EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 3, 2019, 749-755
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Topologies Induced by Neighborhoods of a Graph Under Some Binary Operation

Anabel E. Gamorez ${ }^{1, *}$, Caen Grace S. Nianga ${ }^{2,3}$, Sergio R. Canoy Jr. ${ }^{2,3}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Western Mindanao State University, 7000 Zamboanga City, Philippines
${ }^{2}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
${ }^{3}$ Center for Graph Theory, Algebra and Analysis, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Let $G=(V(G), E(G))$ be any undirected graph. Then G induces a topology τ_{G} on $V(G)$ with base consisting of sets of the form $F_{G}[A]=V(G) \backslash N_{G}[A]$, where $N_{G}[A]=A \cup\{x$: $x a \in E(G)$ for some $a \in A\}$ and A ranges over all subsets of $V(G)$. In this paper, we describe the topologies induced by the corona, edge corona, disjunction, symmetric difference, Tensor product, and the strong product of two graphs by determining the subbasic open sets.

2010 Mathematics Subject Classifications: 05C76
Key Words and Phrases: Topology, Graph, Edge corona, Disjunction, Symmetric difference

1. Introduction

Let $G=(V(G), E(G))$ be any undirected (simple) graph and let $v \in V(G)$. The open neighborhood of v is the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$ and its closed neighborhood is $N_{G}[v]=\{v\} \cup N_{G}(v)$. If $A \subseteq V(G)$, then the open neighborhood of A is the set $N_{G}(A)=\cup_{v \in A} N_{G}(v)$. The closed neighborhood of A is $N_{G}[A]=A \cup N_{G}(A)$. Clearly, if $A=\{v\}$, then $N_{G}(A)=N_{G}(v)$ and $N_{G}[A]=N_{G}[v]$. The degree of v, denoted by $\operatorname{deg}_{G}(v)$, is equal to $\left|N_{G}(v)\right|$. The distance between vertices u and v of G, denoted by $d_{G}(u, v)$, is the length of a shortest path connecting u and v (or length of a shortest $u-v$ path).

A way to relate graph theory to topology is to find a way of constructing a topological space from a given graph or devise a method of generating a graph from a given (finite) topological space. In 1983, Gervacio and Diesto in [1] introduced a way of constructing

[^0]a topological space from a given undirected graph. Specifically, they used the closed neighborhood subsets of the vertex set of a graph to obtain a base for some topology on its vertex set. This type of construction of a topological space was also studied by Guerrero and Gervacio in [2] where they characterized those graphs which induce the indiscrete topology and the discrete topology. Canoy and Lemence in [4] investigated further this construction and obtained a subbase for the generated topology. Using this particular result, they described the subbases of the topologies induced by a path, fan, complement of a graph, and graphs resulting from the join, Cartesian product, and composition of two graphs.

Recently, Nianga and Canoy in [7] used the hop neighborhoods of a graph to define a topology on its vertex set. In [8] they describe the subbasic open sets in graphs under some unary and binary operations.

In this paper, we revisit the construction of a topological space given in [1] and describe the topologies induced by the corona, edge corona, disjunction, symmetric difference, Tensor product, and the strong product of two graphs. It can be observed from the subbasic open sets that, generally, it's not easy to determine the basic open sets and exact topologies these graphs induced.

For some basic concepts in graph theory and topology, we refer readers to [3] and [6].

2. Results

If $A \subseteq V(G)$, we denote by $F_{G}(A)$ and $F_{G}[A]$ the complements of $N_{G}(A)$ and $N_{G}[A]$, respectively, that is, $F_{G}(A)=V(G) \backslash N_{G}(A)$ and $F_{G}[A]=V(G) \backslash N_{G}[A]$. If $A=\{v\}$, then we write $F_{G}(A)=F_{G}(v)$ and $F_{G}[A]=F_{G}[v]$. Clearly, $F_{G}(v)=F_{G}[v] \cup\{v\}$.

The first two results are found in [1] and [5], respectively, and play vital roles in the next results.
Theorem 1. Let G be a graph. Then $\mathcal{B}_{G}=\left\{F_{G}[A]: A \subseteq V(G)\right\}$ is a base for some topology on $V(G)$.

