EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 4, 2019, 1497-1507 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

The Dual B-Algebra

Katrina E. Belleza^{1,*}, Jocelyn P. Vilela²

- ¹ Department of Mathematics, School of Arts and Sciences, University of San Carlos, 6000 Cebu City, Philippines
- ² Department of Mathematics and Statistics, College of Science and Mathematics, Center of Graph Theory, Algebra and Analysis, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. This paper introduces and characterizes the notion of a dual B-algebra. Moreover, this study investigates the relationship between a dual B-algebra and a BCK-algebra. Commutativity of a dual B-algebra is also discussed and its relation to some algebras such as CI-algebra and dual BCI-algebra is examined.

2010 Mathematics Subject Classifications: 06F35, 47L45, 08C05 Key Words and Phrases: B-algebra, dual B-algebra, dual algebra

1. Introduction

In 2002, J.Neggers and H.S. Kim [9] introduced and investigated B-algebras which is related to several classes of algebras such as BCH/BCI/BCK-algebras and established that B-algebras are related to groups. In the same year, M.Kondo and Y.B. Jun [4] showed that every B-algebra is group-derived. In 2010, N.O. Al-Shehrie [1] introduced the left-right (resp. right-left) derivation on a B-algebra and some related properties were investigated. In 1996, Y.Imai and K.Iseki [2] introduced two classes of algebras: BCKalgebras and BCI-algebras. It is known that a BCI-algebra is a generalization of a BCKalgebra. In 2007, dual BCK-algebra was introduced by K.H. Kim and Y.H. Yon [3] and some properties were also studied. Moreover, K.H. Kim and Y.H. Yon [3] investigated the relationship between a dual BCK-algebra and an MV-algebra. On the other hand, A. Walendziak [12] defined commutative BE-algebras in 2008 and proved that these are equivalent to the commutative dual BCK-algebras. In 2009, the notions of dual BCIalgebra and CI-algebra were introduced by B.L. Meng [5] together with some of their properties. It is shown that CI-algebra is a generalization of dual BCK/BCI/BCHalgebras. In 2013, A.B. Saeid [11] established the relationship between CI-algebra and dual Q-algebra.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3526

Email addresses: kebelleza@usc.edu.ph (K. Belleza), jocelyn.vilela@g.msuiit.edu.ph (J. Vilela)

^{*}Corresponding author.

This paper aims to characterize a dual B-algebra and to investigate the relationship between a dual B-algebra and BCK-algebra. Moreover, commutativity of a dual B-algebra will also be considered. Relationships between commutative dual B-algebra and other algebras such as CI-algebra and dual BCI-algebra will be investigated in this paper.

2. Preliminaries

An algebra of type (2,0) is an algebra with a binary operation and a constant element.

Definition 1. [9] A B-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms for all x, y, z in X:

(B1)
$$x * x = 0$$
 (B2) $x * 0 = x$ (B3) $(x * y) * z = x * [z * (0 * y)]$

Example 1. [8] Let $X := \{0, 1, 2, 3, 4, 5\}$ be a set with the following Cayley table:

*	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	0 1 2 3 4 5	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then (X; *, 0) is a *B*-algebra.

Definition 2. [6] An algebra (X, *, 0) of type (2, 0) is called a BCK-algebra if for all x, y, z in X, the following hold:

(BCK1)
$$[(x*y)*(x*z)]*(z*y) = 0$$
 (BCK4) $x*y = 0$ and $y*x = 0$ imply $x = y$ (BCK2) $[x*(x*y)]*y = 0$ (BCK5) $0*x = 0$ (BCK3) $x*x = 0$

Lemma 1. [2] In any BCK-algebra (X, *, 0), the following hold for all x, y, z in X:

(i)
$$x * 0 = x$$
 (ii) $(x * y) * z = (x * z) * y$

Definition 3. [7] A Q-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following axioms: for all x, y, z in X,

