EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 2, 2019, 279-293
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Hankel Transform of (q, r)-Dowling Numbers

Roberto B. Corcino ${ }^{1}$, Mary Joy R. Latayada ${ }^{2, *}$, Mary Ann Ritzell P. Vega ${ }^{3}$
${ }^{1}$ Research Institute for Computational Mathematics and Physics, Cebu Normal University, 6000 Cebu City, Philippines
${ }^{2}$ Department of Mathematics, Caraga State University, 8600 Butuan City, Philippines
${ }^{3}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

In this paper, the authors establish certain combinatorial interpretation for q-analogue of r-Whitney numbers of the second kind defined by Corcino and Cañete in the context of A tableaux. They derive convolution-type identities by making use of the combinatorics of A tableaux. Finally, they define a q-analogue of r-Dowling numbers and obtain some necessary properties including its Hankel transform. Key Words and Phrases: Whitney numbers, Dowling numbers, generating function, q-analogue, q-exponential function, A-tableau, convolution formula, Hankel transform, Hankel matrix, binomial transform.

1. Introduction

The binomial transform B of a sequence $A=\left\{a_{n}\right\}$ is the sequence $\left\{b_{n}\right\}$ defined by

$$
b_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} a_{k}
$$

That is, $B(A)=b_{n}$. It is one of the common and useful transforms that frequently appeared in the literature of integer sequences (see [16]). The inverse binomial transform (or inverse transform) C of a sequence A is the sequence $\left\{c_{n}\right\}$ defined by

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k}
$$

That is, $C(A)=c_{n}$.

[^0]Email addresses: rcorcino@yahoo.com (R. Corcino), mrlatayada@gmail.com (MJ. Latayada), maryannritzel.vega@g.msuiit.edu.ph (MAR. Vega)

The Hankel matrix H_{n} of order n of a sequence $A=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ is given by $H_{n}=\left(a_{i+j}\right)_{0 \leq i, j \leq n}$. The Hankel determinant h_{n} of order of n of A is the determinant of the corresponding Hankel matrix of order n. That is, $h_{n}=\operatorname{det}\left(H_{n}\right)$. The Hankel transform of the sequence A, denoted by $H(A)$, is the sequence $\left\{h_{n}\right\}$ of Hankel determinants of A. For instance, the Hankel transform of the sequence of Catalan numbers $C=\left\{\frac{1}{n+1}\binom{2 n}{n}\right\}_{n=1}^{\infty}$, is given by

$$
H(C)=\{1,1,1, \ldots,\}
$$

and the sequence of the sum of two consecutive Catalan numbers, $a_{n}=c_{n}+c_{n+1}$, with c_{n} the nth Catalan numbers, has the Hankel transform

$$
H\left(a_{n}\right)=\left\{F_{2 n+1}\right\}_{n=0}^{\infty}
$$

where F_{n} is the nth Fibonacci numbers [12].
One remarkable property of Hankel transform is established by Layman [12], which states that the Hankel transform of an integer sequence is invariant under binomial and inverse transforms. That is, if A is an integer sequence, B is binomial transform of A and C is the inverse transform of A, then

$$
H(B(A))=H(A) \text { and } H(C(A))=H(A) .
$$

This property played an important role in proving that the Hankel transform of the sequence of Bell number $\left.\left\{B_{n}\right)\right\}[1]$ and that of r-Bell numbers $\left\{B_{n, r}\right\}[14]$ are equal. Recently, in the paper by R. Corcino and C. Corcino [7], this property has also been used in proving that the Hankel transform of the sequence of generalized Bell numbers $\left\{G_{n, r, \beta}\right\}$ is given by

$$
H\left(G_{n, r, \beta}\right)=\prod_{j=0}^{n} \beta^{j} j!
$$

where $G_{n, r, \beta}$ is the sum of (r, β)-Stirling numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r, \beta}$

$$
G_{n, r, \beta}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r, \beta}
$$

(see [5, 8]), which are also known as (r, β)-Bell numbers. In the same paper, the authors have made an attempt to establish the Hankel transform for the q-analogue of (r, β)-Bell numbers. However, they are not successful with their attempt and have conjectured that the Hankel transform for the q-analogue of (r, β)-Bell numbers when $r=0$ is equal to

$$
\begin{equation*}
H\left(\mathcal{G}_{n, \beta, 0}^{q}\right)=\prod_{k=0}^{n} q^{f(n, k)}[\beta]_{q}^{k}[k]_{q^{\beta}}! \tag{1}
\end{equation*}
$$

for some number $f(n, k)$, which is a function of n and k. With this, the present authors have decided to use other method. Recently, R. Corcino et al.[9] have successfully
established the Hankel transform for the q-analogue of noncentral Bell numbers. This motivates the present authors to use this method to establish the Hankel transform for the q-analogue of (r, β)-Bell numbers $G_{n, r, \beta}$. It is important to note that the numbers $G_{n, r, \beta}$ are equivalent to the r-Dowling numbers $D_{m, r}(n)$, which are defined as the sum of r-Whitney numbers of the second kind, denoted by $W_{m, r}(n, k)$. That is,

$$
D_{m, r}(n)=\sum_{k=0}^{n} W_{m, r}(n, k) .
$$

The term "r-Dowling numbers" was introduced by Cheon and Jung [3].