Throughout this paper, we denote by τ_{G} the topology on $V(G)$ generated by the family \mathcal{B}_{G} in Theorem 1. This topology is also called the topology induced by G.
Theorem 2. Let G be a graph. Then $\mathcal{S}_{G}=\left\{F_{G}[v]: v \in V(G)\right\}$ is a subbase for τ_{G}.
Definition 1. [3] The corona $G \circ H$ of graphs G and H is the graph obtained by taking one copy of G and $|V(G)|$ copies H and then forming the join $\langle v\rangle+H^{v}=v+H^{v}$ for each $v \in V(G)$, where H^{v} is a copy of H corresponding to the vertex v.

We now describe the subbasic open sets in the space $\left(V(G \circ H), \tau_{G \circ H}\right)$.
Theorem 3. Let $K=G \circ H=(V(K), E(K))$, and let $a \in V(K)$.
(i) If $a \in V(G)$, then

$$
F_{K}[a]=F_{G}[a] \cup\left[\bigcup_{u \in V(G) \backslash\{a\}} V\left(H^{u}\right)\right] .
$$

(ii) If $a \in V\left(H^{w}\right)$ for some $w \in V(G)$, then

$$
F_{K}[a]=[V(G) \backslash\{w\}] \cup F_{H^{w}}[a] \cup\left[\bigcup_{z \in V(G) \backslash\{w\}} V\left(H^{z}\right)\right]
$$

Proof. (i) Suppose $a \in V(G)$. Then

$$
N_{K}[a]=N_{G}[a] \cup V\left(H^{a}\right)
$$

by Definition 1. Hence,

$$
\begin{aligned}
F_{K}[a] & =V(K) \backslash\left(N_{G}[a] \cup V\left(H^{a}\right)\right) \\
& =F_{G}[a] \cup\left[\bigcup_{u \in V(G) \backslash\{a\}} V\left(H^{u}\right)\right] .
\end{aligned}
$$

(ii) Suppose $a \in V\left(H^{w}\right)$ for some $w \in V(G)$. Then $N_{K}[a]=\{w\} \cup N_{H^{w}}[a]$ by Definition 1. Thus,

$$
\begin{aligned}
F_{K}[a] & =V(K) \backslash\left(\{w\} \cup N_{H^{w}}[a]\right) \\
& =[V(G) \backslash\{w\}] \cup F_{H^{w}}[a] \cup\left[\bigcup_{z \in V(G) \backslash\{w\}} V\left(H^{z}\right)\right]
\end{aligned}
$$

This proves the assertion.

Definition 2. [3] The edge corona $G \diamond H$ of graphs G and H is the graph obtained by taking one copy of G and $|E(G)|$ copies H and joining each of the end vertices u and v of every edge uv to every vertex of the copy $H^{u v}$ of H (that is, forming the join $\langle\{u, v\}\rangle+H^{u v}$ for each $u v \in E(G)$).

Theorem 4. Let $K=G \diamond H=(V(K), E(K))$ and let $a \in V(G)$.
(i) If $a \in V(G)$, then

$$
F_{K}[a]=F_{G}[a] \cup\left[\bigcup_{u, v \neq a} V\left(H^{u v}\right)\right]
$$

(ii) If $a \in V\left(H^{w z}\right)$ for some $w z \in E(G)$, then

$$
F_{K}[a]=V(G) \backslash\{w, z\} \cup F_{H^{w z}}[a] \cup\left[\bigcup_{p q \in E(G) \backslash\{w z\}} V\left(H^{p q}\right)\right]
$$

Proof. (i) Suppose $a \in V(G)$. Then, by Definition 2,

$$
N_{K}[a]=N_{G}[a] \cup\left[\bigcup_{z \in N_{G}(a)} V\left(H^{a z}\right)\right] .
$$

Consequently,

$$
F_{K}[a]=F_{G}[a] \cup\left[\bigcup_{u, v \neq a} V\left(H^{u v}\right)\right] .
$$

