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Abstract. The problem of strategic asset allocation and product mix choice of a life insurance
company is considered where account is taken of the stochastic risk associated with both assets and
liabilities. Using the methods of stochastic dynamic programming we derive equations for optimal
weights of both risky and riskless assets under continuous time. The resulting equations can be
solved exactly for some parameter values and utility functions.
When this is not possible a general perturbation expansion method is set up for which explicit
solutions are derived for the first terms but the method can be generalized to any order in the
expansion parameter.
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1. Introduction

The financial management of an insurance company involves the analysis of the assets
and liabilities on a unified basis. The premiums paid by the policyholder should be pru-
dently invested so that the company can honor the contractual obligation that comes with
the policy with a high level of confidence. In its most basic form, asset-liability manage-
ment (ALM) dictates the investment choice on the asset side and the choice of products
marketed on the liability side. Moreover, ALM deals with the planning of financial re-
sources with uncertainty about the economic, capital markets and actuarial conditions.
The two controls available to the management of the insurance company are thus the
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allocation of the premiums received from the policyholders to the various invested assets
as well as the decision to market different insurance products†.

Insurers currently use cashflow projection of liabilities based on Monte Carlo simu-
lation as a starting point for the strategic asset allocation exercise. Several papers e.g.
Gerstner, Griebel and Holtz (2009) used deterministic numerical simulation to model
Asset-Liability management (ALM). These numerical techniques are often cumbersome
and lack the transparency offered by analytical method which we apply in this paper.
Here, we show that if the utility of the company is of the constant relative risk aversion
(CRRA) form then the solution can be found exactly for the case where the correlation ρ
between the risky asset and the risky insurance liability is zero. For the non-zero corre-
lation case, we find that we can solve for the solution provided that the interest rates for
savings (ra) and loans (rl) are the same. To solve for the scenario where the interest rates
on savings and loans differ only slightly, we devise a perturbation method and find a first
and second order solution though the method can be generalized to any order.

This work is based on Merton’s continuous time optimal portfolio selection and con-
sumption rule, Merton (1990). Here an investor wishes to maximise the expected utility
of consumption over his life time. For the case of the utility functions of the type constant
relative risk aversion (CRRA), one can find the optimal allocation and consumption rule
which will maximise the lifetime expected utility of the investor.

2. Governing Equations

2.1. Evolution of the Liability L

Let L be the liabilities of the company. L is made up of the risky insurance liability
uL and riskless liability (1− u)L. The risky insurance liability comes from the stochastic
nature of the benefits outgo (claims payment, surrender, and maturity benefits). The
riskless liability is defined to be liabilities that are deterministic in value such as debt
issued by the company.

Suppose that we assume that the liability of a life insurance company evolves according
to the stochastic differential equation

dLt = (cuLt −muLt + (1− u)Ltrl)dt− qLtudZ (t) (1)

where Lt is the liability at time t, c (orm) represents the exponential growth (or decay) rate
in L, qdZ is the stochastic component which represents the random nature of insurance,
dZ is an infinitesimal Wiener increment. The stochastic term −qLtdZ (t) can increase or
decrease the liability of the insurance company. The variable rl represents the interest
rate at which the riskless liability grows; equivalently this is the same as the interest rate
charged for a loan. The control variable u allows the management to vary the proportion
of the policyholder’s liability between the deterministic (riskless) liability which grows at
the rate rl and the stochastic (risky) liability with some known probability distribution.

†Life insurance products have vastly different risk profiles. The decision to market a particular product
should be based on the ability to find suitable assets to invest in.
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Figure 1: Illustration of the insurer’s balance sheet and the associated control variables w and u.

In reality, this can be done through risk transfer techniques such as reinsurance or hedging
with swaps. Intuitively, suppose that there is a death claim then the company’s liability
decreases (i.e. once the company has paid out the claim of this particular policy, the
contract is terminated). Also, the liability can increase if the actuary decides to strengthen
the reserve.

2.2. Evolution of the total Asset W

Let us assume that the company’s assets are comprised of the risky asset, S1 (= wW )
and the risk-free asset S0 (= (1− w)W ) with

dS1 = αS1dt+ σS1dX (2)

dS0 = raS0dt (3)

then we can write
dW = [w (α− ra) + ra]Wdt+ wWσdX (4)

where dX is an infinitesimal Wiener increment. The total asset of the company W is by
definition

W ≡ L+ E (5)

where E stands for equity and represents the portion of assets owned by the shareholders
once all the liabilities have been paid out. The illustration of the insurer’s balance sheet
is shown in Figure (1).