2. A q-Analogue of $W_{m, r}(n, k)$: Second Form

A q-analogue of both kinds of Stirling numbers was first defined by Carlitz in [2]. The second kind of which, known as q-Stirling numbers of the second kind, is defined in terms of the following recurrence relation

$$
\begin{equation*}
S_{q}[n, k]=S_{q}[n-1, k-1]+[k]_{q} S_{q}[n-1, k] \tag{2}
\end{equation*}
$$

in connection with a problem in abelian groups, such that when $q \rightarrow 1$, this gives the triangular recurrence relation for the classical Stirling numbers of the second kind $S(n, k)$

$$
\begin{equation*}
S(n, k)=S(n-1, k-1)+k S(n-1, k) . \tag{3}
\end{equation*}
$$

A different way of defining q-analogue of Stirling numbers of the second kind has been adapted in the paper by [10] which is given as follows

$$
\begin{equation*}
S_{q}[n, k]=q^{k-1} S_{q}[n-1, k-1]+[k]_{q} S_{q}[n-1, k] . \tag{4}
\end{equation*}
$$

This type of q-analogue gives the Hankel transform of q-exponential polynomials and numbers which are certain q-analogue of Bell polynomials and numbers. Recently, a q analogue of r-Whitney numbers of the second kind was defined by Corcino and Cañete [6] parallel to the definition for q-analogue of noncentral Stirling numbers of the second kind as follows:

Definition 1. For non-negative integers n and k, and real number a, a q-analogue $W_{m, r}[n, k]_{q}$ of $W_{m, r}(n, k)$ is defined by

$$
\begin{equation*}
W_{m, r}[n, k]_{q}=q^{m(k-1)+r} W_{m, r}[n-1, k-1]_{q}+[m k+r]_{q} W_{m, r}[n-1, k]_{q} . \tag{5}
\end{equation*}
$$

where $W_{m, r}[0,0]_{q}=1, W_{m, r}[n, k]_{q}=0$ for $n<k$ or $n, k<0$ and $[t-k]_{q}=\frac{1}{q^{k}}\left([t]_{q}-[k]_{q}\right)$.
Remark 1. When $m=1$ and $r=0$, the relation (5) reduces to (4). This implies that

$$
\begin{equation*}
W_{1,0}[n, k]_{q}=S_{q}[n, k] . \tag{6}
\end{equation*}
$$

The q-analogue $W_{m, r}[n, k]_{q}$ satisfies the following properties:
Vertical and Horizontal Recurrence Relations

$$
\begin{align*}
W_{m, r}[n+1, k+1]_{q} & =q^{m k+r} \sum_{j=k}^{n}[m(k+1)+r]_{q}^{n-j} W_{m, r}[j, k]_{q} \tag{7}\\
W_{m, r}[n, k]_{q} & =\sum_{j=0}^{n-k}(-1)^{j} q^{-r-m(k+j)} \frac{r_{k+j+1, q}}{r_{k+1, q}} W_{m, r}[n+1, k+j+1]_{q} ; \tag{8}
\end{align*}
$$

Horizontal Generating Function

$$
\begin{equation*}
\sum_{k=0}^{n} W_{m, r}[n, k]_{q}[t-r \mid m]_{k, q}=[t]_{q}^{n} \tag{9}
\end{equation*}
$$

Explicit Formula

$$
\begin{align*}
W_{m, r}[n, k]_{q} & =\frac{1}{[k]_{q^{m}}![m]_{q}^{k}} \sum_{j=0}^{k}(-1)^{k-j} q^{m\left(\begin{array}{c}
k-j
\end{array}\right)}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q^{m}}[j m+r]_{q}^{n} \tag{10}\\
& =\frac{1}{[k]_{q^{m}}![m]_{q}^{k}}\left[\Delta_{q^{m}, m}^{k}[x+r]_{q}^{n}\right]_{x=0} \tag{11}
\end{align*}
$$

Exponential Generating Function

$$
\begin{equation*}
\sum_{n \geq 0} W_{m, r}[n, k]_{q} \frac{[t]_{q}^{n}}{[n]_{q}!}=\frac{1}{[k]_{q} m![m]_{q}^{k}}\left[\Delta_{q^{m}, m^{k}} e_{q}\left([x+j m+r]_{q}[t]_{q}\right)\right]_{x=0} \tag{12}
\end{equation*}
$$

Rational Generating Function

$$
\Psi_{k}(t)=\sum_{n \geq k} W_{m, r}[n, k]_{q}[t]_{q}^{n}=\frac{q^{m\binom{k}{2}+k r}[t]_{q}^{k}}{\prod_{j=0}^{k}\left(1-[m j+r]_{q}[t]_{q}\right)}
$$

Explicit Formula in Symmetric Function Form

$$
\begin{aligned}
W_{m, r}[n, k]_{q} & =q^{m\binom{k}{2}+k r} \sum_{S_{1}+S_{2}+\cdots S_{k}=n-k j=0} \prod_{0}^{k}[m j+r]_{q}^{S_{j}} \\
& =\sum_{0 \leq j_{1} \leq j_{2} \leq \cdots j_{n-k} \leq k} q^{m\binom{k}{2}+k r} \prod_{i=1}^{n-k}[m j+r]_{q} .
\end{aligned}
$$

We now define another form of q-analogue of r-Whitney numbers of the second, denoted by $W_{m, r}^{*}[n, k]_{q}$, as follows

$$
W_{m, r}^{*}[n, k]_{q}:=q^{-k r-m\binom{k}{2}} W_{m, r}[n, k]_{q} .
$$

Hence,

$$
\begin{equation*}
W_{m, r}^{*}[n, k]=\sum_{0 \leq j_{1} \leq j_{2} \leq \ldots \leq j_{n-k} \leq k} \prod_{i=1}^{n-k}\left[m j_{i}+r\right]_{q} . \tag{13}
\end{equation*}
$$

All other properties parallel to those of $W_{m, r}[n, k]_{q}$ can easily be established by imbedding the factor $q^{-k r-m\binom{k}{2}}$ in the derivations or multiply directly to the resulting identities/formula.

