EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 2, 2019, 571-576 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Finite Groups With Certain Permutability Criteria

Rola A. Hijazi¹, Fatme M. Charaf^{1,*}

¹ Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract. Let G be a finite group. A subgroup H of G is said to be S-permutable in G if it permutes with all Sylow subgroups of G. In this note we prove that if P, the Sylow p-subgroup of G (p > 2), has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with |H| = |D| are S-permutable in G, then G' is p-nilpotent.

2010 Mathematics Subject Classifications: 20D10, 20D20

Key Words and Phrases: S-Permutable Subgroup, p-Nilpotent Group, Solvable Group, Supersolvable Group.

1. Introduction

Throughout this note, G denotes a finite group. The relationship between the properties of the Sylow subgroups of a group G and its structure has been investigated by many authors. Starting from Gaschütz and Itő ([10], Satz 5.7, p.436) who proved that a group Gis solvable if all its minimal subgroups are normal. In 1970, Buckely [4] proved that a group of odd order is supersolvable if all its minimal subgroups are normal (a subgroup of prime order is called a minimal subgroup). Recall that a subgroup is said to be S-permutable in G if it permutes with all Sylow subgroup of G. This concept, as a generalization of normality, was introduced by Kegel [11] in 1962 and has been studied extensively in many notes. For example, Srinivasan [15] in 1980 obtained the supersolvability of G under the assumption that the maximal subgroups of all Sylow subgroups are S-permutable in G. In 2000, Ballester-Bolinches et al. [3] introduced the c-supplementation concept of a finite group: A subgroup H of a group G is said to be c-supplemented in G if there exists a subgroup K of G such that G = HK and $H \cap K \leq H_G$, where $H_G = Core_G(H)$ is the largest normal subgroup of G contained in H. By using this concept they were able to prove that a group G is solvable if and only if every Sylow subgroup of G is c-supplemented in G. Moreover, as an application, they got the supersolvability of a group G if all its minimal subgroups and the cyclic subgroups of order 4 are c-supplemented in G.

http://www.ejpam.com

© 2019 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i2.3399

Email addresses: Rhijazi@kau.edu.sa (R. Hijazi), fa-sharaf@hotmail.com (F. Charaf)

R. Hijazi, F. Charaf / Eur. J. Pure Appl. Math, 12 (2) (2019), 571-576

In 2014, Heliel [8] proved that G is solvable if each subgroup of prime odd order of G is c-supplemented in G. Also he proved that G is solvable if and only if every Sylow subgroup of odd order of G is c-supplemented in G. This improved and generalized the results of Hall [6, 7], Ballester-Bolinches and Guo [2], and Ballester-Bolinches et al. [3]. Heliel also posted the following conjecture:

Let G be a finite group such that every non-cyclic Sylow subgroup P of odd order of G has a subgroup D such that $1 < |D| \le |P|$ and all subgroups H of P with |H| = |D| are c-supplemented in G. Is G solvable?

In the same year, Li et al. [12] presented a counterexample to show that the answer of this conjecture is negative in general and then gave a generalization of Heliel's theorems.

Example 1. Let $G = A_5 \times H$, where A_5 is the alternating group of degree 5 and H is an elementary group of order p^n with p > 5 and $n \ge 2$. Then G satisfies the condition of the preceding conjecture, but G is not solvable.

In 2015, Hijazi [9] continued the above mentioned investigations and proved the following: Suppose that each Sylow subgroup P of G has a subgroup D such that 1 < |D| < |P|and all subgroups H of P with |H| = |D| are S-permutable in G. Then G is solvable.

The main goal of this note is to prove the following main theorem:

Main Theorem 1. Let P be a Sylow p-subgroup of G (p > 2). Suppose that P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with |H| = |D| are S-permutable in G. Then G' is p-nilpotent.

As immediate consequences of the main theorem we have:

Corollary 1. Let P be a Sylow p-subgroup of G (p > 2). Suppose that P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with |H| = |D| are permutable in G. Then G' is p-nilpotent.

Corollary 2 ([9], Theorem 3.1). Suppose that each Sylow subgroup P of G has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with |H| = |D| are S-permutable in G. Then G is solvable.

Corollary 3 (Gaschütz and Itő [10], Satz 5.7, p.436). A group G is solvable if all its minimal subgroups are normal.

2. Proofs

We first prove the following theorems:

Theorem 2. Let P be a Sylow p-subgroup of a group G, where p is an odd prime. If each subgroup of P of order p is S-permutable in G, then G' is p-nilpotent.

