EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 4, 2019, 1779-1786
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Forcing Subsets for γ_{c}-sets and γ_{t}-sets in the Lexicographic Product of Graphs

Cris L. Armada ${ }^{1}$, Sergio R. Canoy, Jr. ${ }^{2, *}$, Carmelito E. Go ${ }^{3}$
${ }^{1}$ Mathematics Department, Cebu Normal University, 6000 Cebu City, Philippines
${ }^{2}$ Department of Mathematics and Statistics, College of Sciences and Mathematics, Center for Graph Theory, Algebra, and Analysis, Premier Research Institute in Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
${ }^{3}$ Department of Mathematics, College of Natural Sciences and Mathematics, Mindanao State University - Main Campus, 9700 Marawi City, Philippines

Abstract

In this paper, the connected dominating sets and total dominating sets in the lexicographic product of two graphs are characterized. Further, the connected domination, total domination, forcing connected domination and forcing total domination numbers of these graphs are determined.

2010 Mathematics Subject Classifications: 05C69
Key Words and Phrases: Connected domination, total domination, forcing subset, lexicographic product

1. Introduction

Let $G=(V(G), E(G))$ be a connected graph. A set $D \subseteq V(G)$ is a dominating set of G if every vertex in $V(G) \backslash D$ is adjacent to at least one vertex in D. A set $S \subseteq V(G)$ is a total dominating set (resp. connected dominating set) of G if each vertex in $V(G)$ is adjacent to some vertex in S (resp. S is a dominating set and the subgraph $\langle S\rangle$ induced by S is connected in G). The total domination number $\gamma_{t}(G)$ (resp. connected domination number $\gamma_{c}(G)$) of G is the minimum cardinality of a total dominating set (resp. connected dominating set). If S is a total dominating set (resp. connected dominating set) with $|S|=\gamma_{t}(G)\left(\operatorname{resp} .|S|=\gamma_{c}(G)\right)$, then we call S a minimum total dominating set (resp. minimum connected dominating set) of G or a γ_{t}-set (resp. γ_{c}-set) in G.

[^0]Let T be a γ_{t}-set of a graph G. A subset S of T is said to be a forcing subset for T if T is the unique γ_{t}-set containing S. The forcing total domination number of T is given by $f \gamma_{t}(T)=\min \{|S|: S$ is a forcing subset for $T\}$. The forcing total domination number of G is given by

$$
f \gamma_{t}(G)=\min \left\{f \gamma_{t}(T): T \text { is a } \gamma_{t} \text {-set of } G\right\} .
$$

Let C be a γ_{c}-set of a graph G. A subset D of C is said to be a forcing subset for C if C is the unique γ_{c}-set containing D. The forcing connected domination number of C is given by $f \gamma_{c}(C)=\min \{|D|: D$ is a forcing subset for $C\}$. The forcing connected domination number of G is given by

$$
f \gamma_{c}(G)=\min \left\{f \gamma_{c}(C): C \text { is a } \gamma_{c} \text {-set of } G\right\} .
$$

Chartrand et. al [2] initiated the investigation on the relation between forcing and domination concepts in 1997 and used the term "forcing domination number". In 2017, John et. al [3] investigated the forcing connected domination of a graph. In 2018, Canoy et. al [1] investigated the forcing domination number of graphs under some binary operations.

The lexicographic product (composition) $G[H]$ of two graphs G and H is the graph with $V(G[H])=V(G) \times V(H)$, and $\left(u, u^{\prime}\right)\left(v, v^{\prime}\right) \in E(G[H])$ if and only if either $u v \in E(G)$ or $u=v$ and $u^{\prime} v^{\prime} \in E(H)$.

For each $\varnothing \neq C \subseteq V(G) \times V(H)$, the G-projection and H-projection of C are, respectively, the sets $C_{G}=\{x \in V(G):(x, a) \in C$ for some $a \in V(H)\}$ and $C_{H}=\{a \in V(H):(y, a) \in C$ for some $y \in V(G)\}$. Observe that any non-empty subset C of $V(G) \times V(H)$ can be written as $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right) \subseteq V(G[H])$, where $S \subseteq V(G)$ and $T_{x}=\left\{a \in C_{H}:(x, a) \in C\right\}$ for all $x \in S$.