Definition 2. [13] An A-tableau is a list ϕ of column c of a Ferrer's diagram of a partition λ (by decreasing order of length) such that the lengths $|c|$ are part of the sequence $A=$ $\left(r_{i}\right)_{i \geq 0}$, a strictly increasing sequence of nonnegative integers.

Let ω be a function from the set of nonnegative integers N to a ring K. Suppose Φ is an A-tableau with l columns of lengths $|c| \leq h$. We use $T_{r}^{A}(h, l)$ to denote the set of such A-tableaux. Then, we set

$$
\omega_{A}(\Phi)=\prod_{c \in \Phi} \omega(|c|)
$$

Note that Φ might contain a finite number of columns whose lengths are zero since $0 \in$ $A=\{0,1,2, \ldots, k\}$ and if $\omega(0) \neq 0$.

From this point onward, whenever an A-tableau is mentioned, it is always associated with the sequence $A=\{0,1,2, \ldots, k\}$.

We are now ready to mention the following theorem.

Theorem 1. Let $\omega: N \rightarrow K$ denote a function from N to a ring K (column weights according to length) which is defined by $\omega(|c|)=[m|c|+r]_{q}$ where r is a complex number, and $|c|$ is the length of column l of an A-tableau in $T_{r}^{A}(k, n-k)$. Then

$$
W_{m, r}^{*}[n, k]=\sum_{\phi \in T_{r}^{A}(k, n-k)} \prod_{c \in \phi} \omega(|c|) .
$$

Proof. Let $\Phi \in T_{r}^{A}(k, n-k)$. This means that Φ has exactly $n-k$ columns say $c_{1}, c_{2}, \cdots, c_{n-k}$ whose lengths are $j_{1}, j_{2}, \cdots, j_{n-k}$, respectively. Now, for each column $c_{i} \in \Phi, i=1,2,3, \cdots, n-k$, we have $\left|c_{i}\right|=j_{i}$ and

$$
\omega\left(\left|c_{i}\right|\right)=\left[m\left|j_{i}\right|+r\right]_{q} .
$$

Then

$$
\prod_{c \in \Phi} \omega(|c|)=\prod_{i=1}^{n-k} \omega\left(\left|c_{i}\right|\right)=\prod_{i=1}^{n-k}\left[m\left|j_{i}\right|+r\right]_{q}
$$

Since $\Phi \in T_{r}^{A}(k, n-k)$, then

$$
\begin{aligned}
\sum_{\Phi \in T_{r}^{A}(k, n-k)} \prod_{c \in \Phi} \omega(|c|) & =\sum_{0 \leq j_{1} \leq j_{2} \leq \ldots \leq j_{n-k} \leq k} \prod_{c \in \Phi} \omega(|c|) \\
& =\sum_{0 \leq j_{1} \leq j_{2} \leq \ldots \leq j_{n-k} \leq k} \prod_{i=1}^{n-k}\left[m\left|j_{i}\right|+r\right]_{q} \\
& =W_{m, r}^{*}[n, k] .
\end{aligned}
$$

Suppose that for some numbers r_{1} and r_{2}, we have $r=r_{1}+r_{2}$. Then, equation (13) yields

$$
W_{m, r}^{*}[n, k]_{q}=\sum_{0 \leq j_{1} \leq j_{2} \leq \ldots \leq j_{n-k} \leq k} \prod_{i=1}^{n-k}\left[\left(m j_{i}+r_{1}\right)+r_{2}\right]_{q} .
$$

That is, for any $\phi \in T_{r}^{A}(k, n-k)$,

$$
\omega_{A}(\phi)=\prod_{c \in \phi}\left[\left(m j_{i}+r_{1}\right)+r_{2}\right]_{q},
$$

where $|c| \in\{0,1,2, \ldots, k\}$. Note that the weight of each column of ϕ can be considered as a finite sum with additive constant r_{2}, that is, for each $c \in \phi$, we can write

$$
\begin{equation*}
\omega(|c|)=\frac{1}{q^{r_{2}}}\left(\omega^{*}(|c|)+\left[r_{2}\right]_{q}\right), \tag{14}
\end{equation*}
$$

where $\omega^{*}(|c|)=\left[m|c|+r_{1}\right]_{q}$. The following theorem determines how an additive constant affects the recurrence formula for $W_{m, r}[n, k]_{q}$. From Theorem 1,

$$
W_{m, r}^{*}[n, k]_{q}=\sum_{\phi \in T_{r}^{A}(k, n-k)} \omega_{A}(\phi)=\sum_{\phi \in T_{r}^{A}(k, n-k)} \prod_{c \in \phi} \omega(|c|)
$$

where

$$
\begin{aligned}
\omega_{A}(\phi) & =\prod_{c \in \phi}[m|c|+r]_{q}, \text { where }|c| \in\{0,1, \ldots, k\} \\
& =\prod_{i=1}^{n-k}\left[m j_{i}+r\right]_{q}, \text { where } j_{i} \in\{0,1, \ldots, k\}
\end{aligned}
$$