(Q1)
$$x * x = 0$$
 (Q2) $x * 0 = x$ (Q3) $(x * y) * z = (x * z) * y$

Definition 4. [11] Let (X, *, 0) be a Q-algebra and a binary operation \circ on X is defined as: $x \circ y = y * x$. Then $(X, \circ, 1)$ is called a *dual Q-algebra*. In fact, its axioms are as follows for all x, y, z in X:

(DQ1)
$$x \circ x = 1$$
 (DQ2) $1 \circ x = x$ (DQ3) $x \circ (y \circ z) = y \circ (x \circ z)$

Definition 5. [5] A CI-algebra is an algebra (X, *, 1) of type (2, 0) satisfying the following axioms: for all x, y, z in X, (CI1) x * x = 1 (CI2) 1 * x = x (CI3) x * (y * z) = y * (x * z)

Theorem 1. [11] Any CI-algebra is equivalent to a dual Q-algebra.

Definition 6. [5] A dual BCI-algebra is an algebra (X, *, 1) of type (2,0) satisfying the following axioms: for all x, y, z in X,

$$\begin{array}{ll} \text{(DBCI1)} \ x*x = 1 \\ \text{(DBCI2)} \ x*y = y*x = 1 \text{ implies } x = y \end{array} \begin{array}{ll} \text{(DBCI3)} \ (x*y)*[(y*z)*(x*z)] = 1 \\ \text{(DBCI4)} \ x*[(x*y)*y] = 1 \end{array}$$

Proposition 1. [5] Let (X, *, 1) be a dual BCI-algebra. Then for all x, y, z in X, the following hold:

(i)
$$x * y = 1$$
 implies $(y * z) * (x * z) = 1$ (iii) $y * (z * x) = z * (y * x)$

(ii)
$$x * y = 1$$
 and $y * z = 1$ imply $x * z = 1$ (iv) $1 * x = x$

3. Dual B-Algebra

Definition 7. A dual B-algebra X^D is a triple $(X, \circ, 1)$ where X is a non-empty set with a binary operation " \circ " and a constant 1 satisfying the following axioms for all x, y, z in X^D :

(DB1)
$$x \circ x = 1$$
 (DB2) $1 \circ x = x$ (DB3) $x \circ (y \circ z) = ((y \circ 1) \circ x) \circ z$

Remark 1. If (X, *, 0) is a B-algebra, define " \circ " as follows: $x \circ y = y * x$ for all x, y in X. Then $(X, \circ, 0)$ is a dual B-algebra, called the derived dual B-algebra.

Example 2. Consider the *B*-algebra $X = \{0, 1, 2, 3, 4, 5\}$ in Example 1. The dual *B*-algebra of X is $X^D = (X, 0, 0)$ with the following table:

0	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	1	2	3	4	5
0	0	1	2	3	4	5
1	2	0	1	4	5	3
2	1	2	0	5	3	4
3	3	4	5	0	1	2
4	4	5	3	2	0	1
5	5	3	4	1	2	0

Define "·" as follows: $x \cdot y = y \circ x$. Then $X^{DD} = (X, \cdot, 0)$ is the *B*-algebra *X* with Cayley table in Example 1.

Proposition 2. Let $X^D = (X, \circ, 0)$ be a dual B-algebra. Then $X^{DD} = (X, \cdot, 0)$ is a B-algebra where $x \cdot y = y \circ x$ for all x, y in X^D .

Proof: Suppose X^D is a dual B-algebra and define " \cdot " as follows: $x \cdot y = y \circ x$ for all x,y in X^D . Then the axioms of $X^{DD} = (X,\cdot,0)$ coincide with that of a B-algebra. Hence, X^{DD} is a B-algebra.

Example 3. Let $X = \mathbb{R}$ and \circ be defined as $x \circ y = \frac{y}{x}$ for all x, y in X with $x \neq 0$.

