, $X - \beta cl(U) = V \in \beta O(X)$ and $U \cap V = \emptyset$. Furthermore, $A - V = (X - G) - (X - \beta cl(U)) = \beta cl(U) - G \in I$.

The following example reveals that for a locally finite collection of subsets of $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ of a space (X, τ) , the equality $cl(\bigcup\{V_{\lambda} : \lambda \in \Lambda\}) = \bigcup\{cl(V_{\lambda}) : \lambda \in \Lambda\}$ always holds whereas for β -locally finite collection of subsets $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ of a space (X, τ) , the equality $\beta cl(\bigcup\{U_{\lambda} : \lambda \in \Lambda\}) = \bigcup\{\beta cl(U_{\lambda}) : \lambda \in \Lambda\}$ does not hold in general.

Example 3. Consider the real number \mathbb{R} with usual topology τ . Let $\mathcal{V} = \{[0,1), (1,2]\}$. Then \mathcal{V} is β -locally finite in (\mathbb{R}, τ) since it is finite. But $\beta cl([0,1) \cup (1,2]) \neq \beta cl([0,1)) \cup \beta cl((1,2])$.

Theorem 9. Suppose that for a β -locally finite collection of subsets $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ of a space (X, τ, I) , the equality $\beta cl(\bigcup \{V_{\lambda} : \lambda \in \Lambda\}) = \bigcup \{\beta cl(V_{\lambda}) : \lambda \in \Lambda\}$ holds. If (X, τ, I) is Hausdorff I- β -paracompact, then for every closed subset A of X and every $x \notin A$, there exist disjoint β -open sets U and V such that $x \in U$ and $A - V \in I$.

Proof. Let $A \subseteq X$ closed and $x \notin A$. Since X is Hausdorff space, there exists an open set H_y containing y for each $y \in A$ such that $x \notin cl(H_y)$. Thus, $\mathcal{H} = \{H_y : y \in A\} \cup \{X - A\}$ is an open cover of X. By hypothesis and Lemma 6, \mathcal{H} has a β -locally finite precise β -open refinement $\mathcal{W} = \{W_y : y \in A\} \cup \{G\}$ such that $W_y \subseteq H_y$ for each $y \in A$, $G \subseteq X - A$ and $X - (\bigcup \{W_y : y \in A\} \cup \{G\}) \in I$. Since $A - (\bigcup \{W_y : y \in A\}) = A - (\bigcup \{W_y : y \in A\}) \in I$. Let $y \in A\} \cup \{G\}) \subseteq X - (\bigcup \{W_y : y \in A\} \cup \{G\})$, we have $A - (\bigcup \{W_y : y \in A\}) \in I$. Let we say $V = \bigcup \{W_y : y \in A\}$. Then, V is β -open set in X and $A - V \in I$. Since $x \notin cl(H_y)$, we have $x \notin cl(W_y)$. This implies that $x \notin \beta cl(W_y)$. Since W is β -locally finite, $\beta cl(V) = \beta cl(\bigcup \{W_y : y \in A\}) = \bigcup \{\beta cl(W_y) : y \in A\}$ by hypothesis. Thus, for a β -open set $U = X - \beta cl(V)$, we have $U \cap V = \emptyset$ such that $x \in U$.

From Theorem 8 and Theorem 9, we have the following Corollary.

Corollary 1. If (X, τ, I) is an e.d. submaximal Hausdorff I- β -paracompact space, then (X, τ, I) is I-regular.

Theorem 10. Let A and B be subsets in ideal topological space (X, τ, I) . If A is I- β -paracompact set in X and B is closed in X, then $A \cap B$ is I- β -paracompact set in X.

Proof. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of $A \cap B$. Since X - B is open in $X, \mathcal{U}' = \{U_{\lambda} : \lambda \in \Lambda\} \cup \{X - B\}$ is open cover of A. By hypothesis and Lemma 6, \mathcal{U}' has a β - locally finite precise β -open refinement $\{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}$ such that $V_{\lambda} \subseteq U_{\lambda}$ for each $\lambda \in \Lambda$, $V \subseteq X - B$ and $A - (\bigcup\{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}) \in I$. Since $(A \cap B) - (\bigcup\{V_{\lambda} : \lambda \in \Lambda\}) = (A \cap B) - (\bigcup\{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}) \subseteq A - (\bigcup\{V_{\lambda} : \lambda \in \Lambda\} \cup \{V\}),$ we have $(A \cap B) - (\bigcup\{V_{\lambda} : \lambda \in \Lambda\}) \in I$. Hence, $A \cap B$ is I- β -paracompact set in X.