If $r=r_{1}+r_{2}$ for some r_{1} and r_{2}, then by (14),

$$
\begin{aligned}
\omega_{A}(\phi) & =\prod_{i=1}^{n-k} \frac{1}{q^{r_{2}}}\left(\omega^{*}\left(j_{i}\right)+\left[r_{2}\right]_{q}\right), \quad \text { where } \omega^{*}\left(j_{i}\right)=\left[m j_{i}+r_{1}\right]_{q} \\
& \left.=q^{-(n-k) r_{2}}\left(\omega^{*}\left(j_{1}\right)+\left[r_{2}\right]_{q}\right)\left(\omega^{*}\left(j_{2}\right)+\left[r_{2}\right]_{q}\right) \cdots\left(\omega^{*}\left(j_{n-k}\right)+\left[r_{2}\right]_{q}\right)\right) \\
& =q^{-(n-k) r_{2}} \sum_{l=0}^{n-k}\left(\left[r_{2}\right]_{q}\right)^{n-k-l} \sum_{j_{1} \leq j_{1} \leq j_{2} \leq \ldots \leq j_{l} \leq j_{n-k}}^{l} \prod_{i=1}^{l} \omega^{*}\left(j_{i}\right)
\end{aligned}
$$

Suppose B_{ϕ} is the set of all A-tableaux corresponding to ϕ such that for each $\psi \in B_{\phi}$, either
ψ has no column whose weight is $\left[r_{2}\right]_{q}$, or
ψ has one column whose weight is $\left[r_{2}\right]_{q}$, or
ψ has two columns whose weights are $\left[r_{2}\right]_{q}$, or \vdots
ψ has $(n-k)$ columns whose weights are $\left[r_{2}\right]_{q}$.

Then, we may write

$$
\omega_{A}(\phi)=\sum_{\psi \in B_{\phi}} \omega_{A}(\psi)
$$

Now, if l columns in ψ have weights other than $\left[r_{2}\right]_{q}$, then

$$
\omega_{A}(\psi)=\prod_{c \in \psi} \omega^{*}(|c|)=q^{-(n-k) r_{2}}\left(\left[r_{2}\right]_{q}\right)^{n-k-r} \prod_{i=1}^{r} \omega^{*}\left(q_{i}\right)
$$

where $q_{1}, q_{2}, \ldots, q_{r} \in\left\{j_{1}, j_{2}, \ldots, j_{n-k}\right\}$. Note that for each l, there corresponds

$$
\binom{n-k}{l}
$$

tableaux with l columns having weights $\omega^{*}\left(j_{i}\right)=\left[m j_{i}+r_{1}\right]_{q}$. It can be easily verified that,

$$
\left|T_{r}^{A}(k, n-k)\right|=\binom{(n-k)+k}{n-k}=\binom{n}{n-k}=\binom{n}{k}
$$

Thus, $\forall \phi \in T_{r}^{A}(k, n-k), B_{\phi}$ contains a total of

$$
\binom{n}{k}\binom{n-k}{l}
$$

tableaux with l columns of weights $\omega^{*}\left(j_{i}\right)$. However, only $\binom{l+k}{l}$ tableaux with l columns in B_{ϕ} are distinct. Hence, every distinct tableaux ψ with l columns of weights other than $\left.{ }_{\left[r_{2}\right.}\right]_{q}$ appears

$$
\frac{\binom{n}{k}\binom{n-k}{l}}{\binom{+k}{l}}=\binom{n}{l+k}
$$

times in the collection. Thus,

$$
\sum_{\phi \in T_{r}^{A}(k, n-k)} \omega_{A}(\phi)=\sum_{l=0}^{n-k}\binom{n}{l+k} q^{-(n-k) r_{2}}\left(\left[r_{2}\right]_{q}\right)^{n-k-l} \sum_{\varphi \in \bar{B}_{l}} \prod_{c \in \varphi} \omega^{*}(|c|)
$$

where \bar{B}_{l} denotes the set of all tableaux φ having l columns of weights $\omega^{*}\left(j_{i}\right)=\left[m j_{i}+r_{1}\right]_{q}$. Reindexing the double sum, we get

$$
\sum_{\phi \in T_{r}^{A}(k, n-k)} \omega_{A}(\phi)=\sum_{j=k}^{n}\binom{n}{j} q^{-n r_{2}}\left(\left[r_{2}\right]_{q}\right)^{n-j} \sum_{\varphi \in \widetilde{B}_{j-k}} \prod_{c \in \varphi} \omega^{*}(|c|)
$$

where \bar{B}_{j-k} is the set of all tableaux φ with $j-k$ columns of weights $\omega^{*}\left(j_{i}\right)=\left[m j_{i}+r_{1}\right]_{q}$ for each $i=1,2, \ldots, j-k$. Clearly $\bar{B}_{j-k}=T_{r_{1}}^{A}(k, j-k)$. Hence,

$$
\sum_{\phi \in T_{r}^{A}(k, n-k)} \omega_{A}(\phi)=\sum_{j=k}^{n}\binom{n}{j} q^{-n r_{2}}\left(\left[r_{2}\right]_{q}\right)^{n-j} \sum_{\varphi \in T_{r_{1}}^{A}(k, j-k)} \omega_{A}(\varphi) .
$$

Applying Theorem 1, we obtain the following theorem.