Note that X satisfies (DB1): $x \circ x = \frac{x}{x} = 1$, (DB2): $1 \circ x = \frac{x}{1} = x$, and (DB3): $x \circ (y \circ z) = \frac{y \circ z}{x} = \frac{z}{xy} = \frac{z}{\frac{x}{y \circ 1}} = \frac{z}{(y \circ 1) \circ x} = ((y \circ 1) \circ x) \circ z$. Hence, $(\mathbb{R}, \circ, 1)$ is a dual

B-algebra. Observe that $(\mathbb{R}, \circ, 1)$ is not a *B*-algebra since $4 \circ 1 = \frac{1}{4} \neq 4$. This leads to the next remark.

Remark 2. Not every dual B-algebra is a B-algebra.

Example 4. Let $X = \{e, a, b, c\}$ be the Klein-4 B-algebra with the following table:

Then the dual X^D of X is itself. Hence, the Klein-4 B-algebra is a dual B-algebra. Observe that the Klein-4 B-algebra has a symmetric Cayley table and is a dual B-algebra itself. Hence, there exists a B-algebra that is also a dual B-algebra. This is generalized in the next theorem.

Let (X, *, 0) be any algebra of type (2, 0) satisfying x * y = y * x for all x, y in X. Then we say that (X, *, 0) satisfies a *symmetric condition*.

Theorem 2. Let X be a B-algebra satisfying a symmetric condition. Then X itself is a dual B-algebra, that is, $X = X^D$.

Proof: Suppose X is a B-algebra satisfying a symmetric condition. Then the dual B-algebra axioms hold, namely (DB1): x*x=0 by (B1), (DB2): 0*x=x*0=x by (B2), and (DB3): x*(y*z)=(z*y)*x=z*[x*(0*y)]=[(y*0)*x]*z by (B3). Hence, X is a dual B-algebra.

Example 5. Let $X = \{0, 1, 2\}$ be a set with the following table:

Then (X, *, 0) is a *B*-algebra [9]. Observe that in this example, $1 * (2 * 0) = 1 * 2 = 2 \neq 1 = 1 * 0 = (2 * 1) * 0 = [(2 * 0) * 1] * 0$. This implies that *X* is not a dual *B*-algebra.

Remark 3. Not every *B*-algebra is a dual *B*-algebra.

Lemma 2. Let X^D be a dual B-algebra. Then for any x, y, z in X^D , we have

- (i) $x \circ y = [(x \circ 1) \circ 1] \circ y$ (vi) $x \circ 1 = y \circ 1$ implies x = y (ii) $(x \circ 1) \circ (x \circ y) = y$ (vii) $x = (x \circ 1) \circ 1$ (viii) $(y \circ x) \circ (x \circ y) = x \circ 1$
- (iv) $z \circ x = z \circ y$ implies x = y (ix) $x \circ [(x \circ 1) \circ x] = x$
- (v) $x \circ y = 1$ implies x = y (x) $x \circ y = 1$ implies $(x \circ z) \circ (y \circ z) = 1$.

Proof: Let X^D be a dual B-algebra and $x, y, z \in X^D$.

- (i) By (DB2) and (DB3), $x \circ y = 1 \circ (x \circ y) = [(x \circ 1) \circ 1] \circ y$.
- (ii) By (DB3), (DB1), and (DB2), $(x \circ 1) \circ (x \circ y) = [(x \circ 1) \circ (x \circ 1)] \circ y = 1 \circ y = y$.
- (iii) By (i) and (DB3), $(y \circ z) \circ x = [((y \circ 1) \circ 1) \circ z] \circ x = z \circ [(y \circ 1) \circ x]$.
- (iv) Suppose $z \circ x = z \circ y$. Then $(z \circ 1) \circ (z \circ x) = (z \circ 1) \circ (z \circ y)$ implies x = y by (ii).
- (v) Suppose $x \circ y = 1$. By (DB1) and (iv), we get $x \circ y = x \circ x$ implying x = y.
- (vi) Suppose $x \circ 1 = y \circ 1$.By (DB1), (DB2), (DB3), and (i) we have $1 = x \circ x = 1 \circ (x \circ x) = [(x \circ 1) \circ 1] \circ x = [(y \circ 1) \circ 1] \circ x = y \circ x$. Hence, y = x by (v).
- (vii) By (DB2), (DB3), and (vi), $x \circ 1 = 1 \circ (x \circ 1) = [(x \circ 1) \circ 1] \circ 1$ implies that $x = (x \circ 1) \circ 1$.
- (viii) By (iii) and (DB1), $(y \circ x) \circ (y \circ 1) = x \circ [(y \circ 1) \circ (y \circ 1)] = x \circ 1$.
- (ix) Take y = z = x in (iii). Then apply (DB1) and (DB2).
- (x) By (v), $x \circ y = 1$ implies x = y. Hence by (DB1), $(x \circ z) \circ (y \circ z) = (x \circ z) \circ (x \circ z) = 1$.