Corollary 2. Let (X, τ, I) be an I- β -paracompact space and $A \subseteq X$. If A is closed in X, then A is an I- β -paracompact set in X.

Lemma 8. [13] If $I \neq \emptyset$ is an ideal on X and Y is a subset of X, then $I_Y = \{Y \cap G | G \in I \} = \{G \in I | G \subseteq Y\}$ is an ideal on Y.

Theorem 11. Let A and B be subsets in ideal topological space (X, τ, I) such that $B \subseteq A$. If A is β -open in X and B is an I_A - β -paracompact set in A then B is an I- β -paracompact set in X.

Proof. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of B in X. Then, $\mathcal{U}_{\mathcal{B}} = \{U_{\lambda} \cap A : \lambda \in \Lambda\}$ is an open cover of B in A. Since B is an I_A - β -paracompact set in A, \mathcal{U}_B has a β -locally finite precise β -open refinement \mathcal{V}_B in A such that $B - \bigcup \{V_{\lambda} : V_{\lambda} \in \mathcal{V}_B\} \in I_A$. Thus, \mathcal{V}_B is a β -locally finite precise β -open refinement in X by Theorem 1. Also, $B - \bigcup \{V_{\lambda} : V_{\lambda} \in \mathcal{V}_B\} \in I$. Hence, B is an I- β -paracompact set in X.

Theorem 12. Let $f : (X, \tau, I) \to (Y, \sigma, J)$ be a continuous, open and pre β -closed surjection with $f^{-1}(y)$ β -compact for every $y \in Y$ and $f(I) \subseteq J$. If (X, τ, I) is I- β -paracompact, then (Y, σ, J) is J- β -paracompact.

Proof. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of Y. Then, $\{f^{-1}(U_{\lambda}) : \lambda \in \Lambda\}$ is an open cover of X. Since (X, τ, I) is I- β -paracompact, this open cover has a β -locally finite precise β -open refinement $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ such that $X - \bigcup\{V_{\lambda} : V_{\lambda} \in \mathcal{V}\} \in I$. Since f is pre β -open, $f(\mathcal{V}) = \{f(V_{\lambda}) : \lambda \in \lambda\}$ is a precise β -open refinement of \mathcal{U} . Also, $Y - \bigcup\{f(V_{\lambda}) : \lambda \in \Lambda\} \in J$. Now, let we prove that $f(\mathcal{V})$ is β -locally finite. Let $y \in Y$. Since \mathcal{V} is β -locally finite, for $x \in f^{-1}(y)$, there exists a β -open set G_x containing x such that G_x intersects at most finitely members of \mathcal{V} . Since $f^{-1}(y)$ is β -compact, $\{G_x : x \in$

REFERENCES

 $f^{-1}(y)$ has a finite subcollection H_y such that $f^{-1}(y) \subseteq \bigcup H_y$ and $\bigcup H_y$ intersects at most finitely members of \mathcal{V} . By Lemma 2, there exists a β -open set W_y containing y such that $f^{-1}(W_y) \subseteq \bigcup H_y$. Then, $f^{-1}(W_y)$ intersects at most finitely members of \mathcal{V} . This implies that W_y intersects at most finitely members of $f(\mathcal{V})$. Hence, $f(\mathcal{V})$ is β -locally finite in Y. So, (Y, σ, J) is J- β -paracompact.

Theorem 13. Let $f : (X, \tau, I) \to (Y, \sigma, J)$ be an open, β - irresolute bijective mapping and $I = f^{-1}(J)$. If A is J- β -paracompact in Y, then $f^{-1}(A)$ is I- β -paracompact in X.