Theorem 2. The q-analogue $W_{m, r}^{*}[n, k]_{q}$ satisfies the following identity

$$
W_{m, r}^{*}[n, k]_{q}=\sum_{j=k}^{n}(-1)^{n-j}\binom{n}{j} q^{-n r_{2}}\left[r_{2}\right]_{q}^{n-j} W_{m, r_{1}}^{*}[j, k]_{q}
$$

where $r=r_{1}+r_{2}$ for some numbers r_{1} and r_{2}.
Suppose
ϕ_{1} is a tableau with $k-s$ columns whose lengths are in the set $\{0,1, \ldots, s\}$, and
ϕ_{2} be a tableau with $n-k-j$ columns whose lengths are in the

$$
\text { set }\{s+1, s+2, \ldots, s+j+1\}
$$

Then

$$
\phi_{1} \in T^{A_{1}}(s, k-s) \text { and } \phi_{2} \in T^{A_{2}}(j, n-k-j)
$$

where $A_{1}=\{0,1, \ldots, s\}$ and $A_{2}=\{s+1, s+2, \ldots, s+j+1\}$. Notice that by joining the columns of ϕ_{1} and ϕ_{2}, we obtain an A-tableau ϕ with $n-s-j$ columns whose lengths are in the set $A=A_{1} \cup A_{2}=\{0,1, \ldots, s+j+1\}$. That is, $\phi \in T^{A}(s+j+1, n-s-j)$. Then,

$$
\sum_{\phi \in T^{A}(s+j+1, n-s-j)} \omega_{A}(\phi)=\sum_{k=s}^{n-j}\left\{\sum_{\phi_{1} \in T^{A_{1}(s, k-s)}} \omega_{A_{1}}\left(\phi_{1}\right)\right\}\left\{\sum_{\phi_{2} \in T^{A_{2}}(j, n-k-j)} \omega_{A_{2}}\left(\phi_{2}\right)\right\} .
$$

Note that

$$
\begin{aligned}
\sum_{\phi_{2} \in T^{A_{2}}(j, n-k-j)} \omega_{A_{2}}\left(\phi_{2}\right) & =\sum_{\phi_{2} \in T^{A_{2}}(j, n-k-j)} \prod_{c \in \phi_{2}}[m|c|+r]_{q} \\
& =\sum_{s+1 \leq g_{1} \leq \ldots \leq g_{n-k-j} \leq s+j+1} \prod_{i=1}^{n-k-j}\left[m g_{i}+r\right]_{q} \\
& =\sum_{0 \leq g_{1} \leq \ldots \leq g_{n-k-j} \leq j} \prod_{i=1}^{n-k-j}\left[m g_{i}+m(s+1)+r\right]_{q} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \sum_{0 \leq g_{1} \leq \ldots \leq g_{n-s-j} \leq s+j+1} \prod_{i=1}^{n-s-j}\left[m g_{i}+r\right]_{q} \\
& =\sum_{k=s}^{n-j}\left\{\sum_{0 \leq g_{1} \leq \ldots \leq g_{k-s} \leq s} \prod_{i=1}^{k-s}\left[m g_{i}+r\right]_{q}\right\}\left\{\sum_{0 \leq g_{1} \leq \ldots \leq g_{n-k-j} \leq j} \prod_{i=1}^{n-k-j}\left[m g_{i}+m(s+1)+r\right]_{q}\right\} .
\end{aligned}
$$

By (13), we obtain the following theorem.

Theorem 3. The q-analogue $W_{m, r}^{*}[n, k]$ satisfies the following convolution-type identity

$$
W_{m, r}^{*}[n+1, s+j+1]_{q}=\sum_{k=0}^{n} W_{m, r}^{*}[k, s]_{q} W_{m, r+m(s+1)}^{*}[n-k, j]_{q} .
$$

The next theorem provides another form of convolution-type identity.

Theorem 4. The q-analogue $W_{m, r}^{*}[n, k]_{q}$ satisfies the following second form of convolution formula

$$
W_{m, r}^{*}[s+j, n]_{q}=\sum_{k=s}^{n-j} W_{m, r}^{*}[s, k]_{q} W_{m, r+m k}^{*}[j, n-k]_{q} .
$$

Proof. Let
ϕ_{1} be a tableau with $s-k$ columns whose lengths are in $A_{1}=\{0,1, \ldots, k\}$, and
ϕ_{2} be a tableau with $j-n+k$ columns whose lengths are in $A_{2}=\{k, k+1, \ldots, n\}$.

Then $\phi_{1} \in T^{A_{1}}(k, s-k)$ and $\phi_{2} \in T^{A_{2}}(n-k, j-n+k)$. Using the same argument above, we can easily obtain the convolution formula.

3. (q, r)-Dowling Number and Its Hankel Transform

In this section, we define a q-analogue of the r-Dowling numbers and obtain some combinatorial properties that will be used to establish its Hankel transform.