Then

dE = dW − dL (6)
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= {[w (α− ra) + ra]W − cuLt − ((1− u) rl −mu)Lt} dt
+ qLtudZ + wWσdX (7)

The problem for choosing the strategic asset allocation and insurance product mix
strategy is formulated as follows;

maxE

{∫ T

0
U [W (t) , L (t)] dt+B [W (T ) , L (T ) , T ]

}
subject to the budget equation (4), and W (t) > 0;W (0) = W0 > 0. Let us assume
U (W,L) to be a strictly concave utility function and B [W (t) , T ] is a specified bequest
valuation function. More details on the bequest valuation function can be found in Merton
(1969). Here E is short for E (0), the conditional expectation operator given W0 is known.

The differential equations governing the optimal solution of this stochastic control
problem for the portfolio selection (w is the weight of risky investment) and liability mix
(u is the weight of the risky insurance liability) can be derived by the methods of stochastic
dynamic programming see e.g. Merton (1990).

Define the value function J (W (t) , L (t) , t) by

J = maxEt

{∫ T

t
U (W (t) , L (t)) dt+B (W (T ) , L (T ) , T )

}
= maxEt

{ ∫ t+δt
t U (W (t) , L (t)) dt

+J (W (t+ δt) , L (t+ δt) , t+ δt)

}
(8)

where Et is the conditional expectation operator given W (t) is known. If one now expands
the term in J on the right hand side of (8) by Taylor’s series using equations (1) and (4),
apply Ito’s Lemma, and then take the limit as δt tends to zero one arrives at the Hamilton-
Jacobi equation for the value function given by

0 = φ [w∗, u∗;W,L, t] ≡ max
{u,w}

{
U (W,L) +

∂J

∂t

+ [w (α− ra) + ra]W
∂J

∂W
+

1

2
σ2w2W 2 ∂

2J

∂W 2

+ {cu−mu+ (1− u) rl}L
∂J

∂L

+qLWuwσρ
∂2J

∂L∂W
+

1

2
q2L2u2

∂2J

∂L2

}
(9)

The optimality condition may be rewritten as

φ [w∗, u∗;W,L, t] = 0, (10)

for fixed W and L at anytime t. The optimal strategy of (9) is given by w∗and u∗. We
differentiate (10) with respect to w and u and set to zero to find the interior maximum.
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This gives

(α− ra)W
∂J

∂W
+ σ2wW 2 ∂

2J

∂W 2
+ qLWuσρ

∂2J

∂L∂W
= 0 (11)

and

{c−m− rl}L
∂J

∂L
+ qLWwσρ

∂2J

∂L∂W
+ uq2L2 ∂

2J

∂L2
= 0 (12)

Note that w ∂φ
∂w + u∂φ∂u gives

1

2
σ2w2W 2 ∂

2J

∂W 2
+

1

2
u2q2L2 ∂

2J

∂L2
+ qLWwuσρ

∂2J

∂L∂W

=
1

2

{
−{c−m− rl}uL

∂J

∂L
− (α− ra)wW

∂J

∂W

}
(13)

Substituting this into φ = 0 gives

0 = max
{u,w}

{
U (W,L) +

∂J

∂t
+

[
1

2
w (α− ra) + ra

]
W

∂J

∂W

+

{
1

2
cu− 1

2
mu+

(
1− 1

2
u

)
rl

}
L
∂J

∂L

}
(14)

subject to the terminal condition J [W (T ) , L (T ) , T ] = B [W (T ) , L (T ) , T ] and the solu-
tion being feasible.

3. Utility U (W ) = W γ

γ

For this particular case, the utility function is a function of W only. This suggests
that the management is most interested in maximising the firm’s total asset. This is
not as nonsensical as it may first seem as financial institutions are constantly seeking to
reduce their expense ratio; increasing the size of the asset under management is one way
of achieving this.