Proof. We prove the theorem by induction on |G|. Hence if each subgroup of P of order p is normal in G, then each subgroup of G' of order p is normal in G'. Let L be a

subgroup of G' such that |L| = p. Then $G/C_G(L) \subseteq Aut(L)$ and, since Aut(L) is cyclic of order p-1, we have $G/C_G(L)$ is abelian. Thus $G' \leq C_G(L)$ and so $L \leq Z(G')$. By ([10], Satz 5.5(a), p. 435), G' is p-nilpotent. Thus we may assume that there exists a subgroup Hof P of order p such that H is not normal in G. By the hypothesis, H is S-permutable in G and hence by ([13], Lemma A), $O^p(G) \leq N_G(H) < G$. Let M be a maximal subgroup of G such that $N_G(H) \leq M < G$. Then $M \triangleleft G$ and |G/M| = p. By induction on |G|, M'is p-nilpotent. Hence if $O_{p'}(G) \neq 1, G/O_{p'}(G)$ satisfies the hypothesis of the theorem and so $(G/O_{p'}(G))' = G'O_{p'}(G)/O_{p'}(G) \cong G'/(G' \cap O_{p'}(G))$ is p-nilpotent which implies that G' is p-nilpotent. Thus assume that $O_{p'}(G) = 1$. Since M' char M and $M \triangleleft G$, we have $M' \lhd G$. As M' is p-nilpotent and $O_{p'}(G) = 1$, we have M' is a p-group. Then $P_1 \lhd M$ where P_1 is a Sylow *p*-subgroup of *M*. By Schur-Zassenhaus Theorem [5, Theorem 6.2.1, p. 221], $M = P_1 K$, where K is a p'-Hall subgroup of M. Hence if $C_G(P_1) \leq P_1$, K is a p'-group of automorphisms of P_1 , and since K leaves each subgroup of P_1 invariant because every subgroup of P of prime order is S-permutable, then by ([14], Lemma 2.20), K is cyclic. Let Q be a Sylow q-subgroup of K, where q is a prime divisor of the order of K. Hence if p < q, then $P_1Q = P_1 \times Q$ and this means that $Q \leq C_G(P_1)$, a contradiction. Thus p is the largest prime dividing |G| and since K is cyclic, it follows, by Burnside's p-Nilpotent Theorem ([10], Satz 2.8, p.420), that $P \triangleleft G$. But $G/P \cong K$, therefore G/Pis cyclic and so abelian, then $G' \leq P$. This completes the proof of the theorem.

As a corollary of Theorem 2.1:

Corollary 4. If each subgroup of prime order of G is S-permutable in G, then G is solvable, $S \triangleleft G'$ and G'/S is nilpotent, where S is a Sylow 2-subgroup of G'.

Proof. By Theorem 2.1, G' is *p*-nilpotent for each odd prime *p* dividing |G|. So G'/S is nilpotent, *S* is a Sylow 2-subgroup of G' and hence *G* is solvable.

Theorem 3. Let p be an odd prime and let P be a Sylow p-subgroup of G. Suppose that P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with |H| = |D| are normal in G. Then G' is p-nilpotent.

Proof. We prove the theorem by induction on |G|. Clearly, $P \cap G'$ is a Sylow *p*-subgroup of G'. Set $P_1 = P \cap G'$. We deal with the following two cases:

Case 1. $|P_1| \le |D|$.

Hence if |D| = p, $|P_1| = p$, and $P_1 \triangleleft G$. Then $G' \leq C_G(P_1)$ and so $P_1 \leq Z(G')$. Hence, by Schur-Zassenhaus Theorem, $G' = P_1 \times K$, where K is a p'-Hall subgroup of G'.

In particular, G' is *p*-nilpotent.

Thus we may assume that $|D| = p^n$ $(n \ge 2)$. Let H be a subgroup of P with |H| = |D|such that $P_1 \le H < P$. By the hypothesis, $H \lhd G$. Assume that $\Phi(H) \ne 1$ and consider the factor group $G/\Phi(H)$. Obviously, $G/\Phi(H)$ satisfies the theorem hypothesis and so $(G/\Phi(H))' = G'\Phi(H)/\Phi(H)$ is p-nilpotent by the induction on |G|. But $G'\Phi(H)/\Phi(H) \cong$ $G'/G' \cap \Phi(H)$ and $\Phi(H) \le \Phi(G)$, then we have $G' \cap \Phi(H) \le G' \cap \Phi(G)$ and therefore $G'/G' \cap \Phi(G)$ is *p*-nilpotent. Now $G'\Phi(G)/\Phi(G) \cong G'/G' \cap \Phi(G)$ is *p*-nilpotent implies that $G'\Phi(G)$ is *p*-nilpotent and consequently G' is *p*-nilpotent.