The following theorem is a characterization of a dual B-algebra given any algebra with a binary operation and a constant element.

Theorem 3. Let X = (X, 0, 1) be any algebra of type (2,0). Then X is a dual B-algebra if and only if for any x, y, z in X,

(i)
$$x \circ x = 1$$
; (ii) $x = (x \circ 1) \circ 1$; (iii) $(x \circ y) \circ (x \circ z) = y \circ z$.

Proof: Suppose $X = (X, \circ, 1)$ is a dual B-algebra. Then X satisfies (DB1) and Lemma 2(vii). By (DB3), (DB1), and (DB2), $(x \circ y) \circ (x \circ z) = [(x \circ 1) \circ (x \circ y)] \circ z = [((x \circ 1) \circ (x \circ 1)) \circ y] \circ z = (1 \circ y) \circ z = y \circ z$. It follows that X satisfies (i), (ii), and (iii). Conversely by (iii), (i), and (ii), $1 \circ x = (x \circ 1) \circ (x \circ x) = (x \circ 1) \circ 1 = x$. Hence, X satisfies (DB2). For X to satisfy (DB3), we have $x \circ (y \circ z) = [(y \circ 1) \circ x] \circ [(y \circ 1) \circ (y \circ z)] = [(y \circ 1) \circ x] \circ (1 \circ z) = [(y \circ 1) \circ x] \circ z$ by (iii) and (DB2). Therefore, X is a dual B-algebra. □

Comparing the axioms of a dual B-algebra and a BCK-algebra, we have the following remark.

Remark 4. (DB1) is equivalent to (BCK3) and Lemma 2(v) is equivalent to (BCK4) where the constant 1 corresponds to the constant 0 in a dual B-algebra and BCK-algebra, respectively.

Example 6. Consider the dual *B*-algebra $X = \{0, 1, 2, 3, 4, 5\}$ in Example 2. Note that $(X, \circ, 0)$ is not a BCK-algebra since (BCK2) is not satisfied, that is, $[1 \circ (1 \circ 5)] \circ 5 = (1 \circ 3) \circ 5 = 4 \circ 5 = 1 \neq 0$. Also, $2 \circ 1 = 2 \neq 1 = 1 \circ 2$.

Example 7. Consider the Klein-4 dual *B*-algebra X^D in Example 4. Observe that this example satisfies the symmetric condition but is not a BCK-algebra since $e \circ x \neq e$ for all $x \in X$.

Lemma 3. Let $X^D = (X, \circ, 1)$ be a dual B-algebra satisfying a symmetric condition. Then for all x, y, z in X, $(x \circ y) \circ (z \circ y) = x \circ z$.

 $\begin{array}{l} \textit{Proof:} \ \ \text{By (DB3), hypothesis, Lemma 2(iii) and (i), (DB1), and (DB2), we have } (x \circ y) \circ (z \circ y) = [(z \circ 1) \circ (x \circ y)] \circ y = [z \circ (x \circ y)] \circ y = [(x \circ y) \circ z] \circ y = \left([(x \circ y) \circ 1] \circ z\right) \circ y = z \circ [(x \circ y) \circ y] = z \circ \left(y \circ [(x \circ 1) \circ y]\right) = z \circ [y \circ (x \circ y)] = z \circ [y \circ (y \circ x)] = z \circ \left(y \circ [(y \circ 1) \circ x]\right) = z \circ \left[\left([(y \circ 1) \circ 1] \circ y\right) \circ x\right] = z \circ [(y \circ y) \circ x] = z \circ (1 \circ x) = z \circ x = x \circ z. \end{array}$

Proposition 3. Let $X^D = (X, \circ, 1)$ be a dual B-algebra satisfying a symmetric condition. Then X^D satisfies (BCK1), (BCK2), (BCK3), and (BCK4) of a BCK-algebra.