Suppose that U (W ) = W γ

γ and assume that the value function has the form J =
W γF (L, t), where F (L, t) is an arbitrary function independent of W , then the optimality
conditions for w and u in equations (11) and (12) become

(α− ra)F + σ2w(γ − 1)F + qLuσρ
∂F

∂L
= 0 (15)

and

(c−m− rl + qwσργ)
∂F

∂L
+ uq2L

∂2F

∂L2
= 0. (16)

The value function as given in (9) becomes

0 = φ [w∗, u∗;W,L, t] ≡ max
{u(s),w(s)}

{
1

γ
+
∂F

∂t
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+

(
w (α− ra) + ra +

1

2
σ2w2(γ − 1)

)
γF

+ (cu−mu+ (1− u) rl + quwσργ)L
∂F

∂L

+
1

2
q2u2L2∂

2F

∂L2

}
. (17)

3.1. Zero Correlation Case

In this particular scenario, we assume that the correlation between the risky asset and
the risky liability is zero. Note that if ρ = 0 then from (15) and (16) we obtain

w∗ =
(α− ra)
σ2(1− γ)

(18)

and

u∗ =

(
− (c−m− rl) ∂F∂L

q2L∂
2F
∂L2

)
(19)

Then from (17)

0 =
1

γ
+
∂F

∂t
+

(
ra +

1 (α− ra)2

2σ2 (1− γ)

)
γF

+

(
rl −

(c−m− rl)2 ∂F∂L
2q2L∂

2F
∂L2

)
L
∂F

∂L
(20)

If we choose
F (L, t) = A (t)Lλ +B (t) , (21)

then ∂F
∂L = A (t)λLλ−1, ∂2F

∂L2 = A (t)λ (λ− 1)Lλ−2 , ∂F∂t = Ȧ (t)Lλ + Ḃ (t) . Substituting
this into (20) gives

0 =
1

γ
+ Ȧ (t)Lλ + Ḃ (t) +

(
ra +

1

2

(α− ra)2

σ2(1− γ)

)
γ
(
A (t)Lλ +B (t)

)
+

(
rl −

(c−m− rl)2

2q2 (λ− 1)

)
AλLλ . (22)

This implies that

0 =
1

γ
+ Ḃ (t) +

(
ra +

1

2

(α− ra)2

σ2(1− γ)

)
γB (t) (23)

and

0 = Ȧ (t) +

(
ra +

1

2

(α− ra)2

σ2(1− γ)

)
γA (t)
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+

(
rl −

(c−m− rl)2

2q2 (γ − 1)

)
λA (t) . (24)

Therefore,

A (t) = A0 exp

[
−

(
raγ +

1

2

(α− ra)2 γ
σ2(1− γ)

+ rlλ−
(c−m− rl)2 λ

2q2 (λ− 1)

)
t

]
. (25)

We now solve for A (t) and B (t) with the terminal condition F (L, T ) = A (T )L2 +B (T ) ,
with A(t) given in (25) then

u∗ =
c−m− rl
q2 (1− λ)

. (26)

If this final condition is F (L, T ) = 0 then from (21) we obtain B (T ) = 0 and A (T ) = 0
and then

B (t) =
1

γ2

(
ra +

1

2

(α− ra)2

σ2 (1− γ)

)(
exp

[
−

{
ra +

1

2

(α− ra)2

σ2 (1− γ)

}
γ (t− T )

]
− 1

)

A (t) ≡ 0.

Hence the solution is independent of u. This is aligned with our intuition that if the utility
depends only on W and that the risky insurance liability is not related to the risky asset
then we would expect to find that the strategic allocation of the risky asset, w, is the same
as Merton’s solution and the optimal product mix u can take on any value.

4. Utility U (W,L) = (W−L)γ
γ

The power utility function assumed in this paper belongs to the class of utility functions
known as constant relative risk aversion (CRRA). Utility of this class are sensible because
we observe that companies strive to link the size of the risk that they take to their capacity
for risk absorption.

4.1. Non-zero correlation and ra = rl

By setting the utility of the form (W−L)γ
γ , we are assuming that the management is

interested in maximising the utility based on shareholder’s equity. It can be argued that
a utility function that depends on the shareholder’s equity is more sensible than a utility
which depends solely on the size of the company as shown in the earlier example.

Suppose that the utility function has the form U (E) = Eγ

γ = (W−L)γ
γ and we seek the

solution to the value function of the form J (W,L, t) = A (t) (W−L)γ
γ

Thus from (11) and (12) we have

σ2wW (γ − 1)− quLσρ (γ − 1) = − (α− ra) (W − L) (27)
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and
−qwWσρ (γ − 1) + q2uL (γ − 1) = {c−m− rl} (W − L) (28)

which can be rewritten as(
σ2 (γ − 1) −qσρ (γ − 1)
−qσρ (γ − 1) q2 (γ − 1)

)(
wW
uL

)
=

(
− (α− ra) (W − L)
{c−m− rl} (W − L)

)
. (29)

The equation (29) can then be solved to give

wW = Q1 (W − L) (30)

uL = Q2 (W − L) (31)

where

Q1 =
− (α− ra) q2 + qσρ (c−m− rl)

σ2q2 (γ − 1) (1− ρ2)
(32)

and

Q2 =
−qσρ (α− ra) + σ2 (c−m− rl)

σ2q2 (γ − 1) (1− ρ2)
. (33)

Note that the weights w and u are time independent depending on the parameters α, ra, rl, q, γ,
σ, ρ, c, m. and also on the ratio E

W . Also these weights involve both rα and rl and they
have only been assumed equal to solve the full Hamilton-Jacobi equation to this order.
When we go to the next order, order ε, we must keep ra and rl in the above equations.

