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Abstract. In this paper, the authors establish certain combinatorial interpretation for g-analogue
of r~-Whitney numbers of the second kind defined by Corcino and Canete in the context of A-
tableaux. They derive convolution-type identities by making use of the combinatorics of A-
tableaux. Finally, they define a g-analogue of r-Dowling numbers and obtain some necessary
properties including its Hankel transform.

Key Words and Phrases: Whitney numbers, Dowling numbers, generating function, g-analogue,
g-exponential function, A-tableau, convolution formula, Hankel transform, Hankel matrix, binomial

transform.

1. Introduction

The binomial transform B of a sequence A = {a,} is the sequence {b,} defined by

by = kznjzo(—nk (Z)a

That is, B(A) = b,. It is one of the common and useful transforms that frequently
appeared in the literature of integer sequences (see [16]). The inverse binomial transform
(or inverse transform) C' of a sequence A is the sequence {c,} defined by

0= (1)
k=0

That is, C(A) = ¢,
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The Hankel matriz H, of order n of a sequence A = {ag,ai,...,a,} is given by
H,, = (aj+j)o<ij<n. The Hankel determinant h,, of order of n of A is the determinant of
the corresponding Hankel matrix of order n. That is, h,, = det(H,,). The Hankel transform
of the sequence A, denoted by H(A), is the sequence {h,} of Hankel determinants of A.
For instance, the Hankel transform of the sequence of Catalan numbers C' = {n T (2") 1
is given by

HC)={1,1,1,...,}

and the sequence of the sum of two consecutive Catalan numbers, a, = ¢, + ¢n41, With
¢, the nth Catalan numbers, has the Hankel transform

H(an) = {Fant1}nso

where F), is the nth Fibonacci numbers [12].

One remarkable property of Hankel transform is established by Layman [12], which
states that the Hankel transform of an integer sequence is invariant under binomial and
inverse transforms. That is, if A is an integer sequence, B is binomial transform of A and
C is the inverse transform of A, then

H(B(A)) = H(A) and H(C(A)) = H(A).

This property played an important role in proving that the Hankel transform of the se-
quence of Bell number {B,,)} [1] and that of r-Bell numbers {B,, . } [14] are equal. Recently,
in the paper by R. Corcino and C. Corcino [7], this property has also been used in proving
that the Hankel transform of the sequence of generalized Bell numbers {G,, , g} is given

by
nrﬁ HB]]'

where G, , 3 is the sum of (r, §)-Stirling numbers {Z}
T’lg

Gn,r,ﬁ = Z {Z}rﬁ

k=0

(see [5, 8]), which are also known as (r, §)-Bell numbers. In the same paper, the authors
have made an attempt to establish the Hankel transform for the g-analogue of (7, 3)-Bell
numbers. However, they are not successful with their attempt and have conjectured that
the Hankel transform for the g-analogue of (r, 3)-Bell numbers when r = 0 is equal to

H(G2,0) = qu<"’f (1)

for some number f(n,k), which is a function of n and k. With this, the present au-
thors have decided to use other method. Recently, R. Corcino et al.[9] have successfully
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established the Hankel transform for the g-analogue of noncentral Bell numbers. This
motivates the present authors to use this method to establish the Hankel transform for
the g-analogue of (7, 3)-Bell numbers G,, . 3. It is important to note that the numbers
G, are equivalent to the r-Dowling numbers D, ,(n), which are defined as the sum of
r-Whitney numbers of the second kind, denoted by W, »(n, k). That is,

Dppr(n) =Y Wi s(n, k).
k=0

The term “r-Dowling numbers” was introduced by Cheon and Jung [3].