2. Total Domination in the Lexicographic Product of Graphs

We shall use the following well-known result.
Lemma 2.1. [1] Let G be a connected graph and S a dominating set of G. Then $\gamma_{t}(G) \leq\left|S \cap N_{G}(S)\right|+2\left|S \backslash N_{G}(S)\right|$. In particular, $\gamma_{t}(G) \leq 2 \gamma(G)$.

Theorem 2.2. Let G and H be both nontrivial connected graphs. Then $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right) \subseteq V(G[H])$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for every $x \in S$, is a total dominating set of $G[H]$ if and only if either
(i) S is a total dominating set of G or
(ii) S is a dominating set of G and T_{x} is a total dominating set of H for every $x \in S \backslash N_{G}(S)$.

Proof. Suppose that $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right)$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for each $x \in S$, is a total dominating set of $G[H]$. Let $u \in V(G) \backslash S$ and pick any $b \in V(H)$. Since $(u, b) \in V(G[H]) \backslash C$ and C is a dominating set of $G[H]$, there exists $(y, c) \in C$ such that $(y, c)(u, b) \in E(G[H])$. This implies that $y \in S$ and $u \in N_{G}(y)$. This shows that S is a dominating set of G. If S is a total dominating set of G, then we are done. So suppose S is not a total dominating set of G. Then $S \backslash N_{G}(S) \neq \emptyset$. Let $x \in S \backslash N_{G}(S)$. Suppose there exists $y \in V(H) \backslash N_{H}\left(T_{x}\right)$. Then $y z \notin E(H)$ for all $z \in T_{x}$. This implies that $(x, y) \notin N_{G[H]}(C)$, contrary to our assumption that C is a total dominating set of $G[H]$. Therefore, $N_{H}\left(T_{x}\right)=V(H)$, i.e., T_{x} is a total dominating set of H.

For the converse, let $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right)$ and $(u, t) \in V(G[H])$. Assume first that S is a total dominating set of G. Then there exists $x \in S \backslash\{u\}$ such that $u \in N_{G}(x)$. Choose $d \in T_{x}$. Then $(x, d) \in C$ and $(u, t)(x, d) \in E(G[H])$. Hence, $(u, t) \in N_{G[H]}(C)$.

Suppose now that $(i i)$ holds. If $u \in V(G) \backslash S$, then because S is a dominating set of G, there exists $y \in S$ such that $u \in N_{G}(y)$. Pick $a \in T_{y}$. Then $(y, a) \in C$ and $(u, t)(y, a) \in E(G[H])$. Suppose that $u \in S$. If $u \in N_{G}(z)$ for some $z \in S \backslash\{u\}$, then there exists $(z, b) \in C$ such that $(u, t)(z, b) \in E(G[H])$. If $u \notin N_{G}(z)$ for all $z \in S \backslash\{u\}$, then by assumption, T_{u} is a total dominating set of H. Since $(u, t) \notin C, t \notin T_{u}$. This implies that there exists $s \in T_{u}$ such that $t s \in E(H)$. It follows that $(u, s) \in C$ and $(u, t)(u, s) \in E(G[H])$. Thus, $(u, t) \in N_{G[H]}(C)$. In both cases, we have shown that $(u, t) \in N_{G[H]}(C)$. Therefore, $N_{G[H]}(C)=V(G[H])$, i.e., C is a total dominating set of $G[H]$.

Corollary 2.3. Let G and H be nontrivial connected graphs with $\gamma_{t}(H)=2$. Then $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right) \subseteq V(G[H])$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H) \quad \forall x \in S$, is a γ_{t}-set of $G[H]$ if and only if either
(i) S is a γ_{t}-set of G and $\left|T_{x}\right|=1$ for all $x \in S$; or
(ii) S is a dominating set of G such that $\left|S \cap N_{G}(S)\right|+2\left|S \backslash N_{G}(S)\right|=\gamma_{t}(G),\left|T_{x}\right|=1$ for all $x \in S \cap N_{G}(S)$, and T_{x} is a γ_{t}-set of H (hence $\left|T_{x}\right|=2$) for every $x \in S \backslash N_{G}(S)$.