A q-analogue of the r-Dowling numbers, denoted by $\widetilde{D}_{m, r}[n]_{q}$, is defined by

$$
\widetilde{D}_{m, r}[n]_{q}=\sum_{k=0}^{n} \widetilde{W}_{m, r}[n, k]_{q}
$$

where

$$
\widetilde{W}_{m, r}[n, k]_{q}=q^{k r} W_{m, r}^{*}[n, k]_{q}=q^{-m\binom{k}{2}} W_{m, r}[n, k] .
$$

For brevity, we use the term (q, r)-Dowling numbers for $\widetilde{D}_{m, r}[n]_{q}$.
Remark 2. When $m=1$ and $r=0$, (6) yields

$$
\begin{equation*}
\widetilde{W}_{1,0}[n, k]_{q}=q^{-\binom{k}{2}} W_{1,0}[n, k]=q^{-\binom{k}{2}} S_{q}[n, k]=\widetilde{S}_{q}[n, k] . \tag{15}
\end{equation*}
$$

It follows that the (q, r)-Dowling numbers reduces to

$$
\begin{equation*}
\widetilde{D}_{1,0}[n]_{q}=\widetilde{e}_{q, n}[1] \tag{16}
\end{equation*}
$$

where $\widetilde{e}_{q, n}[z]$ is the q-exponential polynomial in [11] defined by

$$
\begin{equation*}
\widetilde{e}_{q, n}[z]=\sum_{k=0}^{n} \widetilde{S}_{q}[n, k] z^{k} . \tag{17}
\end{equation*}
$$

Remark 3. We recall that the Hankel transform of the q-exponential polynomial $\widetilde{e}_{q, n}[z]$ is given by

$$
H\left(\widetilde{e}_{q, n}(z)\right)=q^{\binom{n+1}{3}}[0]![1]!\ldots[n]!(z)\left(\begin{array}{c}
\binom{n+1}{2}
\end{array} .\right.
$$

It can easily be verified that the Hankel transform of

$$
\begin{equation*}
\bar{e}_{q, n}[z]=\sum_{k=0}^{n} \widetilde{S}_{q}[n, k] z^{n-k} \tag{18}
\end{equation*}
$$

is equal to that of $\widetilde{e}_{q, n}[z]$.

Remark 4. Since

$$
\begin{aligned}
W_{m, 0}[n, k]_{q} & =[m]_{q}^{n-k}\left\{\frac{1}{[k]_{q^{m}}!} \sum_{j=0}^{k}(-1)^{k-j} q^{m\left(\frac{k-j}{2}\right)}\left[\begin{array}{l}
k \\
j
\end{array}\right]_{q^{m}}[j]_{q^{m}}^{n}\right\} \\
& =[m]_{q}^{n-k} S_{q^{m}}[n, k],
\end{aligned}
$$

we have

$$
\widetilde{W}_{m, 0}[n, k]_{q}=q^{-m\binom{k}{2}} W_{m, 0}[n, k]=[m]_{q}^{n-k}\left(q^{m}\right)^{-\binom{k}{2}} S_{q^{m}}[n, k]=[m]_{q}^{n-k} \widetilde{S}_{q^{m}}[n, k] .
$$

This implies that

$$
\begin{equation*}
\widetilde{D}_{m, 0}[n]_{q}=\sum_{k=0}^{n} \widetilde{W}_{m, 0}[n, k]_{q}=\sum_{k=0}^{n} \widetilde{S}_{q^{m}}[n, k][m]_{q}^{n-k} . \tag{19}
\end{equation*}
$$

Thus, using Remark 3, the Hankel transform of $\widetilde{D}_{m, 0}[n]_{q}$ is given by

$$
\left.H\left(\widetilde{D}_{m, 0}[n]_{q}\right)\right)=H\left(\bar{e}_{q^{m}, n}\left([m]_{q}\right)\right)=q^{m\binom{n+1}{3}}[0]_{q^{m}}![1]_{q^{m}}!\ldots[n]_{q^{m}}![m]_{q}^{\left(\begin{array}{c}
n+1 \tag{20}
\end{array}\right)}
$$

Clearly, when $q \rightarrow 1, \widetilde{D}_{m, r}[n]_{q} \rightarrow \widetilde{D}_{m, r}(n)$, the r-Dowling numbers. By making use of Theorem 2, with $r_{1}=r-1$ and $r_{2}=1$ and multiplying both sides by $q^{-k r}$, we have

$$
\begin{equation*}
\widetilde{W}_{m, r}[n, k]_{q}=\sum_{j=k}^{n}(-1)^{n-j}\binom{n}{j} q^{-n} \widetilde{W}_{m, r-1}[j, k]_{q} . \tag{21}
\end{equation*}
$$

Summing up both sides of (21), we have

$$
\begin{aligned}
\widetilde{D}_{m, r}[n]_{q} & =\sum_{k=0}^{n} \sum_{j=k}^{n}(-1)^{n-j}\binom{n}{j} q^{-n} \widetilde{W}_{m, r-1}[j, k]_{q} \\
& =\sum_{j=0}^{n} \sum_{k=0}^{j}(-1)^{n-j}\binom{n}{j} q^{-n} \widetilde{W}_{m, r-1}[j, k]_{q} \\
& =\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} q^{-n} \sum_{k=0}^{j} \widetilde{W}_{m, r-1}[j, k]_{q} \\
& =\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} q^{-n} \widetilde{D}_{m, r-1}[j]_{q} .
\end{aligned}
$$

The following theorem states formally the above recurrence relation for $\widetilde{D}_{m, r}[n]_{q}$.
Theorem 5. The (q, r)-Dowling numbers satisfy the following relation

$$
\begin{equation*}
q^{n} \widetilde{D}_{m, r}[n]_{q}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \widetilde{D}_{m, r-1}[j]_{q} . \tag{22}
\end{equation*}
$$

The following corollary is a direct consequence of Theorem 5 which can be proved using the inversion formula by Riordan [4, 15].