Thus we may assume that $\Phi(H) = 1$ and so H is elementary abelian p-group of order p^n $(n \ge 2)$. Let L be a subgroup of P contains H such that H is maximal in L. Clearly, L is not cyclic because H is elementary abelian group of order p^n $(n \ge 2)$. Then L contains a subgroup H_1 such that $|H_1| = |D|$ and $H_1 \ne H$. By the hypothesis, $H_1 \triangleleft G$ and since $H \triangleleft G$, we have $L = H_1 H \triangleleft G$ and so $\Phi(L) \le \Phi(G)$. Hence if $\Phi(L) \ne 1$, $\Phi(L) \le H_1 < L \le P$. Since L is not cyclic, we have $\Phi(L)$ is contained properly in H_1 . Now it is easy to notice that the factor group $G/\Phi(L)$ satisfies the hypothesis of the theorem, so by induction on |G|, G' is p-nilpotent. Thus we may assume that $\Phi(L) = 1$ and so P_1 is elementary abelian p-group. Since $P_1 \le H < L \le P$ and H is maximal in L, it follows that $|L| = p^{n+1}$. Let $L_1 = < x_1 >$ be a subgroup of P_1 of order p. Then $L = < x_1 > × < x_2 > × \ldots × < x_{n+1} >$. By the hypothesis, each maximal subgroup of L is normal in G; in particular each subgroup L_1 of P_1 of order p is normal in G. So, $G' \le C_G(L_1)$ and consequently $P_1 \le Z(G')$. By Schur-Zassenhaus Theorem, $G' = P_1 \times K_1$, where K_1 is a p'-Hall subgroup of G; in particular G' is p-nilpotent.

Case 2. $|P_1| > |D|$.

Hence if |D| = p, then every subgroup of P_1 of order p is normal in G, so $\Omega_1(P_1) \leq Z(G')$ which implies that G' is p-nilpotent by ([10], Satz 5.5(a), p 435). Thus assume that $|D| = p^n$ $(n \geq 2)$. Hence if $\Phi(D) \neq 1$, $G/\Phi(D)$ satisfies the hypothesis of the theorem and so $(G/\Phi(D))' = G'\Phi(D)/\Phi(D)$ is p-nilpotent by induction on |G| which implies that $G'/G' \cap \Phi(G)$ is p-nilpotent; in particular G' is p-nilpotent. Thus we may assume that $\Phi(D) = 1$. Let $L \leq P_1$ such that D is maximal in L. Then $|L| = p^{n+1} (n \geq 2)$. Clearly L is not cyclic. Then there exists a maximal subgroup $L_1 \neq D$ in L. By the hypothesis $L_1 \triangleleft G$ and $D \triangleleft G$ which implies that $L = L_1D \triangleleft G$. Hence if $\Phi(L) \neq 1$, $\Phi(L) \leq D < L \leq P_1$ and since L is not cyclic, it follows that $\Phi(L) < D$. By induction on $|G|, G'\Phi(L)/\Phi(L) \cong G'/G' \cap \Phi(L)$ is p-nilpotent. In particular, $G'\Phi(G)/\Phi(G)$ is p-nilpotent and it follows easily that G' is p-nilpotent. So we may assume that $\Phi(L) = 1$ and so $L_1 \triangleleft G$ by ([1], Lemma 2.9). In particular, $\Omega_1(P_1) \leq Z(G')$. Again by ([10], Satz 5.5(a), p 435), G' is p-nilpotent. This completes the proof of the theorem.

Now we can move forward to prove our main theorem:

Proof. We prove the theorem by induction on |G|. Hence if $O_{p'}(G) \neq 1$, $G/O_{p'}(G)$ satisfies the hypothesis of the theorem and so $(G/O_{p'}(G))'$ is *p*-nilpotent by induction on |G|; in particular, G' is *p*-nilpotent. Thus we may assume that $O_{p'}(G) = 1$. If each subgroup H of P with |H| = |D| is normal in G, then G' is *p*-nilpotent by Theorem 2.2. So we may assume that there exists a subgroup H of P with |H| = |D| and H is not normal in G. By hypothesis, H is S-permutable in G. Since $H \not \lhd G$ and H is S-permutable in G, we have by ([13], Lemma A) that $O^p(G) \leq N_G(H) < G$. Let M be a maximal subgroup of G contains $N_G(H)$ properly. Then $M \lhd G$ and |G/M| = p. Let $P_1 = P \cap M$ be a Sylow *p*-subgroup of M. By the hypothesis, $|D| \leq |P_1|$. If $|D| = |P_1|$, then $|H| = |P_1|$ and so