2. A ¢-Analogue of W,,,(n,k): Second Form

A g-analogue of both kinds of Stirling numbers was first defined by Carlitz in [2]. The
second kind of which, known as ¢-Stirling numbers of the second kind, is defined in terms
of the following recurrence relation

Sqln, k] = Sg[n — 1,k — 1] + [k]4Sq[n — 1, K] (2)

in connection with a problem in abelian groups, such that when ¢ — 1, this gives the
triangular recurrence relation for the classical Stirling numbers of the second kind S(n, k)

S(n,k)=Sn—-1,k—1)+kS(n—1,k). (3)

A different way of defining g-analogue of Stirling numbers of the second kind has been
adapted in the paper by [10] which is given as follows

Syln, k] = ¢* 1S, [n — 1,k — 1] + [k]4S,[n — 1, K]. (4)

This type of g-analogue gives the Hankel transform of ¢-exponential polynomials and
numbers which are certain g-analogue of Bell polynomials and numbers. Recently, a g¢-
analogue of 7~-Whitney numbers of the second kind was defined by Corcino and Canete [6]
parallel to the definition for g-analogue of noncentral Stirling numbers of the second kind
as follows:

Definition 1. For non-negative integers n and k, and real number a, a q-analogue Wy, »[n, k|,
of Wi r(n, k) is defined by

Wi [n, klg = ¢ DT W o[ — 1,k — 1g + [mk + r]gWinr[n — 1, K. (5)
where Wy, [0,0]g = 1, Wy, r[n,k]g =0forn <k orn,k <0and [t — k|, = qik([t]q — [k]q)-

Remark 1. When m =1 and r =0, the relation (5) reduces to (4). This implies that

WLo[n, k]q == Sq[n,k] (6)
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The g-analogue W, »[n, k], satisfies the following properties:

Vertical and Horizontal Recurrence Relations

Winpln+ 1,k + 1]y = qu—H Z[m(k‘ +1)+ T]Z_ij,r[J} klg; (7)
j=k
n—=k ' L
Winpln, Ky = 3 (—1)ig7 ) 4y g 1] (8)
=0 Tk+1,q
Horizontal Generating Function
ZWm,r[na klglt — r|m]k,q = [t]Z (9)
k=0
Ezxplicit Formula
1 b (*5%) k
Wonp[n, kg = 5 (=1} gm0 [ ] m g (10)
= et 2 i g
1
= Ak, " 11
(] g\ [m] [ gm0+ T]QL—O (11)
Ezxponential Generating Function
ZWm r[n, k] g = ! [A g req ([ + jm +7]g[tlg)] . - (12)
2 0 B 1 el ot 7 lo=o

Rational Generating Function

m(5)+hr [k
q
1\ = E er n, k q :Il = 1 ; ‘

Explicit Formula in Symmetric Function Form

k
k .
Wansn, Ko =GP 37 ] lmj+ 07
S1+S2+--Sp=n—kj=0
n—=k

= > "B T g + 7l

0<i1<g2< gk <k =1
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We now define another form of g-analogue of r-Whitney numbers of the second, denoted
by W, .[n, klg, as follows

Wi [n, kg o= g G W, K.

Hence,
n—k

Wi, o[, k] = > [T i + 7l (13)

0<j1<j2 <o Sfin—p <k i=1

All other properties parallel to those of Wi, »[n, k], can easily be established by imbed-

: —kr—m(k>
ding the factor ¢ 2

ties/formula.

in the derivations or multiply directly to the resulting identi-

Definition 2. [13] An A-tableau is a list ¢ of column c of a Ferrer’s diagram of a partition
A(by decreasing order of length) such that the lengths |c| are part of the sequence A =
(ri)i>0, a strictly increasing sequence of nonnegative integers.

Let w be a function from the set of nonnegative integers N to a ring K. Suppose & is
an A-tableau with [ columns of lengths |c| < h. We use T(h,1) to denote the set of such
A-tableaux. Then, we set

wa(@) = [T w(le]).

ced

Note that ® might contain a finite number of columns whose lengths are zero since 0 €
A=1{0,1,2,...,k} and if w(0) # 0.

From this point onward, whenever an A-tableau is mentioned, it is always associated
with the sequence A ={0,1,2,...,k}.

We are now ready to mention the following theorem.

Theorem 1. Let w : N — K denote a function from N to a ring K (column weights
according to length) which is defined by w(|c|) = [m|c| + 7], where r is a complex number,
and |c| is the length of column | of an A-tableaw in T (k,n — k). Then

Wioln k= > JTee.