With the value function of the form J (W,L, t) = A (t) (W−L)γ
γ and its respective

derivatives, we can substitute (30) and (31) into (9), which gives

0 =

{
(W − L)γ

γ
+A′

(W − L)γ

γ

+ (α− ra)Q1A (W − L)γ +
1

2
σ2Q2

1 (γ − 1)A (W − L)γ

−{c−m− rl}Q2A (W − L)γ + raWA (W − L)γ−1 − rlLA (W − L)γ−1

−qσρQ1Q2 (γ − 1)A (W − L)γ +
1

2
q2Q2

2 (γ − 1)A (W − L)γ
}

(34)

Dividing (34) by (W − L)γ gives

0 =

{
1

γ
+
A′

γ

+

(
(α− ra)Q1 +

1

2
σ2Q2

1 (γ − 1)− {c−m− rl}Q2

−qσρQ1Q2 (γ − 1) +
1

2
q2Q2

2 (γ − 1)

)
A

+
(raW − rlL)A

(W − L)

}
. (35)



C. Atkinson, S. Mokkhavesa, P. Ingpochai / Eur. J. Pure Appl. Math, 12 (3) (2019), 1315-1336 1323

4.1.1. Case: ra ≡ rl

The equation above has a special solution when ra ≡ rl. In this particular case, we can
cancel out W−L and solve for A (t) . From a practical perspective, equating ra to rl implies
that the risk-free interest rate on the asset side is assumed to be the same as the borrowing
rate on the liability side. This situation is likely to be found in developed markets where
policyholders exhibit a high level of financial literacy and hence will demand that the
compensation for opportunity cost be on par with the observed riskfree rate. Hence, for
this case, we can solve for A (t).

To solve for A (t), consider

0 = 1 +A′ +

(
(α− ra)Q1 +

1

2
σ2Q2

1 (γ − 1)− {c−m− rl}Q2

−qσρQ1Q2 (γ − 1) +
1

2
q2Q2

2 (γ − 1) + ra

)
γA. (36)

We can rewrite (34) by letting

κ =

(
(α− ra)Q1 + 1

2σ
2Q2

1 (γ − 1)− {c−m− rl}Q2

−qσρQ1Q2 (γ − 1) + 1
2q

2Q2
2 (γ − 1) + ra

)
γ

then

0 =
dA

dt
+ κA+ 1

and

A (t) =
−1

κ
+ e−κtC1.

4.1.2. Case: ra 6= rl

It is clear from equation (35) that the choice of J (W,L, T ) = A (T ) (W−L)γ
γ is a solution

only in the case when ra = rl because only then do W and L disappear in equation (35)
leaving an ordinary differential equation for A (t) . However, if the difference between ra
and rl is assumed small it is possible to solve equations (11), (12), and (13) as a power
series in ε where ε is the difference between ra and rl. In less developed markets, the
policyholders may not demand that the return on their policies to match the observed risk
free asset unlike the previous case.

We assume here that |ε| � ra and describe the method for determining the order ε
correction we generalise the method to get higher order terms in the appendix.

We write
J = J0 + εJ1

where J0 is the value function determined in the last section. Note that when ε = 0, we
have the previous case and the value function J . Now we write

wW = w,
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uL = u

and expand as

w = w0 + εw1 + o
(
ε2
)

u = u0 + εu1 + o
(
ε2
)

where w0 and u0 are the solutions of equations (30) and (31) where J = J0. With the
above notation we can expand equations (11) and (12) to get for O (1)

A0

(
w1

u1

)
=

(
− (α− ra) J1W − σ2w0J1WW − qσρu0J1LW
−cJ1L − q2u0J1LL − qσρw0J1LW + J0L

)

where c = c−m− ra and A0 =

(
σ2 ∂

2J0
∂W 2 qσρ ∂2J0

∂L∂W

qσρ ∂2J0
∂L∂W q2 ∂

2J0
∂L2

)
.

For the Hamilton-Jacobi equation (9) when U (E) = Eγ

γ it is best to use equation (14)
i.e.

