
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 3, 2019, 834-845
ISSN 1307-5543 – www.ejpam.com
Published by New York Business Global

Stochastic approach of epidemic model using the SEIRS
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Abstract. The study of infectious diseases represents one of the oldest and richest sectors of
biomathematics. The transmission dynamics of these diseases are still a major problem in math-
ematical epidemiology. In this work, we propose a stochastic version of a SEIRS epidemiological
model for infectious diseases evolving in a random environment for the propagation of infectious
diseases. This random model takes into account the rates of immigration and mortality in each
compartment and the spread of these diseases follows a four-state Markovian process. We first
study the stability of the model and then estimate the marginal parameters (means, variances and
covariates) of each disease state over time. Real measles data are applied to the model.
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1. Introduction

Infectious diseases are of increasing concern to authorities and public health officials
[2]. In the face of increasing bacterial resistance, the emergence of new pathogens and the
rapid spread of the epidemic make surveillance and prevention of disease transmission par-
ticularly important and indispensable. Even with permanent and continuous surveillance
of infectious diseases, it must be noted that their etiologies are still largely unknown. To
combat this random phenomenon, in recent decades mathematical models have been devel-
oped and implemented to study the spread of infectious diseases since the early twentieth
century in the field of mathematical epidemiology through the work of Daniel Bernoulli
[1] . Stochastic and deterministic models of epidemics allow researchers to gain valuable
knowledge about many infectious diseases and to study strategies to combat them.

The first stochastic epidemic models were presented by L. Reed and W, H. Frost in [3]
to accurately describe the discrete-time spread of disease in a population. These models
developed in 1928 and 1931[3] are based on the notion of probability and statistics. Later
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Bartlett [M. Costa 2011] proposed in 1949, the continuous time stochastic SIR model
which serves as the basis for stochastic models. These last yeas, we can find in the liter-
ature several works but much remains to be done with the emergence of some of the new
pathogens.

In this work, we are interested in the SEIRS model described in [7] for infectious
diseases. We propose a stochastic version of this model using birth and death processes
to describe the spread of infectious diseases in a random environment.

2. Stochastic probability of Birth and Mortality

In this section, we propose a stochastic version of the SEIRS model (fig 1) reviewed
above. So, we assume that the spread of the disease follows a linear process of birth and
death in continuous time and in four states in a variable environment. Moreover, we as-
sume that the switching between environments follows a homogeneous Markov chain in
continuous time.

A model of the dynamics of infectious disease transition can be formulated using a
stochastic process {Xn, n = 1, 2, 3, ...} as a Markov string with continuous time T and
discrete state space X0, X1, ..., Xn satisfying the following Markov property :

P (Xn+1 = jn+1/X0 = j0, X1 = j1, ..., Xn = jn) = P (Xn+1 = jn+1/Xn = jn). (1)

That is, the evolution of the process at time n+1 depends only on the state of the
process at time n but not on the past states 0, 1, 2, ..., n − 1 of the process. In biological
modeling, a disease transmission process described with the states X0, ..., Xn can be seen
as a Markov chain with a transition matrix Q = (pij) where the probabilities of the
transitions are such as :

pij = P (Xn+1 = j/Xn = i) for all i, j = 1, 2, 3, ..., n. (2)

The population of interest is divided into four compartments where each of them rep-
resents a specific stage of the epidemic. We have X1 for susceptible or holy individuals,
X2 for lectures, X3 for infected individuals and X4 for healers. Add to this model the
apparitions rates σi for i = 1, 2, 3, 4 independent of lambda and the natural death rates
µi for all i = 1, 2, 3, 4 independent of the disease in the classes of persons susceptible to
X1(t), exposed X2(t), infected X3(t) and healed X4(t) respectively at time t.