GETA (kn—k) cEd

Proof. Let ® € TA(k,n — k). This means that ® has exactly n — k columns say
c1,Co,++ ,Cn_, whose lengths are ji,j2, -, jn_g, respectively. Now, for each column
¢ € ®,i=1,2,3,--- ,n—k, we have |¢;| = j; and

w(leil) = [mlgil + g
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Then
n—=k

n—k
[T (el = TTwlel) = T mlil + rlo-
i=1 =1

ceP
Since ® € TA(k,n — k), then

>, Iwleh = > T w(eh

SeTA(kn—k) ce® 0<j1<72<... <jp—k <k c€DP
n—k

= > IImlil+r

0<j1<g2 < . i <k i=1

= Wy [, K]

O

Suppose that for some numbers 1 and r9, we have r = 1 + r9. Then, equation (13)
yields

W:;z,r[nv k]q = Z H mj; + Tl + 7"2]

0<j1<j2<.<Jp_k<k i=1
That is, for any ¢ € TA(k,n — k),
wa(@) = [ [ltmgi + 1) +raly,
cEP

where |c| € {0,1,2,...,k}. Note that the weight of each column of ¢ can be considered as
a finite sum with additive constant ro, that is, for each ¢ € ¢, we can write

w(lef) = qi(w*(\d) + [r2]y); (14)

where w*(|c|) = [m|c| + 71]q. The following theorem determines how an additive constant
affects the recurrence formula for Wy, [n, k|;. From Theorem 1,

Wionklg= > wale)= D> [
SETA(k,n—k) SETA(k,n—k) c€P

where

wa(P) = H[m|c| +r|qg, where || € {0,1,...,k}
CE¢

H mj; +rlg, where j; € {0,1,...,k}.
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If r = r1 + 7o for some 1 and rg, then by (14),
n—k
Iy . .
wale) = ] P (W*(ji) + [r2lq) » where w*(ji) = [mji + r1]q
i=1

— I (@ (51) + [raly) (@ (G2) + [raly) - (" Gam) + [r2]0))

l
= I Y [,

=

|
B

o
E.
A
E.
A
S
N
A
A
E.
N
S
3
|
ol
I
LN

Suppose By, is the set of all A-tableaux corresponding to ¢ such that for each ¢ € By,
either

1 has no column whose weight is [rg|,, or
1 has one column whose weight is [ra],, or

1 has two columns whose weights are [r3],, or

¢ has (n—k) columns whose weights are [ra,.

Then, we may write

wa(¢) = Y wa(¥).

peEBy

Now, if [ columns in ) have weights other than [rs],, then

wa@) = [Tw*(lel) = a2 ([ra) )" [ [ w* (@)
cey =1
where q1,q2,...,¢ € {j1,J2,--,Jn—k}. Note that for each [, there corresponds
n—k
l

tableaux with [ columns having weights w*(j;) = [myj; +71]4. It can be easily verified that,

TA(kyn — k)| = ((n;f); k) = <nik) B (D

Thus, V¢ € TA(k,n — k), By contains a total of

BI.
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tableaux with [ columns of weights w*(j;). However, only (ltk) tableaux with { columns

in By are distinct. Hence, every distinct tableaux 1 with [ columns of weights other than
[r2]q appears
B ( n >
(l”; k) l+k
times in the collection. Thus,

n—k
> @ =3 (1)) S [ el
=0

¢€TA(kn—k) pEB; CEP

where B; denotes the set of all tableaux ¢ having [ columns of weights w*(j;) = [mgj; +71],-
Reindexing the double sum, we get

> wm)=Z(j)q-m<[r21q>"—j S (el
$ETA (kin—h) j=h B, o

where B;_y, is the set of all tableaux ¢ with j — k columns of weights w*(j;) = [mji +r1lq
for each i =1,2,...,j — k. Clearly B;_;, = T;‘l‘(k‘,j — k). Hence,

S w@=3 (N Y e

$ETA (kn—F) =k pETA (kyj—F)

Applying Theorem 1, we obtain the following theorem.

Theorem 2. The g-analogue W, ,[n, k|, satisfies the following identity

n

* n—j [T —nr n—j * .
Wil Ky = 3 (-1) f(j)q ot IWE L K,
=k

where v = r1 + ro for some numbers r1 and ro.