0 = U (E) +
∂J

∂t
+

1

2
(α− ra)w

∂J

∂W
+

1

2
cu
∂J

∂L

+ ra

(
W

∂J

∂W
+ L

∂J

∂L

)
+ εL

∂J

∂L
(37)

when rl = ra + ε.
Then for zero order we have

0 = U (E) +
∂J0
∂t

+
1

2
(α− ra)w0

∂J0
∂W

+
1

2
cu0

∂J0
∂L

+ ra

(
W
∂J0
∂W

+ L
∂J0
∂L

)
(38)

which we can write as
U (E) + L0 (J0) = 0.

For order ε, from (37) we also get

0 = L0 (J1) + L
∂J0
∂L

+
1

2
(α− ra)w1

∂J0
∂W

+
1

2
cu1

∂J0
∂L

(39)

We have solved the zero order problem for U (E) = Eγ

γ = (W−L)γ
γ by choosing J0 =

A (t) (W−L)γ
γ and solving for A (t) . The extra terms in the o (ε) equation depending on J0

gives

L0 (J1) + (W − L)γ−1A (t)

[
−L+

1

2
(α− ra)w1 −

1

2
cu1

]
= 0. (40)

We now look for J1 in the form

J1 = [B (t)L+B1 (t)W ] (W − L)γ−1 (41)
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so that

L0 (J1) =
[
Ḃ (t)L+ Ḃ1W

]
(W − L)γ−1

+ (W − L)γ−1
{(

1

2
(α− ra)w0B1 (t) +

1

2
cu0B (t) + ra (B1W +BL)

)}
+ [BL+B1W ]

{(
1

2
(α− ra)w0 −

1

2
cu0

)
(γ − 1)

}
Eγ−2

+ raE
γ−1 (γ − 1) [BL+B1W ]

but note that from the zero order equation (38) we have

0 =

(
1

2
(α− ra)w0 −

1

2
cu0

)
A (t)Eγ−1 + raA (t)Eγ +

Ȧ (t)Eγ

γ
+
Eγ

γ
(42)

and since from equations (30) and (31), w0 and u0 are proportional to E = W − L, this
equation reduces to

0 =

{[
1

2
(α− ra)Q1 −

1

2
cQ2

]
+ ra

}
A (t)

+
Ȧ (t)

γ
+

1

γ
(43)

from which we can determine A (t). This expression agrees with that of equation (36)
when ra = rl though they look superficially different.

Furthermore, using

w0 = Q1 (W − L)

u0 = Q2 (W − L)

in Equation (40) gives to order ε.

0 =
(
Ḃ (t)L+ Ḃ1W

)
+

1

2
(α− ra)Q1B1 (W − L)

+
1

2
cBQ2 (W − L) + ra (B1W +BL)

+ (γ − 1) (BL+B1W )

{
1

2
(α− ra)Q1 −

1

2
cQ2

}
+ ra (γ − 1) (BL+B1W )

+A (t)

[
−L+

1

2
(α− ra)w1 −

1

2
cu1

]
(44)

where c = c −m − rl. If we now equate to zero coefficients of L and W, we get coupled
differential equations for B (t) and B1 (t) in terms of A (t) . To proceed further we need w1
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and u1 which we have from the o (ε) equations of (11) and (12). With the above choice of
J0 and J1 these become

A (t)

(
σ2 −qσρ
−qσρ q2

)(
w1

u1

)
=

(
Ξ1

Ξ2

)
(45)

where

Ξ1 = − (α− ra)
[
BL+

B1γW

(γ − 1)
− B1L

(γ − 1)

]
− σ2Q1 [B1 {γW − 2L}+ (γ − 2)BL]

− qσρQ2 [B {W − (γ − 1)L} − (γ − 1)B1W +B1L] (46)

and

Ξ2 = −c
[
BW

(γ − 1)
− BLγ

(γ − 1)
−B1W

]
− q2Q2 [−2BW + γBL+ (γ − 2)B1W ]

− qσρQ1 [BW − (γ − 1)BL+B1L− (γ − 1)B1W ]

−A (t)
W − L
γ − 1

. (47)

From this equation we can see that A (t)w1 and A (t)u1 are expressions linear in W and L
so when substituted in (44), we get two linear coupled differential equations in B (t) and
B1 (t) . Further as can be seen in (44) there is one term which is −A (t)L which stands
alone hence both B (t) and B1 (t) will depend on A (t) . Finally since the condition at
t = T has been satisfied by A (t) we will have B (T ) = 0 and B1 (T ) = 0. The functional
form of A (t) is derived in the Appendix.