Corollary 1. The (q, r)-Dowling numbers satisfy the following relations

$$
\begin{equation*}
\widetilde{D}_{m, r-1}[n]_{q}=\sum_{j=0}^{n}\binom{n}{j} q^{j} \widetilde{D}_{m, r}[j]_{q} \tag{23}
\end{equation*}
$$

To establish the Hankel transform of $\widetilde{D}_{m, r}[n]_{q}$, we need the concept of rising k-binomial transform by Spivey and Steil [17] as well as its property in relation to Hankel transform.

Definition 3. (Spivey-Steil [17]) The rising k-binomial transform R of a sequence $A=$ $\left\{a_{n}\right\}$ is the sequence $R(A ; k)=\left\{r_{n}\right\}$, where r_{n} is given by

$$
\begin{equation*}
r_{n}=\sum_{j=0}^{n}\binom{n}{j} k^{j} a_{j}, \quad k \neq 0 \tag{24}
\end{equation*}
$$

We use $R(A, k)$ to denote the set of rising k-binomial transform of A. That is, $R(A, k)=\left\{r_{n}\right\}$. Then we have the following theorem by Spivey and Steil.

Theorem 6. (Spivey-Steil [17]) Given a sequence $A=\left\{a_{0}, a_{1}, \ldots,\right\}$. Let $H(A)=\left\{h_{n}\right\}$. Then

$$
H(R(A, k))=\left\{a_{0}, 0,0, \ldots,\right\}
$$

If $k \neq 0$,

$$
H(R(A, k))=\left\{k^{n(n+1)} h_{n}\right\}
$$

Now, we are ready to state the main result of the paper.
Theorem 7. The Hankel transform of the sequence of (q, r)-Dowling numbers $\left\{\widetilde{D}_{m, r}[n]_{q}\right\}$ is given by

$$
\begin{equation*}
H\left(\widetilde{D}_{m, r}[n]_{q}\right)=q^{m\binom{n+1}{3}-r n(n+1)}[0]_{q^{m}}![1]_{q^{m}}!\ldots[n]_{q^{m}}![m]_{q}\binom{n+1}{2} \tag{25}
\end{equation*}
$$

Proof. Using equation (18) in Remark 4, we have

$$
H\left(\widetilde{D}_{m, 0}[n]_{q}\right)=q^{m\binom{n+1}{3}}[0]_{q^{m}}![1]_{q^{m}}!\ldots[n]_{q^{m}}![m]_{q}^{\left(\begin{array}{c}
n+1 \tag{26}
\end{array}\right)}
$$

From Corollary 1, we say that $\widetilde{D}_{m, r-1}[n]_{q}$ is the binomial transform of $q^{n} \widetilde{D}_{m, r}[n]_{q}$. This means that

$$
B\left(q^{n} \widetilde{D}_{m, r}[n]_{q}\right)=\widetilde{D}_{m, r-1}[n]_{q}
$$

Hence, by Layman's Theorem [12],

$$
H\left(B\left(q^{n} \widetilde{D}_{m, r}[n]_{q}\right)\right)=H\left(q^{n} \widetilde{D}_{m, r}[n]_{q}\right)
$$

That is,

$$
H\left(\widetilde{D}_{m, r-1}[n]_{q}\right)=H\left(q^{n} \widetilde{D}_{m, r}[n]_{q}\right) .
$$

Now, Corollary 1 can also be stated as $\widetilde{D}_{m, r-1}[n]_{q}$ is the rising q-binomial transform of $\widetilde{D}_{m, r}[n]_{q}$. Using Spivey-Steil Theorem, with $A=\left\{\widetilde{D}_{m, r}[n]_{q}\right\}, h_{n}=H\left(\widetilde{D}_{m, r}[n]_{q}\right)$ and $r_{n}=\widetilde{D}_{m, r-1}[n]_{q}$, we have

$$
H\left(\widetilde{D}_{m, r-1}[n]_{q}\right)=q^{n(n+1)} H\left(\widetilde{D}_{m, r}[n]_{q}\right) .
$$

We observe that, when $r=1$ and using (26), we have

$$
\begin{aligned}
H\left(\widetilde{D}_{m, 1}[n]_{q}\right) & =q^{-n(n+1)} H\left(\widetilde{D}_{m, 0}[n]_{q}\right) \\
& =q^{-n(n+1)} q^{m\binom{n+1}{3}}[0]_{q^{m}}![1]_{q^{m}}!\ldots[n]_{q^{m}}![m]_{q}^{\left(\begin{array}{c}
n+1
\end{array}\right)} \\
& =q^{m\binom{n+1}{3}-n(n+1)}[0]_{q^{m}}![1]_{q^{m}}!\ldots[n]_{q^{m}}![m]_{q}^{\binom{n+1}{2}}
\end{aligned}
$$