Proof. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of $f^{-1}(A)$. Since f is open, $\mathcal{U}_1 = \{f(U_{\lambda}) : \lambda \in \Lambda\}$ is an open cover of A. By hypothesis, this open cover has a β -locally finite precise β -open refinement $\mathcal{V}_1 = \{V_{\lambda} : \lambda \in \Lambda\}$ such that $A - \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \in J$. Then, $f^{-1}(A) - \bigcup \{f^{-1}(V_{\lambda}) : \lambda \in \Lambda\} \in f^{-1}(J) = I$. Since f is β -irresolute, $\mathcal{V} = \{f^{-1}(V_{\lambda}) : \lambda \in \Lambda\}$ is β -locally finite β -open. Let $f^{-1}(V_{\lambda}) \in \mathcal{V}$. Since \mathcal{V}_1 refines \mathcal{U}_1 , there exists $f(U_{\lambda}) \in \mathcal{U}_1$ such that $V_{\lambda} \subseteq f(U_{\lambda})$. Then $f^{-1}(V_{\lambda}) \subseteq f^{-1}(f(U_{\lambda})) = U_{\lambda}$. Hence \mathcal{V} refines \mathcal{U} . Therefore $f^{-1}(A)$ is I- β -paracompact in X.

Acknowledgements

The author would like to thank the referees for their helpful suggestions.

References

- Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A. β-open sets and βcontinuous mapping, Bull. Fac. Sci. Assiut Univ. 12, 77-90, 1983.
- [2] Abd El-Monsef, M. E. and Kozae, A. M. Some generalized forms of compactness and closedness, Delta J. Sci. 9, 257-269, 1985.
- [3] Abd El-Monsef, M. E., Mahmoud, R. A. and Lashin, E. R. β-closure and β-interior, J. Fac. Ed. Ain Shams Univ. 10, 235-245, 1986.
- [4] Al-Zoubi, K. Y. s-expandable spaces, Acta Math. Hungar **102**(3), 203-212, 2004.
- [5] Al-Zoubi, K. Y. S-paracompact spaces, Acta Math. Hungar 110(1-2), 165-174, 2006.
- [6] Al-Zoubi, K. and Al-Ghour, S. On P₃-paracompact spaces, Int. J. Math. Math. Sci. 2007, 1-16, 2007.
- [7] Andrijević, D. Semipreopen sets, Mat. Vesnik 38, 24-32, 1986.
- [8] Bourbaki, N. General topology, Part I., Addison-Wesley, Reading, Mass. 1966.
- [9] Cao, J., Ganster, M. and Reilly, I. Submaximality, extremal disconnectedness and generalized closed sets, Houston Journal of Mathematics 24(4), 681-688, 1998.

- [10] Crossely, S. G. Semi-closed and semi-continuity in topological spaces, Texas J. Sci. 22, 123-126, 1971.
- [11] Demir, I. and Ozbakir, O. B. On β-paracompact spaces, Filomat 27:6, 971-976, 2013.
- [12] Hamlet, T. R. and Janković, D. On weaker forms of paracompactness, countable compactness, and Lindelöfness, Ann. New York Acad. Sci., 728, 41-49, 1994.
- [13] Hamlet, T. R., Rose, D. and Janković, D. Paracompactness with respect to an ideal, Internat. J. Math. and Math. Sci. 20(3), 433-442, 1997.
- [14] Janković, D. and Hamlett, T. R. New topologies from old via ideals, Amer. Math. Montly 97, 295-310, 1990.
- [15] Kuratowski, K. Topologie I, Warszawa 1933.
- [16] Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 36-41, 1963.
- [17] Mahmoud, R. A. and Abd El-Monsef, M. E. β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci. 27, 285- 296, 1990.
- [18] Mashhour, A.S., Abd El-Monsef, M. E. and El-Deeb, S. N. On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt 51, 47-53, 1981.
- [19] Navalagi, G. B. Semi-precontinuous functions and properties of generalized preclosed sets in topological spaces, Int. J. Math. Math. Sci. 29, 85-98, 2002.
- [20] Reilly, I. L. and Vamanamurthy, M. K. On some questions concerning preopen sets, Kyungpook Math. J. 30, 87-93, 1990.
- [21] Sanabria, J., Rosas, E., Carpintero, C., Salas-Brown, M. and García, O. Sparacompactness in ideal topological spaces, Mat. Vesnik 68(3), 192-203, 2016.
- [22] Sathiyasundari, N. and Renukadevi, V. Paracompactness with respect to an ideal, Filomat 27(2), 333-339, 2013.
- [23] Willard, S. *General topology*, Addison-Wesley Publishing Company 1970.
- [24] Zahid, M. I. Para H-closed spaces, locally para H-closed spaces and their minimal topologies, Ph. D. Dissertation, Univ. of Pittsburgh 1981.