Moreover, let Z(t) = X1(t) +X2(t) +X3(t) +X4(t) be the population size at a given
time t. Assume that all rates are not time-dependent t and disease transmission occurs
only by contact between susceptible and infectious individuals in a relatively small time in-
terval dt. Once the vaccination is administered to the population, the immunized subjects
against the disease and healed subjects enter the compartment X4 and lose their immunity
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rate significance

λ the rate of newborns

α the rate of attacks of the disease

β The infection rate

γ recovery rate

Θλ the rate of newborns vaccinated and immunized against the disease

τ the tau of individuals healed but having lost temporary immunity

η the tau of holy individuals vaccinated and immunized against the disease

Θ the tau of unvaccinated newborns

σi, i = 1.4 rates of immigrant individuals in different compartments

µi, i = 1.4 mortality rates of the different compartments independent of the disease

Xi, i = 1, 4 The steps in the process

against this disease after a given latent period to become susceptible again. Newborn un-
vaccinated enter the susceptible compartment X1 with a rate θ = 1− λ and after contact
with an infected subject first expose themselves to the disease and become infected, healed
and susceptible again according to the diagram 1). In the case of infectious diseases, the
ideal objective is to eradicate these diseases completely by preventive measures or by set-
ting up a more effective mass vaccination program. Following the SEIR and SEIRS models
with vital dynamics, Anderson and May studied vaccinations applied to the population [7].

Figure 1: The propagation cycle of the SEIRS epidemic model

Transitions intensities are defined as a probability limit of transitions between times
t and t + dt, when dt tends to zero [4]. Under the assumption of the existence of these
limits, let’s determine the infinitesimal probability laws of each process over a small time
interval dt.

• Birth and emigration of S :

Once the population are vaccinated, the compartment S contains unimmunized indi-
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viduals who are therefore susceptible to the disease. Among these individuals are immi-
grants with a rate of σ1 from another locality and newborns not immune to the disease
with a rate of λ. The probability that there will be a birth and then immigration of a
susceptible person in the n process state is given by :

P


S(t+ dt) = n/S(t) = n− 1
E(t+ dt) = m/E(t) = m

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/S(t) = m

′

 = [λ(1− θ)(n− 1) + σ1]dt+ 0(dt).

• Mortality of S :

The mortality rate of compartment S, independent of the cause of the disease, is µ1.
The probability of deaths in state n of the process is given by:

P


S(t+ dt) = n/S(t) = n+ 1
E(t+ dt) = m/E(t) = m

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/S(t) = m

′

 = µ1dt+ 0(dt).

• Transition from S to E:

The individuals in compartment S come into contact with infected people at a rate of
α and expose themselves to the disease. The probability of switching from the n state to
the m state is given by:

P


S(t+ dt) = n/S(t) = n+ 1
E(t+ dt) = m/E(t) = m− 1

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/S(t) = m

′

 = α(n+ 1)dt+ 0(dt)

• Mortality of E :

The probability of deaths in the m state of the process is given by :

P


S(t+ dt) = n/S(t) = n

E(t+ dt) = m/E(t) = m− 1

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/S(t) = m

′

 = µ2dt+ 0(dt)

• Mortality of I:

The probability that there will be deaths regardless of the cause of the disease among
the infected in the n

′
state of the process is given by:
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P


S(t+ dt) = n/S(t) = n

E(t+ dt) = m/E(t) = m+ 1

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/S(t) = m

′

 = µ3dt+ 0(dt).

• Mortality of R :

The probability of deaths among people restored to the m
′

state of the process is given
by:

P


S(t+ dt) = n/S(t) = n
E(t+ dt) = m/E(t) = m

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/S(t) = m

′
+ 1

 = µ4dt+ 0(dt).

3. Stochastic probability of migration and Transition

• Immigration of E:

The compartment E contains people exposed to the disease after contact with the
patients. The probability of immigration at the m state of the process is therefore:

P


S(t+ dt) = n/S(t) = n

E(t+ dt) = m/E(t) = m− 1

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/S(t) = m

′

 = σ2dt+ 0(dt)

• Transition from E to I:

The exposed individuals E, become infectious with a rate β and the probability of
passing from the state m and to the state n

′
is given by:

P


S(t+ dt) = n/S(t) = n

E(t+ dt) = m/E(t) = m+ 1

I(t+ dt) = n
′
/S(t) = n

′ − 1

R(t+ dt) = m
′
/S(t) = m

′

 = β(m+ 1)dt+ 0(dt)

• Immigration of I:

The probability of immigration to the state n
′

of the process in compartment I is:

P


S(t+ dt) = n/S(t) = n
E(t+ dt) = m/E(t) = m

I(t+ dt) = n
′
/S(t) = n

′ − 1

R(t+ dt) = m
′
/S(t) = m

′

 = σ3dt+ 0(dt)
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• Transition from I to R:

Infected individuals I heal with a rate of gammama. The probability of switching
from the state n

′
and to the state m

′
is given by :

P


S(t+ dt) = n/S(t) = n
E(t+ dt) = m/E(t) = m

I(t+ dt) = n
′
/S(t) = n

′
+ 1

R(t+ dt) = m
′
/S(t) = m

′ − 1

 = γ(n3 + 1)dt+ 0(dt)

• Immigration of R:

The probability of immigration in compartment R in the m
′

state of the process is:

P


S(t+ dt) = n/S(t) = n
E(t+ dt) = m/E(t) = m

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/S(t) = m

′ − 1

 = [σ4 + θλ]dt+ 0(dt)

• Transition from R to S:

Recovered people become susceptible again with a rate of tau. The probability of
switching from the state m

′
and to the state n

′
is therefore:

P


S(t+ dt) = n/S(t) = n− 1
E(t+ dt) = m/E(t) = m

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/R(t) = m

′
+ 1

 = τ(n4 + 1)dt+ 0(dt).

• Transition from S to R:

Individuals immunized against the disease with a rate of τ after direct vaccination
coverage integrate the R compartments. The probability of transition from the n state to
the m

′
state is therefore:

P


S(t+ dt) = n/S(t) = n+ 1
E(t+ dt) = m/E(t) = m

I(t+ dt) = n
′
/S(t) = n

′

R(t+ dt) = m
′
/S(t) = m

′ − 1

 = η(n+ 3)dt+ 0(dt).

4. Stochastic and Linear properties of the transition

The Markov property for the law of a multistate process is that the events {X(t) = j},
j = 0, ..., n are independent on the past Xn−1 given X(s). For Markov processes, the
transition probability matrices satisfy the Chapman-Kolmogorov property [6]. The set of
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transition intensities forms the matrix of transition intensity Q. The sum of the terms of
each line of these matrices is equal to zero. We have the matrix of transmission probabilities
Q such as .

Q =



−M1 + µ1 + α α 0 η

0 −M2 + µ2 β 0

0 0 −M3 + µ3 γ

τ 0 0 −M4 + τ + µ4


Where

⇒



M1 = λ(1− θ) + σ1 + η

M2 = α+ β + σ2

M3 = β + γ + σ3

M4 = γ + η + θλ+ σ4

(3)

M1, M2, M3 et M4 are positive quantity.

The Kolmogorov equation gives the matrix of transition probabilities Q(t) as a function
of the exponential of a matrix :

P (t) = exp {Qt} .

The exponential of a matrix is calculated relatively easily, particularly when the ma-
trix can be diagonalized [4]. If Q has eigenvalues which are all different, it can be written
as Q = PDP−1, where D is the diagonal matrix of eigen-values, and P is the matrix of
eigenvectors. In this case, the probability P (t) at stable condition gives P (t) = PetDP−1

where the exponential of a diagonal matrix D is a diagonal matrix whose diagonal terms
are the exponential of terms of D.

Using the cumulants generating function [5] , we then calculate the means, variances
and covariances of the disease states as a function of time. For this purpose, the probability
generating function is defined by :

Φ(x1, x2, x3, x4, t) =
∑

n,n
′
,m,m

′>0

p(n,m, n
′
,m
′
, t)xn1x

m
2 x

n
′

3 x
m
′

4 .
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Using A(t) = (Ai,j(t))16i,j64 = (tAi,j) [i 6, 4j 6], the matrix of births with positive or
null coefficients, such as :

Aij =



λ(1− θ) + σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4


;

and B(t) = (Bi,j(t)) the matrix of deaths given by:

Bij =



µ1 + α+ η −α 0 −η

0 µ2 + β −β 0

0 0 µ3 + γ −γ

−τ 0 0 µ4 + τ


;

then, the joint generating function of the moments is defined by:

M(a1, a2, a3, a4, t) =
∞∑

n,n′ ,m,m′=0

p(n, n
′
,m,m

′
, t)ea1nea2n

′
ea3mea4m

′
. (4)

By setting xk = eak , we get ∂xk = eak∂ak for all k = 1, 2, 3, 4

Let us define the generating function of the cumulants by:

K(a1, a2, a3, a4, t) =

∞∑
n,n′ ,m,m′=1

an1
n!

an
′

2

n′ !

am3
m!

am
′

4

m′ !
knn′mm′ (a1, a2, a3, a4, t) (5)

where knn′mm′ (a1, a2, a3, a4, t) are cumulative:

knn′mm′ (a1, a2, a3, a4, t) =
drK(a1, a2, a3, a4, t)

dtr
|t=0. (6)

Furthermore, the generating function of the cumulants is computed as follows:

K(a1, a2, a3, a4, t) = logM(a1, a2, a3, a4, t) (7)

And
∂M(a1, a2, a3, a4, t) = eK∂K(a1, a2, a3, a4, t). (8)
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By substituting ea =
∑∞

i=0

ai

i!
in (5) and then, by derivating the functionsK(a1, a2, a3, a4, t),

it comes that:

∂K(a1, a2, a3, a4, t)

∂t
=

[
ε1

∞∑
n=0

an1
n!

+ ε3

∞∑
n=0

(−a1)n

n!
− ε2

]∂knn′mm′ (a1, a2, a3, a4, t)

∂a1
(9)

+
[
σ2

∞∑
n′=0

an
′

2

n′ !
+ α

∞∑
n=0

an1
n!

∞∑
n
′
=0

(−a2)n
′

n′ !
− ε4

− ε5

]∂knn′mm′ (a1, a2, a3, a4, t)

∂a2

+
[
σ3

∞∑
m=0

am3
m!

+ β

∞∑
n′=0

an
′

2

n′ !

∞∑
m=0

(−a3)m

m!

− ε7

∞∑
m=0

(−a3)m

m!
− ε6

]∂knn′mm′ (a1, a2, a3, a4, t)

∂a3

+
[
σ4

∞∑
m′=0

am
′

4

m′ !
+ η

∞∑
n=0

an1
n!

∞∑
m=0

(−a4)m
′

m′ !
+ γ

∞∑
m=0

am3
m!

∞∑
m′=0

(−a4)m
′

m′ !

− ε9

∞∑
m
′
=0

(−a4)m
′

m′ !
− ε8

]∂knn′mm′ (a1, a2, a3, a4, t)

∂a4
.

Moreover, knowing that:
E(X) = ∂knn′mm

′ (a1, a2, a3, a4, t)

V (X) = ∂2knn′mm′ (a1, a2, a3, a4, t).
. (10)

Which gives us:
E(Xi(t)) =

dknn′mm′ (a1, a2, a3, a4, t)

dai
|t=0

V (Xi(t)) =
d2knn′mm′ (a1, a2, a3, a4, t)

da2i
|t=0 pour i = 1, 2, 3, 4

(11)

Using the moment generating function (5), we can determine the average and variance
of each state.

The derivative of 5 gives:

∂K(a1, a2, a3, a4, t)

∂t
=

∞∑
n,n′ ,m,m′=0

an1
n!

an
′

2

n′ !

am3
m!

am
′

4

m′ !
k
′

n,n′ ,m,m′
(a1, a2, a3, a4, t). (12)
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By equalizing the two previous expressions (12) and (5) and using the relationship
(11), we obtain a system of linear differential equations of the first degree whose variables
are means of each state of the process defined by the relationship (13).

dE(X1)

dt
= ρ1E(X1)

dE(X2)

dt
= ρ2E(X2)

dE(X3)

dt
= ρ3E(X3) + σ4E(X2X3) + ρ5E(X2)

dE(X4)

dt
= ρ6E(X4) + ρ7E(X2X4)− ε5E(X3)

. (13)

With ρi, i = 1, ..., 8, the strictly positive constants defined by the system (14) :