575

 $P \leq N_G(H)$, and since $O^p(G) \leq N_G(H)$, we have $PO^p(G) = G \leq N_G(H) < M$ which is impossible. Thus we may assume that $|D| < |P_1|$. Now M' is p-nilpotent, by the inductive hypothesis, implies that M' is a p-group because $O_{p'}(G) = 1$. Then P_1 is characteristic in M and since $M \triangleleft G$, we have $P_1 \triangleleft G$. If $P \triangleleft G$, then G/P is abelian and since all subgroups H of P with |H| = |D| are S-permutable in G, we have that G is supersolvable by ([14], Theorem 1.3) and so G' is nilpotent; in particular G' is p-nilpotent. Thus we may assume that $P \not \lhd G$ and $P_1 = F(G)$ the Fitting subgroup of G (recall that $O_{p'}(G) = 1$ and that $F(G) = \langle O_p(G) \text{ for all } p \text{ divides } |G| \rangle$. Consider the subgroup $\Phi(P_1)$ and assume that $\Phi(P_1) \neq 1$. Hence if $|\Phi(P_1)| < |D|$, then $(G/\Phi(P_1))'$ is p-nilpotent by induction on |G|; in particular G' is p-nilpotent. So assume that $|\Phi(P_1)| \ge |D|$. If $|\Phi(P_1)| = |D|$, then $P/\Phi(P_1)$ is not cyclic. Let $L/\Phi(P_1)$ be a proper subgroup of $P/\Phi(P_1)$ such that $|L/\Phi(P_1)| = p$ (L is not cyclic; otherwise $\Phi(P_1)$ is cyclic and this implies that there exists $L_1 \leq \Phi(P_1)$ such that $L_1 \triangleleft G$; in particular $G/C_G(L_1)$ is isomorphic to a subgroup of $Aut(L_1)$ and so $G' \leq$ $C_G(L_1)$ and we conclude then that G' is p-nilpotent). As $|L/\Phi(P_1)| = p$, then there exists a maximal subgroup L_1 of L such that $|L_1| = |\Phi(P_1)| = |D|$ and $L_1 \neq \Phi(P_1)$. But $L_1 \Phi(P_1)$ is S-permutable in G, then $L_1\Phi(P_1)/\Phi(P_1) = L/\Phi(P_1)$ is S-permutable in $G/\Phi(P_1)$. By Theorem 2.1, $(G/\Phi(P_1))' = G'\Phi(P_1)/\Phi(P_1)$ is *p*-nilpotent and so G' is *p*-nilpotent. Thus we may assume that $\Phi(P_1) = 1$ and P_1 is elementary abelian. Since all subgroups H of P_1 with |H| = |D| are normal in M, we have by ([1], Lemma 2.9) that all subgroups of P_1 of order p are normal in M. So $P_1 \cap Z(P) \neq 1$. Let $L \leq P_1 \cap Z(P)$ such that |L| = p. Then $L \triangleleft G$ and since $G/C_G(L)$ is isomorphic to a subgroup of Aut(L), we have that $G' \leq C_G(L)$ $C_G(L)$, in particular G'L/L is p-nilpotent and so G' is p-nilpotent. This completes the proof of the theorem.

References

- M. Asaad and A. A. Heliel, On S-quasinormally embedded subgroups of finite groups, JPAA 165(2001) 129-135.
- [2] A. Ballester-Bolinches and X. Guo, On complemented subgroups of finite groups, Arch. Math. 72(1999) 161-166.
- [3] A. Ballester-Bolinches, Y. Wang and X. Guo (2000), C-supplemented subgroups of finite groups, Glasgow Math. J. 42(2000) 383-389.
- [4] J. Buckely, Finite groups whose minimal subgroups are normal, Math. Z. 116(1970) 15-17.
- [5] D. Gorenstein, Finite Groups, American Mathematical Society, 1980.
- [6] P. Hall, A characteristic property of solvable groups, J. London Math. Soc. 12(1937) 198-200.
- [7] P. Hall, Complemented Groups, J. London Math. Soc. 12(1937) 201-204.

- [8] A. A. Heliel, A note on c-supplemented subgroups of finite groups, Comm. Algebra 42(2014) 1650-1656.
- [9] R. Hijazi, A note on solvability of finite groups, Journal of Advances in Mathematics 10(2015) 3639-3642.
- [10] B. Huppert, Endliche Gruppen I, Springer, Berlin-New York, 1979.
- [11] O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78(1962) 205-221.
- [12] J. Li, W. Shi, G. Chen and D. Yu, New characterization of solubility of finite groups, Italian J. Pure Appl. Math. 33(2014) 377-382.
- [13] P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998) 285-293.
- [14] A. N. Skiba, On weakly S-permutable subgroups of finite groups, J. Algebra, 315(2007) 192-209.
- [15] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J. Math. 35(1980) 210-214.