Proof. Suppose $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right)$ is a γ_{t}-set of $G[H]$. By Theorem 2.2, S is a total dominating set of G or S is a dominating set of G and T_{x} is a total dominating set of H for every $x \in S \backslash N_{G}(S)$. Suppose first that S is total dominating set. Suppose further that that $\left|T_{z}\right| \geq 2$ for some $z \in S$. Let $a \in T_{z}$ and define $T_{z}^{*}=\{a\}$. Then $C^{*}=\left[\cup_{x \in S \backslash\{z\}}\left(\{x\} \times T_{x}\right)\right] \cup\left(\{z\} \times T_{z}^{*}\right)$ is a total dominating set by Theorem 2.2(i). This, however, is impossible because $\left|C^{*}\right|<|C|$. Thus, $\left|T_{x}\right|=1$ for all $x \in S$. Thus, (i) holds.

Suppose now that S is a dominating (not a total dominating) set of G. Suppose first that $\gamma_{t}(G)<\left|S \cap N_{G}(S)\right|+2\left|S \backslash N_{G}(S)\right| \leq|C|$. Choose a γ_{t}-set R in G and set $S_{x}=\{v\}$
for every $x \in R$, where $v \in V(H)$. Then $Y=\cup_{x \in R}\left(\{x\} \times S_{x}\right)$ is a total dominating set by Theorem 2.2(i). It follows that $\gamma_{t}(G)=|R|=|Y|<|C|$, contrary to our assumption of C. Thus, by Lemma 2.1, $\gamma_{t}(G)=\left|S \cap N_{G}(S)\right|+2\left|S \backslash N_{G}(S)\right|$.

Next, suppose that there exists $z \in S \cap N_{G}(S)$ with $\left|T_{z}\right| \geq 2$. Let $a \in T_{z}$ and define $T_{z}^{*}=\{a\}$. Then $C^{*}=\left[\cup_{x \in S \backslash\{z\}}\left(\{x\} \times T_{x}\right)\right] \cup\left(\{z\} \times T_{z}^{*}\right)$ is a total dominating set by Theorem 2.2(ii). This is not possible because $\left|C^{*}\right|<|C|$ Therefore $\left|T_{x}\right|=1$ for all $x \in S \cap N_{G}(S)$. Finally, suppose there exists $w \in S \backslash N_{G}(S)$ such that T_{w} is not a γ_{t}-set of H. Since T_{w} is a dominating set and $\gamma_{t}(H)=2,\left|T_{w}\right|>2$. Let $L_{w}=\{a, b\}$ be a γ_{t}-set of H. Then $C_{1}=\left[\cup_{x \in S \backslash\{w\}}\left(\{x\} \times T_{x}\right)\right] \cup\left(\{w\} \times L_{w}\right)$ is a total dominating set by Theorem 2.2(ii). Again, this is not possible because $\left|C_{1}\right|<|C|$. Therefore, T_{x} is a γ_{t}-set of H for every $x \in S \backslash N_{G}(S)$.
The converse is easy.
Corollary 2.4. Let G and H be nontrivial connected graphs with $\gamma_{t}(H) \neq 2$. Then a subset $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right)$ of $V(G[H])$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for every $x \in S$, is a γ_{t}-set of $G[H]$ if and only if S is a γ_{t}-set of G and $\left|T_{x}\right|=1$ for all $x \in S$.

Proof. Suppose $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right)$ is a γ_{t}-set of $G[H]$. Suppose S is not a total dominating set. Then S is a dominating set of G and T_{x} is a total dominating set of H for every $x \in S \backslash N_{G}(S)$, by Theorem 2.2. Since $\gamma_{t}(H) \neq 2$, it follows that $\left|T_{x}\right|>2$ for every $x \in S \backslash N_{G}(S)$. By Lemma 2.1 and since $|C|=\sum_{x \in S \cap N_{G}(S)}\left|T_{x}\right|+\sum_{x \in S \backslash N_{G}(S)}\left|T_{x}\right|$, it follows that $\gamma_{t}(G)<|C|$. Let S_{1} be a γ_{t}-set of G and set $Q_{x}=\{a\}$ for every $x \in S_{1}$, where $a \in V(H)$. Put $Q=\cup_{x \in S_{1}}\left(\{x\} \times Q_{x}\right)$. Then Q is a total dominating set of $G[H]$ by Theorem $2.2(i)$. Moreover, $|Q|=\left|S_{1}\right|=\gamma_{t}(G)$. Thus, $|Q|<|C|$, contrary to our assumption of C. Therefore, S is a total dominating set of G. Using a similar argument, it can be shown that S is a γ_{t}-set of G and $\left|T_{x}\right|=1$ for all $x \in S$.