Also, when $r=2$,

$$
H\left(\widetilde{D}_{m, 2}[n]_{q}\right)=q^{m\binom{n+1}{3}-2 n(n+1)}[0]_{q^{m}}![1]_{q^{m}}!\ldots[n]_{q^{m}}![m]_{q}^{\binom{n+1}{2}} .
$$

Continuing this argument, we obtain

$$
H\left(\widetilde{D}_{m, r}[n]_{q}\right)=q^{m\binom{n+1}{3}-r n(n+1)}[0]_{q^{m}}![1]_{q^{m}}!\ldots[n]_{q^{m}}![m]_{q}^{\binom{n+1}{2}}
$$

Remark 5. When $m=1$, the Hankel transform in (25) reduces to

$$
H\left(\widetilde{D}_{1, r}[n]_{q}\right)=q^{\binom{n+1}{3}-r n(n+1)}[0]![1]!\ldots[n]!,
$$

which is exactly the Hankel transform for the q-noncentral Bell numbers in [9].
Remark 6. When $q \rightarrow 1$, the Hankel transform in (25) yields

$$
H\left(\widetilde{D}_{m, r}[n]_{q}\right)=[0]![1]!\ldots[n]!m\binom{n+1}{2},
$$

which is exactly the Hankel transform for the q-analogue of (r, β)-Bell numbers in [9].
Remark 7. The Hankel transform in (25) can also be written as

$$
H\left(\widetilde{D}_{m, r}[n]_{q}\right)=q^{m\binom{n+1}{3}} \prod_{k=0}^{n} q^{-2 r k}[m]_{q}^{k}[k]_{q^{m}}!
$$

such that, when $r=0$, we have

$$
H\left(\widetilde{D}_{m, 0}[n]_{q}\right)=q^{m\binom{n+1}{3}} \prod_{k=0}^{n}[m]_{q}^{k}[k]_{q^{m}}!,
$$

which is exactly the conjectured Hankel transform in (1) with $m=\beta$ and

$$
\prod_{k=0}^{n} f(n, k)=q^{m\binom{n+1}{3}} .
$$

Acknowledgements

The first author would like to thank Cebu Normal University (CNU) and the Commission on Higher Education-Grants-in-Aid for Research (CHED-GIA) for the financial support extended to this project. The second author would also like to thank the Commission on Higher Education-Faculty Development Program (CHED-FDP) for providing her financial support in pursuing Ph.D. Math Program at the Mathematics Department of MSU - Iligan Institute of Technology. Lastly, the authors would like to thank the two anonymous referees for spending their free time in reviewing our paper. Their comments and suggestions have helped a lot in improving the paper.

References

[1] Aigner, M., A Characterization of the Bell Numbers, Discrete Math. 205 (1999), 207-210.
[2] Carlitz, L., q-Bernoulli numbers and polynomials. Duke Math. J. 15 (1948) 987-1000.
[3] Cheon, G.S. and Jung, J.H. , r-Whitney number of Dowling lattices, Discrete Math. 312(2012), 2337-2348.
[4] Comtet, L., Advanced Combinatorics, Reidel, Dordrecht, The Netherlands, 1974.
[5] Corcino, R.B., The (r, β)-Stirling numbers. Mindanao Forum. 14(2) (1999).
[6] Corcino, R.B. and Cañete, J.T., A q-Analogue of r-Whitney Numbers of the Second Kind, Preprint.
[7] Corcino, R.B. and Corcino, C.B. , The Hankel Transform of Generalized Bell Numbers and Its q-Analogue, Utilitas Mathematica, 89 (2012), 297-309.
[8] Corcino, R.B. and Corcino, C.B., and Aldema, R. ,Asymptotic Normality of the (r, β)Stirling Numbers, Ars Combinatorics, 81 (2006), 81-96.
[9] Corcino, C.B. , Corcino, R.B., Ontolan, J.M., Perez-Fernandez, C.M., and Cantallopez, E.R., The Hankel Transform of q-Noncentral Bell Numbers, International Journal of Mathematics and Mathematical Analysis, Volume 2015, Article ID 417327, 10 pages.
[10] Ehrenborg, R., The Hankel Determinant of exponential Polynomials, Amer. Math. Monthly, 107(2000), 557-560.
[11] Ehrenborg, R., Determinants of Involving q-Stirling Numbers, Advances in Applied Mathematics, 31(2003), 630-642.
[12] Layman, J.W., The Hankel transform and some of its properties, Journal of Integer Sequences 4 (2001), Article 01.1.5.
[13] Medicis, A. De and Leroux, P. , Generalized Stirling Numbers, Convolution Formulae and p, q-Analogues, Can. J. Math 47 (3) (1995), 474-499.
[14] Mező, I. , The r-Bell numbers, Journal of Integer Sequences 14 (2011), Article 11.1.1.
[15] Riordan, J. , Combinatorial identities, Wiley, New York, 1968
[16] Sloane, N. J. A. and Plouffe, S., The Encyclopedia of Integer Sequences, San Diego, CA, Academic Press, 1995.
[17] Spivey, M.Z. and Steil, L. L. , The k-binomial transform and the Hankel transform, Journal of Integer Sequences 9(2006), Article 06.1.1

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v12i2.3406