(ii) Suppose that $a \in V\left(H^{w z}\right)$ for some $w z \in E(G)$. Then, by Definition 2,

$$
N_{K}[a]=\{w, z\} \cup N_{H^{w z}}[a] .
$$

Therefore,

$$
F_{K}[a]=V(G) \backslash\{w, z\} \cup F_{H^{w z}}[a] \cup\left[\bigcup_{p q \in E(G) \backslash\{w z\}} V\left(H^{p q}\right)\right],
$$

showing the desired equality.
Definition 3. [3] The Tensor product $G \boxtimes H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and (u, v) is adjacent with $\left(u^{\prime}, v^{\prime}\right)$ whenever uu' $\in E(G)$ and $v v^{\prime} \in E(H)$.

Theorem 5. Let $K=G \boxtimes H=(V(K), E(K))$, where $G=(V(G), E(G))$ and $H=(V(H), E(H))$ are non trivial graphs. Then, for each $(v, a) \in V(K)$,

$$
F_{K}[(v, a)]=\left[F_{G}(v) \times(V(H) \backslash\{a\})\right] \cup\left[(V(G) \backslash\{v\}) \times F_{H}(a)\right] .
$$

Proof. Suppose $(v, a) \in V(G \boxtimes H)=V(K)$. By Definition 3,

$$
\begin{aligned}
N_{K}[(v, a)] & =\left\{(x, y): x \in N_{G}(v) \text { and } y \in N_{H}(a)\right\} \cup\{(v, a)\} \\
& =\left[\left(N_{G}(v) \times V(H)\right) \cap\left(V(G) \times N_{H}(a)\right)\right] \cup\{(v, a)\} \\
& =\left(N_{G}(v) \times N_{H}(a)\right) \cup\{(v, a)\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
F_{K}[(v, a)] & =\left[\left(F_{G}(v) \times V(H)\right) \cup\left(\left(V(G) \times F_{H}(a)\right)\right] \backslash\{(v, a)\}\right. \\
& =\left[F_{G}(v) \times(V(H) \backslash\{a\})\right] \cup\left[(V(G) \backslash\{v\}) \times F_{H}(a)\right],
\end{aligned}
$$

showing the desired result.
Corollary 1. Let G be any graph and let $(v, a) \in V\left(G \boxtimes K_{n}\right)$. Then

$$
F_{G \boxtimes K_{n}}[(v, a)]=\left[F_{G}(v) \times\left(V\left(K_{n}\right) \backslash\{a\}\right)\right] \cup[(V(G) \backslash\{v\}) \times\{a\}] .
$$

Proof. Since $a \in V\left(K_{n}\right), F_{K_{n}}[a]=\varnothing$. Hence, $F_{K_{n}}(a)=\{a\}$. Therefore, by Theorem 5 ,

$$
F_{G \boxtimes K_{n}}[(v, a)]=\left[F_{G}(v) \times\left(V\left(K_{n}\right) \backslash\{a\}\right)\right] \cup[(V(G) \backslash\{v\}) \times\{a\}] .
$$

This proves the assertion.
Definition 4. [3] The disjunction $G \vee H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and (u, v) is adjacent with $\left(u^{\prime}, v^{\prime}\right)$ whenever uu' $\in E(G)$ or $v v^{\prime} \in E(H)$.

Theorem 6. Let $K=G \vee H=(V(K), E(K))$, where $G=(V(G), E(G))$ and $H=(V(H), E(H))$. Then, for each $(v, a) \in V(K)$,

$$
F_{K}[(v, a)]=\left[\{v\} \times F_{H}[a]\right] \cup\left[F_{G}[v] \times F_{H}(a)\right] .
$$

Proof. Let $A=\left[\{v\} \times F_{H}[a]\right] \cup\left[F_{G}[v] \times F_{H}(a)\right]$. Suppose $(v, a) \in V(G \vee H)=V(K)$ and $(x, q) \in F_{K}[(v, a)]$. Then $(v, a) \neq(x, q)$ and $d_{K}((v, a),(x, q)) \neq 1$. Consider the following cases:

Case 1. Assume that $x=v$. Then $q \neq a$ and $d_{H}(q, a)=d_{K}((x, q),(x, a)) \neq 1$. Thus, $q \in F_{H}[a]$ and so, $(x, q) \in\{v\} \times F_{H}[a]$.