For the converse, suppose that $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right)$ and S is a γ_{t}-set of G with $\left|T_{x}\right|=1$ for all $x \in S$. By Theorem 2.2, C is a total dominating set of $G[H]$. If $C_{1}=\cup_{x \in S_{1}}\left(\{x\} \times L_{x}\right)$ is another total dominating set of $G[H]$, then, by Theorem $2.2, S_{1}$ is dominating set of G and L_{x} is a total dominating set of H^{x} for each $x \in S_{1} \backslash N_{G}\left(S_{1}\right)$. Let $D_{1}=S_{1} \cap N_{G}\left(S_{1}\right)$ and $D_{2}=S_{1} \backslash N_{G}\left(S_{1}\right)$. By Theorem 2.2,

$$
\left|D_{1}\right|+2\left|D_{2}\right| \leq \sum_{x \in D_{1}}\left|L_{x}\right|+\sum_{x \in D_{2}}\left|L_{x}\right|=\left|C_{1}\right|
$$

Thus, by Lemma 2.1, $\gamma_{t}(G)=|C| \leq\left|C_{1}\right|$. This implies that C is a γ_{t}-set of $G[H]$.
Corollary 2.5. Let G and H be nontrivial connected graphs. Then

$$
\gamma_{t}(G[H])=\gamma_{t}(G)
$$

Proof. Let S be a γ_{t}-set of G. Pick $a \in V(H)$ and set $T_{x}=\{a\}$ and $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right)$. By Corollary 2.3 and Corollary 2.4, C is γ_{t}-set of $G[H]$. Thus, $\gamma_{t}(G[H])=|C|=|S|=\gamma_{t}(G)$.

Theorem 2.6. Let G and H be nontrivial connected graphs. Then

$$
f \gamma_{t}(G[H])=\gamma_{t}(G)
$$

Proof. Let $C=\cup_{x \in S}\left[\{x\} \times T_{x}\right]$ be a γ_{t}-set of $G[H]$ and let $R_{C}=\cup_{x \in D}\left[\{x\} \times R_{x}\right]$ be a forcing subset for C. First, suppose that S is a γ_{t}-set of G. Then $\left|T_{x}\right|=1$ for all $x \in S$ by Corollaries $2.3(i)$ and 2.4. Hence, $R_{x}=T_{x}$ for all $x \in D$. If $D \neq S$, say $y \in S \backslash D$, then $R_{C} \subseteq C^{*}=\cup_{x \in S}\left[\{x\} \times T_{x}^{*}\right]$, where $T_{x}^{*}=T_{x}$ for $x \in S \backslash\{y\}$ and T_{y}^{*} is a singleton subset of H different from T_{y}. Since C^{*} is a γ_{t}-set of $G[H]$ and $C^{*} \neq C, R_{C}$ is not a forcing subset for C, contrary to the assumption. Thus, $D=S$, that is, $R_{C}=C$. Hence, $f \gamma_{t}(C)=|C|=|S|=\gamma_{t}(G)=f \gamma_{t}(G[H])$.

Next, suppose that S is a dominating (not a total dominating) set of G such that $\left|S \cap N_{G}(S)\right|+2\left|S \backslash N_{G}(S)\right|=\gamma_{t}(G)$. Then $\left|T_{x}\right|=1$ for all $x \in S \cap N_{G}(S)$ and T_{x} is a γ_{t}-set of H for each $x \in S \backslash N_{G}(S)$ by Corollary 2.3(ii). (Note that in this case, $\gamma_{t}(H)=2$). Let $C=C_{1} \cup C_{2}$ where $C_{1}=\cup_{x \in S \cap N_{G}(S)}\left[\{x\} \times T_{x}\right]$ and $C_{2}=\cup_{x \in S \backslash N_{G}(S)}\left[\{x\} \times T_{x}\right]$. Clearly, $S \cap N_{G}(S) \subseteq D$, that is, $C_{1} \subseteq R_{C}$. Now, choose $v_{y} \in N_{G}(y)$ for each $y \in S \backslash N_{G}(S)$ and let $F_{S}=\left\{v_{y}: y \in S \backslash N_{G}(S)\right\}$. Clearly, $S \cap F_{S}=\varnothing$. Suppose that $\left|F_{S}\right|<\left|S \backslash N_{G}(S)\right|$. Then there exist distinct $y_{1}, y_{2} \in S \backslash N_{G}(S)$ such that $v_{y_{1}}=v_{y_{2}}$. Let $S_{0}=S \cup F_{S}$. Then

$$
\left|S_{0}\right|=|S|+\left|F_{S}\right|<\left|S \cap N_{G}(S)\right|+2\left|S \backslash N_{G}(S)\right|=\gamma_{t}(G)
$$