5. Conclusion & Final remarks

This paper investigates the optimal portfolio selection for insurers with stochastic
liabilities. The model considers characteristics of the insurers balance sheet and the de-
pendence on control variables w of the wealth investment (for which wW is the risky part
see Figure 1) and u of the liability of which uL is the amount of risky liability. These
controls are found for a variety of utility functions where portfolio selection is found via
a maximum expected utility over a life time. For the simplest case (Section 3) where

the utility
(
U = W γ

γ

)
depends only on wealth we find (Equation 18) that the optimal

allocation to the risky asset is

w∗ =
(α− ra)
σ2(1− γ)

and u can take any value.
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In section 4, we consider a utility function of the form

U (W,L) =
(W − L)γ

γ
.

For this case if ra = rl (i.e. asset interest rate is equal to liability interest rate) and for
any correlation ρ, we have the optimal weights w and u given as w0 and u0 below which
are exact in this case since ε = rl − ra = 0.

For the situation when ra 6= rl but |ε| � ra, we use an expansion such as that described
below (see also the Appendix).

We have solved for the optimal weight w and u

w = wW = w0 + εw1 + ε2w2 +O
(
ε3
)

(48)

u = uL = u0 + εu1 + ε2u2 +O
(
ε3
)

(49)

This can be solved to give to O (1) as

w0 = w0W = Q1 (W − L) (50)

u0 = u0L = Q2 (W − L) (51)

where

Q1 =

[
− (α− ra) q2 + qσρ {c−m− rl}

]
σ2q2 (γ − 1) (1− ρ2)

(52)

and

Q2 =

[
−qσρ (α− ra) + σ2 {c−m− rl}

]
σ2q2 (γ − 1) (1− ρ2)

(53)

w0 and u0 have no explicit dependence of time. The O (ε) approximation can be
deduced from the equation

A (t)

(
σ2 −qσρ
−qσρ q2

)(
w1

u1

)
=

(
Ξ1

Ξ2

)
(54)

with

Ξ1 = − (α− ra)
[
BL+

B1γW

(γ − 1)
− B1L

(γ − 1)

]
− σ2Q1 [B1 {γW − 2L}+ (γ − 2)BL]

− qσρQ2 [B {W − (γ − 1)L} − (γ − 1)B1W +B1L] (55)

and

Ξ2 = −c
[
BW

(γ − 1)
− BLγ

(γ − 1)
−B1W

]
− q2Q2 [−2BW + γBL+ (γ − 2)B1W ]

− qσρQ1 [BW − (γ − 1)BL+B1L− (γ − 1)B1W ]



C. Atkinson, S. Mokkhavesa, P. Ingpochai / Eur. J. Pure Appl. Math, 12 (3) (2019), 1315-1336 1328

−A (t)
W − L
γ − 1

, (56)

where A (t) follows from Equation (43) and B and B1 can be deduced from a pair of first
order coupled differential equation in time. From (54) we can write

A (t)w1 =
q2Ξ1

σ2q2 (1− ρ2)
+

qσρΞ2

σ2q2 (1− ρ2)
≡ t1L+ t2W (57)

A (t)u1 =
qσρΞ1

σ2q2 (1− ρ2)
+

σ2Ξ2

σ2q2 (1− ρ2)
≡ t3L+ t4W (58)

Equating coefficients of L and W in equation (44) gives

0 =
·
B − 1

2
(α− ra)Q1B1

+B

{
raγ −

1

2
cQ2γ +

1

2
(γ − 1) (α− ra)Q1

}
+

(α− ra)
2

t1 −
1

2
ct3 −A (t) (59)

and

0 =
·
B1 −

1

2
cQ2B

+B1

{
raγ +

1

2
(α− ra) γQ1 −

1

2
cQ2 (γ − 1)

}
+

(α− ra)
2

t2 −
1

2
ct4 (60)

5.1. Example: Results for ra = rl, ρ 6= 0

For this case, the ratios wW
E , uLE , (E = W − L) are time independent for the example

we consider ra = rl, we plot Q1 and Q2 for the parameters α = 0.1, ra = 0.03, q = 0.25,
σ = 0.3, c = 1.5, m = 1.3, rl = 0.025, γ = 0.5 but with ρ and c varying, see Figure 2 and
Figure 3.
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Figure 2: Plot of Q1 when ra = rl.

Figure 3: Plot of Q2 when ra = rl.