Case 2. Assume that $x \neq v$. Suppose $q=a$. Then $d_{G}(x, v)=d_{K}((v, a),(x, a)) \neq 1$. It follows that $x \in F_{G}[v]$ and $(x, q) \in F_{G}[v] \times\{a\}$. Suppose $q \neq a$. Observe that $q \notin N_{H}[a]$ and $x \notin N_{G}[v]$. Hence, $q \in F_{H}[a]$ and $x \in F_{G}[v]$ which implies that $(x, q) \in F_{G}[v] \times F_{H}[a]$. Thus,

$$
\begin{aligned}
F_{K}[(v, a)] & \subseteq\left[\{v\} \times F_{H}[a]\right] \cup\left[F_{G}[v] \times\{a\}\right] \cup\left[F_{G}[v] \times F_{H}[a]\right] \\
& =\left[\{v\} \times F_{H}[a]\right] \cup\left[F_{G}[v] \times F_{H}(a)\right]=A .
\end{aligned}
$$

Next, let $(u, z) \in A$. If $(u, z) \in\{v\} \times F_{H}[a]$. Then $u=v, a \neq z$ and $a z \neq E(H)$. Hence, $(u, z) \neq(v, a)$ and by Definition 4, $(u, z)(v, a) \notin E(K)$. Thus, $(u, z) \in F_{K}[(v, a)]$. Also if $(u, z) \in F_{G}[v] \times F_{H}(a), u \neq v, u v \notin E(G)$, and $a z \notin E(H)$. This implies that $(u, z) \neq$ (v, a) and by Definition $4,(u, z)(v, a) \neq E(K)$. Thus $(u, z) \in F_{K}[(v, a)]$. Consequently, $A \subseteq F_{K}[(v, a)]$. Therefore, $F_{K}[(v, a)]=A$.

Corollary 2. Let G be any graph and let $(v, a) \in V\left(G \vee K_{n}\right)$. Then $F_{G \vee K_{n}}[(v, a)]=$ $F_{G}[v] \times\{a\}$.

Proof. Again, since $a \in V\left(K_{n}\right), F_{K_{n}}(a)=\{a\}$ and $\{v\} \times F_{K_{n}}[a]=\varnothing$. Hence, by Theorem 6, $F_{G \vee K_{n}}[(v, a)]=F_{G}[v] \times\{a\}$.

Definition 5. [3] The symmetric difference $G \oplus H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and (u, v) is adjacent with $\left(u^{\prime}, v^{\prime}\right)$ whenever $\left[u u^{\prime} \in E(G)\right]$ or $\left[v v^{\prime} \in E(H)\right]$ but not both.
Theorem 7. Let $K=G \oplus H=(V(K), E(K))$, where $G=(V(G), E(G))$ and $H=(V(H), E(H))$. Then, for each $(v, a) \in V(K)$,

$$
F_{K}[(v, a)]=\left[F_{G}(v) \times F_{H}[a]\right] \cup\left[N_{G}(v) \times N_{H}(a)\right] \cup\left[F_{G}[v] \times\{a\}\right] .
$$

Proof. Let $W=\left[F_{G}(v) \times F_{H}[a]\right] \cup\left[N_{G}(v) \times N_{H}(a)\right] \cup\left[F_{G}[v] \times\{a\}\right]$. Suppose $(v, a) \in$ $V(G \oplus H)=V(K)$ and let $(x, q) \in F_{K}[(v, a)]$. Then $(v, a) \neq(x, q)$ and $d_{K}((v, a),(x, q)) \neq$ 1. Now, consider the following cases:

Case 1. Assume $x=v$. Then $q \neq a$ and $d_{H}(q, a)=d_{K}((x, q),(x, a)) \neq 1$. Hence, $q \in F_{H}[a]$ and so, $(x, q) \in\{v\} \times F_{H}[a]$.