This is a contradiction because S_{0} is a total dominating set of G. Thus, $\left|F_{S}\right|=\left|S \backslash N_{G}(S)\right|$ (hence, the v_{y} 's are distinct). Next, suppose that there exists $q \in S \backslash N_{G}(S)$ such that $\{q\} \times T_{q}$ is not contained in R_{C}. Let $T_{q}=\{a, b\}$ and suppose, without loss of generality, that $(q, a) \notin R_{C}$. Let $S_{q}=S \cup\left\{v_{q}\right\}$ and set $R_{q}=\{b\}, R_{v_{q}}=\{a\}, R_{x}=T_{x}$ for each $x \in S\{q\}$, and $C_{q}=\cup_{x \in S_{q}}\left[\{x\} \times R_{x}\right]$. Then $S_{q} \cap N_{G}\left(S_{q}\right)=\left[S \cap N_{G}(S)\right] \cup\left\{q, v_{q}\right\}$ and $S_{q} \backslash N_{G}\left(S_{q}\right)=\left(S \backslash N_{G}(S)\right) \backslash\{q\}$. Hence,

$$
\left|S_{q} \cap N_{G}\left(S_{q}\right)\right|+2\left|S_{q} \backslash N_{G}\left(S_{q}\right)\right|=\left|S \cap N_{G}(S)\right|+2+2\left|S \backslash N_{G}(S)\right|-2=\gamma_{t}(G)
$$

Thus, C_{q} is a γ_{t}-set of $G[H]$ by Corollaries 2.3 and $2.4, C_{q} \neq C$, and $R_{C} \subseteq C_{q}$. This implies that R_{C} is not a forcing subset for C, contrary to the assumption that it is. Therefore $C_{2} \subseteq R_{C}$, showing that $R_{C}=C$. Accordingly, $f \gamma_{t}(G[H])=|C|=\gamma_{t}(G)$.

3. Connected Domination in the Lexicographic Product of Graphs

Theorem 3.1. Let G and H be nontrivial connected graphs. Then $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right) \subseteq V(G[H])$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for every $x \in S$, is a connected dominating set of $G[H]$ if and only if S is a connected dominating set of G, where T_{x} is a connected dominating set of H whenever $|S|=1$.

Proof. Suppose that $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right) \subseteq V(G[H])$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for every $x \in S$, is a connected dominating set of $G[H]$. Then, clearly, S is a dominating set in G. Let $x, y \in S$, where $x \neq y$ and $x y \notin E(G)$. Let $a \in T_{x}$ and $b \in T_{y}$. Then $(x, a),(y, b) \in C,(x, a) \neq(y, b)$ and $(x, a)(y, b) \notin E(G[H])$. Since $\langle C\rangle$ is connected, there exists an $(x, a)-(y, b)$ geodesic $\left[\left(x_{1}, a_{1}\right),\left(x_{2}, a_{2}\right), \ldots,\left(x_{k}, a_{k}\right)\right]$, where $\left(x_{1}, a_{1}\right)=(x, a),\left(x_{k}, a_{k}\right)=(y, b)$, and $\left(x_{i}, a_{i}\right) \in C$ for all $i \in\{1,2, \ldots, k\}(k \geq 3)$.

It follows that $\left[x_{1}, x_{2}, \ldots, x_{k}\right]$, where $x_{1}=x$ and $x_{k}=y$, is an $x-y$ geodesic and $x_{i} \in S$ for all $i \in\{1,2, \ldots, k\}$. This implies that $\langle S\rangle$ is connected. Now, suppose that $|S|=1$, say $S=\{x\}$. Let $a, b \in T_{x}$, where $a \neq b$ and $a b \notin E(G)$. Since $(x, a),(x, b) \in C,(x, a) \neq(x, b)$ and $(x, a)(x, b) \notin E(G[H])$, there exists an $(x, a)-(x, b)$ geodesic $\left[\left(x, a_{1}\right),\left(x, a_{2}\right), \ldots,\left(x, a_{k}\right)\right]$, where $a_{1}=a, a_{k}=b$, and $\left(x, a_{i}\right) \in C$ for all $i \in\{1,2, \ldots, k\}$. It follows that $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$ is an $a-b$ geodesic and $a_{i} \in T_{x}$ for all $i \in\{1,2, \ldots, k\}$. Hence, $\left\langle T_{x}\right\rangle$ is connected. Moreover, T_{x} is a dominating set in H.