As is evident from the plot of Q1, we must exclude regions where Q1 < 0 since it is
inadmissible given our short selling constraint of the risky asset. If we examine Q1 when
c = 0, we see the convexity structure and if ρ = 0, then Q1 = 1.56, which implies the
amount of risky asset is 1.56 times that of the shareholders equity W −L, refer to Figure
4. For ease of explanation, we plot Q2 (optimal allocation into risky liability) for the case
where c = 0, we see that the Q2 = 0 when ρ = 0, refer to Figure 5.

This is sensible because the movements of the risky assets are not correlated to that of
the risky liabilities hence the policy should suggest we minimise the unnecessary volatility
this stochastic liability may cause. As the correlation increases, Q2 increases monotonically
to help match the movements of the assets.
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Figure 4: Plot of Q1 when ra = rl and c = 0.
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Figure 5: Plot of Q2 when ra = rl and c = 0.

5.2. Example: Results for ra 6= rl but |ε| � ra

O (1) solution as above but now ra 6= rl

w0W

(W − L)
= Q1

u0L

(W − L)
= Q2

To correct for order ε the behavior will depend on B (t) and B1 (t) and will potentially
require us to correct for the optimal ratios as t evolves. The general result for w1 and u1
can be deduced from equations (54), (55) and (56). To this order we deduce

wW = Q1 (W − L) + ε [P1 (W − L) + P2L] +O
(
ε2
)
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and
uL = Q2 (W − L) + ε [P3 (W − L) + P4W ] +O

(
ε2
)

where P1 and P3 are constants depending on the various parameters of the problem.
Note that higher order terms could be attained if necessary, see the appendix. Also a
full numerical solution could be obtained by solving Equation (9) or Equation (14) as a
backward diffusion equation together with the constraints Equations (11) and (12).
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Appendix

We assume here that |ε| � ra and show how the method for determining the order ε
correction can be extended to obtain higher order terms.

J (W,L, t) = J0 + εJ1 + ε2J2 +O
(
ε3
)

wW = w0 + εw1 + ε2w2 +O
(
ε3
)

uL = u0 + εu1 + ε2u2 +O
(
ε3
)

J (W,L, t) = A (t)
(W − L)γ

γ
+ ε (BL+B1W ) (W − L)γ−1

+ ε2
(
C1W

2 + C2LW + C3L
2
)

(W − L)γ−2

where B (t), B1 (t) are to be determined in terms of A (t) .
To this order, equations (11) and (12) (the conditions for the maximum) give

0 = (α− r)
[
J0W + εJ1W + ε2J2W

]
+ σ2

[
J0WW + εJ1WW + ε2J2WW

] [
w0 + εw1 + ε2w2

]
+ qσρ

[
J0LW + εJ1LW + ε2J2LW

] [
u0 + εu1 + ε2u2

]
(A.1)

and

0 = c
[
J0L + εJ1L + ε2J2L

]
+ q2

[
J0LL + εJ1LL + ε2J2LL

] [
u0 + εu1 + ε2u2

]
+ qσρ

[
J0LW + εJ1LW + ε2J2LW

] [
w0 + εw1 + ε2w2

]
. (A.2)

So we have for O (1)

0 = (α− ra) J0W + σ2w0J0WW + qσρu0J0LW

and
0 = cJ0L + q2u0J0LL + qσρw0J0LW .

For O (ε)

0 = (α− ra) J1W + σ2w0J1WW + qσρu0J1LW

+ σ2w1J0WW + qσρu1J0LW

and

0 = cJ1L + q2u0J1LL + qσρw0J1LW

+ q2u1J0LL + qσρw1J0LW .
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For O
(
ε2
)

0 = w2σ
2J0WW + u2qσρJ0LW

(α− ra) J2W + σ2w0J2WW + qσρu0J2LW

+ σ2w1J1WW + qσρu1J1LW

and

0 = w2qσρJ0LW + u2σ
2J0LL

cJ2L + qσρw0J2LW + q2u0J2LL

+ qσρw1J1LW + q2u1J1LL.

Our equation (9) can be written as (or alternatively one can use the version in (14)),

0 = U [E] +
∂J

∂t
+ cu

∂J

∂L
+ (α− ra)w

∂J

∂W

+

(
raW

∂J

∂W
+ rlL

∂J

∂L

)
+

1

2
σ2w2 ∂

2J

∂W 2
+ qσρuw

∂2J

∂L∂W
+

1

2
q2u2

∂2J

∂L2
, (A.3)

where u = uL, w = wW.
For O (i)

0 =
1

2
σ2w2

0JiWW + qσρu0w0JiLW +
1

2
q2u20JiLL

+ cu0JiL + (α− ra)w0JiW + Jit

+ other terms (involving Ji−1, etc.).