ρ1 = σ4 + σ2 + η + ε8 − ε5 − ε4 + ε3 − ε2 + γ + α

ρ2 = σ4 + η + ε8 − ε4 + ε3 − ε2 + γ + α+ β

ρ3 = σ4 + σ3 + σ2 + η − ε9 + ε8 − ε7 + ε6 −−ε5 − ε4 + ε3 − ε2 + γ + α+ β

ρ4 = σ3 − ε7 + ε6 − β

ρ5 = σ3 + σ7 − β

ρ6 = σ4 + σ3 + σ2 + η − ε9 + ε8 − σ7 + ε6 − ε5 − ε4 + ε3 − ε2 + γ + α+ β

ρ7 = σ3 +−ε7 + ε6 + β

(14)

The dispersion in turn of the average of each state of the process is given by the
relationship (15). For a statistic with little dispersion, the observations are close to each
other, and therefore to their average.



dV (X1)

dt
= 1

2(σ2 + η + ε2 + ε3 + γ + α)V (X1)

dV (X2)

dt
= 1

2(σ4 + σ2 + η + ε6 + ε3 + ε2 + γ + β)V (X2)

dV (X3)

dt
= 1

2(σ4 + σ3 + σ2 + η + ε9 + ε3 + ε2 + γ + β)V (X3)

dV (X4)

dt
= 1

2(σ4 + σ3 + σ2 + η + ε9 + ε8 + ε7 + +ε6 + +ε5 + ε3 + α)V (X4)

. (15)
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The degree of the links between the different states of the process can be estimated
from the co-variables by solving differential equations of the relationship (16).



dCOV (X1X2)

dt
= (σ4 + σ2 + η − ε9 + ε8 + ε3 − ε2 + γ + α)COV (X1X2)

dCOV (X1X3)

dt
= (σ4 + σ3 + σ2 + η − ε9 + ε8 − ε7 + ε6 − ε5 − ε4 + ε3 − ε2 + γ + α+ β)COV (X1X3)

dCOV (X2X3)

dt
= (σ4 + σ3 + σ2 + η − ε9 + ε8 − ε5 − ε4 + ε3 − ε2 + γ + α+ β)COV (X2X3)

dCOV (X2X4)

dt
= (σ4 + σ2 + η − ε9 − ε5 − ε4 + ε3 − ε2 + γ + α+ β)COV (X2X4)

dCOV (X3X4)

dt
= (σ4 + σ3 + σ2 − ε9 + ε8 + ε7 + ε6 − ε5 − ε3 − ε2 + α+ β)COV (X3X4)

dCOV (X1X4)

dt
= (σ4 + σ2 + η − ε9 − ε5 − ε4 + ε3 − ε2 + γ + α)COV (X1X4)

(16)
The resolution of the written equation system by the relationships (13), (15) and (16)

have as initial conditions:



S(0) = S0 > 0, E(0) = E0 ≥ 0, I(0) = I0 > 0, R(0) = R0 ≥ 0

Φ(x1, x2, x3, x4, 0) = xS0
1 x

E0
2 xI03 x

R0
4 ,M(a1, a2, a3, a4, 0) = ea1S0ea2E0ea3I0ea4R0

K(a1, a2, a3, a4, 0) = a1S0 + a2E0 + a3I0 + a4R0

E(X1(0)) = S0, E(X2(0)) = E0, E(X3(0)) = I0, E(X4(0)) = R0

. (17)

5. Conclusions

In this study, we have proposed the stochastic approach of the deterministic SEIRS
model with a vital dynamic and temporary immunity of [7]. whose balance and stability
have been studied. The stochastic approach can be used to accurately describe the spread
of infectious diseases in a random environment. This SEIRS model generalizes the SI, SIR
and SEIR models and is therefore a valuable tool for stochastic modelling of epidemiolog-
ical problems. The resulting systems of equations incorporate complexities and assume
that randomness is important and explicitly include it in the behaviour of the system com-
pared to the deterministic model that assumes that randomness has a negligible effect and
considers only the average behaviour of the system. For good monitoring and prevention
of transmission of epidemics, the results obtained provide more precision on the random
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evolution of the disease over time. The main disadvantage of this approach is that in
practice, it is often difficult to have data adapted to the model to be implemented. It is
also clear that most of the results remain valid not only for a finite number of Markovian
environments, but also for more general ergodic environments.
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