For the converse, let $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right)$. Assume that S is a connected dominating set of G, and that T_{x} is a connected dominating set of H whenever $|S|=1$. Assume first that $|S| \geq 2$ and let $(z, c) \notin C$. Since $\langle S\rangle$ is connected, there exists $w \in S$ such that $w z \in E(G)$. Let $d \in T_{w}$. Then $(w, d) \in C$ and $(z, c)(w, d) \in E(G[H])$. Thus, C is a dominating set in $G[H]$. Next, let $(u, s),(v, t) \in C$, where $(u, s) \neq(v, t)$ and $(u, s)(v, t) \notin E(G[H])$. If $u=v$, then we choose $w \in S$ such that $u w \in E(G)$. Let $q \in T_{w}$. Then $(w, q) \in C$ and $[(u, s),(w, q),(v, t)]$ is a $(u, s)-(v, t)$ geodesic. If $u \neq v$, then there exists a $u-v$ geodesic $\left[u_{1}, u_{2}, \ldots, u_{k}\right]$ where $u_{1}=u$, $u_{k}=v$ and $u_{i} \in S$ for each $i \in\{1,2, \ldots, k\}$, since $\langle S\rangle$ is connected. Choose $s_{i} \in T_{u_{i}}$ for each $i \in\{1,2, \ldots, k\}$, where $s_{1}=s$ and $s_{k}=t$. Then $\left[\left(u_{1}, s_{1}\right),\left(u_{2}, s_{2}\right), \ldots,\left(u_{k}, s_{k}\right)\right]$ is a $(u, s)-(v, t)$ geodesic and $\left(u_{i}, s_{i}\right) \in C$ for each $i \in\{1,2, \ldots, k\}$. Thus, $\langle C\rangle$ is connected. It is easy to show that C is a connected dominating set if $S=\{x\}$ is a dominating set and T_{x} is a connected dominating set in H.

Corollary 3.2. Let G and H be nontrivial connected graphs with $\gamma(G)=1$. Then

$$
\gamma_{c}(G[H])= \begin{cases}1, & \gamma(H)=1 \\ 2, & \text { otherwise } .\end{cases}
$$

Proof. Let $\{x\}$ be a dominating set in G. If $\gamma(H)=1$, then choose a dominating set $\{d\}$ in H. Clearly, $C_{0}=\{(x, d)\}$ is a connected dominating set of $G[H]$. Hence, $\gamma_{c}(G[H])=1$. Suppose that $\gamma(H) \geq 2$ and let $S=\{x, y\}$ with $x y \in E(G)$. Choose any $a \in V(H)$. Then $C=\{(x, a),(y, a)\}$ is a connected dominating set of $G[H]$ by Theorem 3.1. Since $G[H]$ cannot be dominated by a single vertex, it follows that $\gamma_{c}(G[H])=|C|=2$.

Corollary 3.3. Let G and H be nontrivial connected graphs with $\gamma(G) \neq 1$. Then

$$
\gamma_{c}(G[H])=\gamma_{c}(G) .
$$

Proof. Let S be a minimum connected dominating set in G. Choose any $a \in V(H)$ and set $T_{x}=\{a\}$ for each $x \in S$. Then $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right)$ is a minimum connected dominating set of $G[H]$ by Theorem 3.1. Therefore, $\gamma_{c}(G[H])=|C|=|S|=\gamma_{c}(G)$.

Theorem 3.4. Let G and H be nontrivial connected graphs with $\gamma(G)=1$ and $\gamma(H)=1$. Then

$$
f \gamma_{c}(G[H])= \begin{cases}0, & \text { both } G \text { and } H \text { have unique } \gamma \text {-sets, } \\ 1, & \text { otherwise. }\end{cases}
$$

Proof. Suppose that both G and H have unique γ-sets, say S and T, respectively. Then S and T are also γ_{c}-sets. By Theorem 3.1, $C=\cup_{x \in S}\left(\{x\} \times T_{x}\right) \subseteq V(G[H])$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for every $x \in S$, is the only γ_{c}-set of $G[H]$, that is, \varnothing is a forcing subset for C. Thus, $f \gamma_{c}(G[H])=f \gamma_{c}(C)=0$.