So write

L (Ji) =

(
1

2
σ2w2

0

∂2

∂W 2
+ qσρu0w0

∂2

∂L∂W
+

1

2
q2u0

∂2

∂L2

+cu0
∂

∂L
+ (α− ra)w0

∂

∂W
+
∂

∂t

)
Ji

and note if rl = ra + ε then

raW
∂J

∂W
+ rlL

∂J

∂L
= ra

(
W

∂J

∂W
+ L

∂J

∂L

)
+ εL

∂J

∂L
.

We have U (E) = Eγ

γ = (W−L)γ
γ with J0 = A (t) (W−L)γ

γ

W
∂J0
∂W

+ L
∂J0
∂L

= A (t) (W − L)γ
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and

raW
∂J

∂W
+ rlL

∂J

∂W
= raL1 (J) + εL

∂J

∂L
,

where L1 (J) ≡
(
W ∂

∂W + L ∂
∂L

)
J so from our equation we have O (1)

U (E) + L (J0) + raL1 (J0) = 0

and O (ε)

0 = L (J1) + raL1 (J1) + L
∂J0
∂L

+ cu1J0L + (α− ra)w1J0W

+
1

2
σ2 (2w1w0) J0WW + qσρ (u0w1 + u1w0) J0LW

+
1

2
q2 (2u1u0) J0LL

Call this Lij (J0) , therefore,

0 = L10 (J0)

O
(
ε2
)

0 = L (J2) + raL1 (J2) + L
∂J1
∂L

+ raL20 (J0) + L10 (J1) ,

where

L20 (J0) = cu2J0L + (α− ra)w2J0W

+ σ2
(
w2w0 +

w2
1

2

)
J0WW + qσρ (u0w2 + u2w0 + u1w1) J0LW

+ q2
(
u2u0 +

u21
2

)
J0LL

and

L10 (J0) = cu1J0L + (α− ra)w1J0W

+ σ2w1w0J0WW + qσρ (u0w1 + u1w0) J0LW

+ q2u1u0J0LL.

With the choice

J0 = A (t)
(W − L)γ

γ
,
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the O (1) equation reduces to the equation we had previously, which has the form

Ȧ (t)

γ
+

1

γ
+DA = 0,

where D is constant and equals κ
γ . Thus

A (t) = − 1

γD
+

1

γD
e(−κ(t−T ))

with A (T ) = 0.
From the O (1) equations for w0 and u0 we find that w0 and u0 are both proportional

to (W − L).
When we come to the O (ε) equations, we write

J1 = (BL+B1W ) (W − L)γ−1

and note that L10 (J0) will have terms like (W − L)γ−1 multiplying a linear combina-
tion of terms involving u1 and w1.

The term L∂J0∂L is again of the form (W − L)γ−1 (L).
Then L1 (J1) has this form also on account of(

W
∂

∂W
+ L

∂

∂L

)
(W − L)γ−1 = (γ − 1) (W − L)γ−1 ,

L (J1) will also have this form. So if u1 and w1 turn out to be proportional to a linear
combination of L and W we get the coupled ODE’1 for B and B1 by equating to zero
coefficients of L and W . This behaviour of u1 and w1 follows from the O (ε) equations of
(A.1) and (A.2).

For the O (ε) equations, note that L10 (J1) will be of the form (W − L)γ−2. Similarly
L∂J1∂L has the same form.

L20 (J0) has the form u2 () (W − L)γ−1 + w2 () (W − L)γ−1 and the determined terms
w2

1
2 J0WW etc are of the quadratic× (W − L)γ−2.

If we assume
J2 =

(
C1W

2 + C2LW + C3L
2
)

(W − L)γ−2 ,

then L (J2) = quadratic× (W − L)γ−2 +
(
C ′1W

2 + C ′2LW + C ′3L
2
)

(W − L)γ−2

Similarly, rL1 (J2) is quadratic× (W − L)γ−2. Finally the O
(
ε2
)

equation gives

(W − L)γ−2
(
· · · · · ·
· · · · · ·

)(
w2

u2

)
= (quadratic) (W − L)γ−3 .

This gives w2 and u2 as quadratic
(W−L) . Thus the term in L20 (J0) has the form (quadratic)(W − L)γ−2 .

Finally equating coefficients of W 2, LW and L2 gives 3 ODE for C1, C2 and C3.