Suppose

¢1 is a tableau with £ — s columns whose lengths are in the set
{0,1,...,s}, and

¢2 be a tableau with n — k — j columns whose lengths are in the
set {s+1,s+2,...,s+j+1}

Then
¢1 € TN (s,k — s) and ¢y € T2 (j,n — k — j)
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where A; ={0,1,...,s} and Ag = {s+1,s+2,...,s+j+ 1}. Notice that by joining the
columns of ¢; and ¢, we obtain an A-tableau ¢ with n — s — j columns whose lengths are
intheset A=A;UAy ={0,1,...,s+j+1}. Thatis, ¢ € T4(s+5+1,n—s—j). Then,

3

—J

> wa(9) = Y. walen) > wa, (h2)

GETA(s+j+1,n—s—j5) k=s \ ¢p1€T41(s, k—s) $2€TA2 (5, n—k—7)
Note that

> wa,(P2) = > [ ] tmlel + 714

$2€TA2(j, n—k—j) $2€T42 (j, n—k—j) c€p2
n—k—j

= Z H [mg; +1lq

s+1<g1<...<g n—k—j < s+Hj+1 =1
n—k—j

= > I1 [mgi +m(s+ 1)+l

0<g1<..<gn—k—;<j =1
Thus,

n—s—j

Z H [mgi +7]q

0<g1<. . Sgns—j<stj+1 i=1

—j — n—k—
Z Z ng,—i—r Z ngﬁ—ms—l—l)—i—r]

k=s| 0<g1<...<gp—s<s i=1 0<g1<...<gnk—<j i=1

By (13), we obtain the following theorem.

Theorem 3. The g-analogue W, .[n, k| satisfies the following convolution-type identity

Wheln+1,s+j+1];= Z r K, slq W;z,r+m(s+1)[n_ k, dlo-
k=0

The next theorem provides another form of convolution-type identity.

Theorem 4. The g-analogue Wy, .[n, k|, satisfies the following second form of convolution
formula

W* S+J7 q_z mr—i—mk[]v k]q
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Proof. Let
¢1 be a tableau with s — k columns whose lengths are in
A; ={0,1,...,k}, and
¢2 be a tableau with j — n + k columns whose lengths are in
Ay = {k,k‘—i—l,...,n}.

Then ¢y € T4 (k,s — k) and ¢ € T42(n — k,j — n+ k). Using the same argument above,
we can easily obtain the convolution formula. O

3. (¢,r)—Dowling Number and Its Hankel Transform

In this section, we define a ¢-analogue of the r-Dowling numbers and obtain some
combinatorial properties that will be used to establish its Hankel transform.

A g-analogue of the r-Dowling numbers, denoted by l~)m77~ [n]q, is defined by

where

—_~ k
Wanrln, kg = 6" W [, Klg = ¢ W [, .
For brevity, we use the term (g, r)-Dowling numbers for 5m7r[n]q.

Remark 2. When m =1 and r =0, (6) yields
Wioln, Ky = ¢~ CWioln, k] = ¢~ ) S,[n, k] = Syln, k). (15)
It follows that the (q,r)-Dowling numbers reduces to
Diolnlg = €gll] (16)

where €q.,[2] is the g-exponential polynomial in [11] defined by
Eamlz]l = Sln. k]2, (17)
k=0

Remark 3. We recall that the Hankel transform of the g-exponential polynomial €gy,[2]
s given by
n+1

H (gn(2)) = ¢S 0] [n]1(2)

It can easily be verified that the Hankel transform of

")

Eqmlz] = Sgln, k" * (18)
k=0

is equal to that of €qn[2].
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Remark 4. Since

1 y o k=i [k
Winoln, kg = [m]y ™" (~1)F g [
’ e 20 [ Lm ’

= [m]y ™" Sym [, k],

we have

Winoln, Klg = ™ Wi oln, k] = [m]2~* (¢™)C) Synln, k] = [m]2*Sym 0, k).

This implies that

Dimolnlg =Y Winoln,klg = > Sgn[n, k][m];~*. (19)
k=0 k=0

Thus, using Remark 3, the Hankel transform of ]_N)m,o[n]q is given by

n+1 n+1)

H (Dolnly)) = H Egna(lmle)) = "D 0]p gl Iyl ) (20)

Clearly, when ¢ — 1, Em,r [n]y — EW (n), the r-Dowling numbers. By making use of
Theorem 2, with 71 =7 — 1 and 79 = 1 and multiplying both sides by ¢~*",we have

Wyl Ky = S (—1)7 (") W e[, My (21)

=k J

Summing up both sides of (21), we have

Dunr[n]q = ég(—l)”‘j C) G Wonr—14, g
L (n
_ FOkZ:O(_l)n—a (j)q Won o114, Klq
- jzijo( 1y (?)q—"gwm r—1[j, kg
- jno(_1)"ﬂ' (?) ¢ Dinr1[ily

The following theorem states formally the above recurrence relation for Em,r[n]q.