Case 2. Assume that $x \neq v$. Suppose $q=a$. Then $d_{G}(x, v)=d_{K}((v, a),(x, a)) \neq 1$. This implies that $x \in F_{G}[v]$ and $(x, q) \in F_{G}[v] \times\{a\}$. Suppose $q \neq a$. If $x \in N_{G}(v)$, then $q \in N_{H}(a)$. If $x \in F_{G}[v]$, then $q \notin N_{H}(a)$ and so, $q \in F_{H}[a]$. Hence,

$$
\begin{aligned}
F_{K}[(v, a)] & \left.\subseteq\left[\{v\} \times F_{H}[a]\right] \cup\left[F_{G}[v] \times\{a\}\right] \cup\left[N_{G}(v) \times N_{H}(a)\right]\right] \cup\left[F_{G}[v] \times F_{H}[a]\right] \\
& =\left[F_{G}(v) \times F_{H}[a]\right] \cup\left[N_{G}(v) \times N_{H}(a)\right] \cup\left[F_{G}[v] \times\{a\}\right]=W .
\end{aligned}
$$

Conversely, let $(b, c) \in W$. If $(b, c) \in F_{G}(v) \times F_{H}[a]$, then $c \neq a, b v \notin E(G)$, and $a c \notin E(H)$. Hence, $(b, c) \neq(v, a)$ and, by Definition 5, $(b, c)(v, a) \notin E(K)$. Thus, $(b, c) \in F_{K}[(v, a)]$. Also, if $(b, c) \in N_{G}(v) \times N_{H}(a)$, then $(b, c) \neq(v, a)$ and by Definition 5, $(b, c)(v, a) \notin E(K)$. Hence, $(b, c) \in F_{K}[(v, a)]$. Finally, if $(b, c) \in F_{G}[v] \times\{a\}$, then $b \neq v, b v \notin E(G)$, and $a c \notin E(H)$. It follows that $(b, c) \neq(v, a)$ and by Definition 5, $(b, c)(v, a) \notin E(K)$ which shows that $(b, c) \in F_{K}[(v, a)]$. Thus, $W \subseteq F_{K}[(v, a)]$. Therefore, $F_{K}[(v, a)]=W$.

Corollary 3. Let G be any graph and let $(v, a) \in V\left(G \oplus K_{n}\right)$. Then $F_{G \oplus K_{n}}[(v, a)]=$ $\left(N_{G}(v) \times\left[V\left(K_{n}\right) \backslash\{a\}\right]\right) \cup\left(F_{G}[v] \times\{a\}\right)$.

Proof. Since $F_{K_{n}}[a]=\varnothing$ and $N_{K_{n}}(a)=V\left(K_{n}\right) \backslash\{a\}$, it follows from Theorem 7 that $F_{G \oplus K_{n}}[(v, a)]=\left(N_{G}(v) \times\left[V\left(K_{n}\right) \backslash\{a\}\right]\right) \cup\left(F_{G}[v] \times\{a\}\right)$.

Definition 6. [3] The strong product $G \otimes H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and (u, v) is adjacent with $\left(u^{\prime}, v^{\prime}\right)$ whenever $\left[u u^{\prime} \in E(G)\right.$ and $\left.v=v^{\prime}\right]$ or $\left[v v^{\prime} \in E(H)\right.$ and $\left.u=u^{\prime}\right]$ or $\left[u u^{\prime} \in E(G)\right.$ and $\left.v v^{\prime} \in E(H)\right]$.
Theorem 8. Let $K=G \otimes H=(V(K), E(K))$ where $G=(V(G), E(G))$ and $H=$ $(V(H), E(H))$. Then, for each $(v, a) \in V(K)$,

$$
F_{K}[(v, a)]=\left[F_{G}[v] \times V(H)\right] \cup\left[N_{G}[v] \times F_{H}[a]\right] .
$$

Proof. Let $Z=\left[F_{G}[v] \times V(H)\right] \cup\left[N_{G}[v] \times F_{H}[a]\right]$. Suppose $(v, a) \in V(G \otimes H)=V(K)$. Then $(x, q) \in F_{K}[(v, a)]$ if and only if $(v, a) \neq(x, q)$ and $d_{k}((v, a),(x, q)) \neq 1$. Consider the following cases:

Case 1. Assume that $x=v$. Then $q \neq a$ and $d_{H}(q, a)=d_{K}((x, q),(x, a)) \neq 1$. Thus $q \in F_{H}[a]$ and so, $(x, q) \in\{v\} \times F_{H}[a]$.