Suppose that either G or H has no unique γ-set (γ_{c}-set). Then by Theorem 3.1, $C=\left\{(x, y): x \in S\right.$ and $\left.y \in T_{x}\right\}$, where S is a γ_{c}-set of G and T_{x} is a γ_{c}-set of H, is not a unique γ_{c}-set of $G[H]$. By Corollary $3.2,|C|=1$, that is, C is a forcing subset for itself. Thus, $f \gamma_{c}(G[H])=f \gamma_{c}(C)=1$.
Theorem 3.5. Let G and H be nontrivial connected graphs with $\gamma(G)=1$ and $\gamma(H)>1$. Then

$$
f \gamma_{c}(G[H])=2 .
$$

Proof. Note that by Corollary 3.2, $\gamma_{c}(G[H])=2$. Let $S=\{x, y\}$ be a γ_{c}-set of G. Choose any vertex $a \in V(H)$. Then $C=\{(x, a),(y, a)\}$ is a γ_{c}-set of $G[H]$ by Theorem 3.1. Pick $b \in V(H) \backslash\{a\}$. Then $\{(x, a)\} \subseteq C^{\prime}=\{(x, a),(y, b)\}$ and $\{(y, a)\} \subseteq C^{*}=\{(x, b),(y, a)\}$, where C^{\prime} and C^{*} are also γ_{c}-sets of $G[H]$ different from C. Thus, $f \gamma_{c}(C)=2=f \gamma_{c}(G[H])$.
Theorem 3.6. Let G and H be nontrivial connected graphs with $\gamma(G) \neq 1$. Then

$$
f \gamma_{c}(G[H])=\gamma_{c}(G) .
$$

Proof. Let $C=\cup_{x \in S}\left[\{x\} \times T_{x}\right]$ be a γ_{c}-set of $G[H]$ and let $P_{C}=\cup_{x \in D}\left[\{x\} \times P_{x}\right]$ be a forcing subset for C. First, suppose that S is a γ_{c}-set of G. Then $\left|T_{x}\right|=1$ for all $x \in S$ by Theorem 3.1 and Corollary 3.3. Hence, $P_{x}=T_{x}$ for all $x \in D$. If $D \neq S$, say $y \in S \backslash D$, then $P_{C} \subseteq C^{*}=\cup_{x \in S}\left[\{x\} \times T_{x}^{*}\right]$, where $T_{x}^{*}=T_{x}$ for $x \in S \backslash\{y\}$ and T_{y}^{*} is a singleton subset of H different from T_{y}. Since C^{*} is a γ_{c}-set of $G[H]$ and $C^{*} \neq C, P_{C}$ is not a forcing subset for C, contrary to the assumption. Thus, $D=S$, that is, $P_{C}=C$. Hence, $f \gamma_{c}(C)=|C|=|S|=\gamma_{c}(G)=f \gamma_{c}(G[H])$.

Acknowledgements

The authors would like to thank the referees for their invaluable suggestions and comments which greatly contributed in the improvement of the paper. The authors would like to thank also the following funding agencies: Department of Science and Technology-Science Education Institute-Accelerated Science and Technology Human Resource Development Program (DOST-SEI-ASTHRDP), Mindanao State University-Iligan Institute of Technology, Cebu Normal University and Commission on Higher Education, Philippines.

References

[1] C. Armada, S. Canoy Jr., and C. Go, Forcing Domination Numbers of Graphs Under Some Binary Operations, Advances and Applications in Discrete Mathematics, 19: 213-228, 2018
[2] G. Chartrand, H. Gavlas, K.C. Vandell, and F. Harary, The Forcing Domination Number of a Graph, J.Combin. Math. Combin. Comput., 25:161-174, 1997
[3] J. John, S. Kavitha and S. Robinson Chellathurai. On the forcing connected domination number of a graph. Journal of Discrete Mathematical Sciences and Cryptography, 20:611?624, 2017.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3485
 Email addresses: cris.armada@g.msuiit.edu.ph, invictuscris@yahoo.com (C. Armada), serge_canoy@yahoo.com (S. Canoy)
 http://www.ejpam.com 1779 © 2019 EJPAM All rights reserved.