Theorem 5. The (q,r)-Dowling numbers satisfy the following relation

"Dy = 3 (~1)" (’;) Borilile (22)

J=0
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The following corollary is a direct consequence of Theorem 5 which can be proved
using the inversion formula by Riordan [4, 15].

Corollary 1. The (q,7)-Dowling numbers satisfy the following relations

Dnslila =3 (1) Dl (23)

=0 N
To establish the Hankel transform of 5m7r [n]q, we need the concept of rising k-binomial

transform by Spivey and Steil [17] as well as its property in relation to Hankel transform.

Definition 3. (Spivey-Steil [17]) The rising k-binomial transform R of a sequence A =
{an} is the sequence R(A;k) = {r,}, where r, is given by

Tp = i (?) Kaj, k+#0. (24)

We use R(A,k) to denote the set of rising k-binomial transform of A. That is,
R(A,k) = {rp}. Then we have the following theorem by Spivey and Steil.

Theorem 6. (Spivey-Steil [17]) Given a sequence A = {ag,a1,...,}. Let H(A) = {h,}.
Then
H(R(A,k)) = {ap,0,0,...,}.

Ifk #0,
H(R(A, k) = {k""FDp,}.

Now, we are ready to state the main result of the paper.

Theorem 7. The Hankel transform of the sequence of (q,r)-Dowling numbers {5m,r (n]q}
s given by

n n+1
H(Dyrlnly) = (5 ) =m05 D 0] (1] ]!l 2. (25)
Proof. Using equation (18) in Remark 4, we have

~ (n+1

H(Bmollg) = a3 [0)gn! [Lgnt . ]t fm) 2 ). (26)

From Corollary 1, we say that l~)mm,1[n]q is the binomial transform of q”lNDmm[n]q. This
means that B N
B(q"Dmr[nlq) = Dmy—1[n]q.

Hence, by Layman’s Theorem [12],

H(B(¢"Dpr[nlg)) = H(q" Dp.r[n),)-
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That is, N R
H(Dpr-1[nly) = H(q" Dy [n]y)-

Now, Corollary 1 can also be stated as Em,r,l[n]q is the rising g-binomial transform of
D,y r[n]q. Using Spivey-Steil Theorem, with A = {Dy, s[nlq}, hn = H(Dpr[n]y) and

Tn = D r—1[n]q, we have
H(ﬁm,r—l[n]q) = qn(nH)H(ﬁm,r[n]Q)-
We observe that, when r = 1 and using (26), we have

H(Dallg) = "V H(Dyolnly)
= g T 0l [ty [l el 2
— (5D 0] (L[] ] 2 )

Also, when r = 2,

~ n n+1
H(Dpmaln]y) = ¢" §1)72n<n+1>[0]qm![1]qm!...[n]qm![m]g 2)
Continuing this argument, we obtain
=~ n n+1
H(Brlnly) = ¢35 )00 [0] (1] ][] 2 )

Remark 5. When m =1, the Hankel transform in (25) reduces to

+1

H(Dy,[nlg) = (3= D(0p)t. ]!,
which is exactly the Hankel transform for the g-noncentral Bell numbers in [9].

Remark 6. When q — 1, the Hankel transform in (25) yields
H(Dur[n)g) = [0][1]). .. [n]tm("2")
which is exactly the Hankel transform for the g-analogue of (r, 3)-Bell numbers in [9].

Remark 7. The Hankel transform in (25) can also be written as
~ n+1 n —9p
H(Dpylnlg) = a5 T a2 fm)t k]!
k=0
such that, when r =0, we have
~ n+1 n
H(Dyolnlg) = ¢ ) T imlE kg1,

which is exactly the conjectured Hankel transform in (1) with m = B and

n

[T £(n. k) = g5

k=0
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