Case 2. Assume that $x \neq v$. Suppose $q=a$. Then $d_{G}(x, v)=d_{K}((v, a),(x, a)) \neq 1$. It follows that $x \in F_{G}[v]$ and $(x, q) \in F_{G}[v] \times\{a\}$. Suppose $q \neq a$. If $x \in N_{G}(v)$, then $q \notin N_{G}(a)$ and so, $q \in F_{G}[a]$. Suppose $x \in F_{G}[v]$. Since $q \neq a, q \in V(H) \backslash\{a\}$. Therefore,

$$
F_{K}[(v, a)] \subseteq\left[\{v\} \times F_{H}[a]\right] \cup\left[F_{G}[v] \times\{a\}\right] \cup\left[N_{G}(v) \times F_{G}[a]\right] \cup\left[F_{G}[v] \times V(H) \backslash\{a\}\right]
$$

$$
=\left[N_{G}[v] \times F_{G}[a]\right] \cup\left[F_{G}[v] \times V(H)\right]=Z .
$$

Next, let $(w, z) \in Z$. If $(w, z) \in F_{G}[v] \times V(H)$ then $w \neq v$ and $w v \notin E(G)$. Hence $(w, z) \neq(v, a)$ and by Definition 6, $(w, z) \notin N_{K}((v, a))$. Thus, $(w, z) \in F_{G}[(v, a)]$. If $(w, z) \in N_{G}[v] \times F_{H}[a]$, then $z \neq a, a z \notin E(H)$ and either $w=v$ or $w v \in E(G)$. This means that $(w, z) \neq(v, a)$ and by Definition $6,(w, z) \notin N_{K}((v, a))$. It follows that $(w, z) \in F_{K}[(u, a)]$. This shows that $Z \subseteq F_{K}[(v, a)]$. Therefore, $F_{K}[(v, a)]=Z$.

Corollary 4. Let G be any graph and let $(v, a) \in V\left(G \otimes K_{n}\right)$. Then $F_{G \otimes K_{n}}[(v, a)]=$ $F_{G}[v] \times V\left(K_{n}\right)$.

Proof. Since $F_{K_{n}}[a]=\varnothing$, Theorem 8 would imply that $F_{G \otimes K_{n}}[(v, a)]=F_{G}[v] \times$ $V\left(K_{n}\right)$.

Acknowledgements

This research is funded by the Commission on Higher Education (CHED) and Mindanao State University-Iligan Institute of Technology.

References

[1] S. Diesto and S. Gervacio. Finite Topological Graphs. Journal of Research and Development, 1(1):76-81, 1983.
[2] R. Guerrero and S. Gervacio. Characterization of Graphs which Induce the Discrete and Indiscrete Topological Spaces. Matimyas Matematika, 1986.
[3] F. Harary. Graph Theory. Addison-Wesley Publishing Company, USA, 1969.
[4] R. Lemence and S. Canoy. Another Look at the Topologies Induced by Graph. Matimyas Matematika, 21(2):1-7, 1998.
[5] R. Lemence and S. Canoy. Topologies Induced by some special Graphs. Journal of Mathematics, 2(2):45-50, 1999.
[6] S. Lipschutz. General Topology, Schaum's Outline Series. McGraw Hill International Publishing Co., 1987.
[7] C. Nianga and S. Canoy. On a Finite Topological Space Induced by Hop Neighborhoods of a Graphs. Advances and Applications in Discrete Mathematics, 21(1):79-89, 2019.
[8] C. Nianga and S. Canoy. On Topologies Induced by Graphs Under Some Unary and Binary Operations. European Journal of Pure and Applied Mathematics, 12(2):499505, 2019.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v12i3.3464
 Email addresses: anabel.gamorez@gmail.com (A. Gamorez),
 caengrace1997@gmail.com (C. Nianga), sergio.canoy@g.msuiit.edu.ph (S. Canoy Jr.)