Proof: Suppose X^D is a dual B-algebra satisfying a symmetric condition. Then by (DB2) and the hypothesis, $x=1\circ x=x\circ 1$ for all x in X^D . By Remark 4, it remains to show that X^D satisfies (BCK1) and (BCK2). Let $x,y,z\in X^D$. By (DB3), hypothesis, (DB1) and (DB2), $[x\circ (x\circ y)]\circ y=([(x\circ 1)\circ x]\circ y)\circ y=[(x\circ x)\circ y]\circ y=(1\circ y)\circ y=y\circ y=1$. Thus, X^D satisfies (BCK2). By Lemma 2 (iii) and hypothesis, $[(x\circ y)\circ (x\circ z)]\circ (z\circ y)=(x\circ z)\circ ([(x\circ y)\circ 1]\circ (z\circ y))=(x\circ z)\circ [(x\circ y)\circ (z\circ y)]$. By the hypothesis, Lemma 3 and (DB1), $[(x\circ y)\circ (x\circ z)]\circ (z\circ y)=[(y\circ x)\circ (z\circ x)]\circ (y\circ z)=(y\circ z)\circ (y\circ z)=1$. So, X^D satisfies (BCK1).

Example 8. Let $X = \{0, a, b, c, d\}$ be a BCK-algebra [10] with the following Cayley table:

*	0	a	b	\mathbf{c}	d
0	0	0	0	0	0
\mathbf{a}	a	0	a	0	0
b	b	b	0	b	0
\mathbf{c}	c	\mathbf{c}	\mathbf{c}	0	\mathbf{c}
d	d	0 0 b c	d	d	0

Note that $b*a=b\neq a=a*b$. In fact, $0*b=0\neq b$. So, X does not satisfy (DB2) and hence, is not a dual B-algebra.

The following theorem shows that if the symmetric condition holds in a BCK-algebra X, then X is a dual B-algebra.

Theorem 4. If $(X, \circ, 1)$ is a BCK-algebra satisfying a symmetric condition, then X is a dual B-algebra.

Proof: Suppose X is a BCK-algebra satisfying $x \circ y = y \circ x$ for all x, y in X. By Remark 4, it remains to show that X satisfies (DB3) and (DB2). By Lemma 1(i) and (ii) of a BCK-algebra, $[(y \circ 1) \circ x] \circ z = (y \circ x) \circ z = (y \circ z) \circ x$. Since $x \circ y = y \circ x$ for all x, y in $X, (y \circ z) \circ x = x \circ (y \circ z)$. Hence, X satisfies (DB3). By Lemma 1(i) and the hypothesis, $x = x \circ 1 = 1 \circ x$. This implies that X satisfies (DB2).

4. Commutativity in a Dual B-algebra

Definition 8. Let X^D be a dual B-algebra. Define a binary operation "+" on X as follows: $x + y = (x \circ 1) \circ y$ for all x, y in X^D . A dual B-algebra is said to be *commutative* if x + y = y + x, that is, $(x \circ 1) \circ y = (y \circ 1) \circ x$ for all x, y in X^D .

Example 9. The dual B-algebra $X = \mathbb{R}$ in Example 3 is commutative since for all x, y in \mathbb{R} , $(x \circ 1) \circ y = \frac{y}{x \circ 1} = \frac{y}{\frac{1}{x}} = xy = \frac{x}{\frac{1}{y}} = \frac{x}{y \circ 1} = (y \circ 1) \circ x$. However, the dual B-algebra

in Example 2 is not commutative since $(1 \circ 0) \circ 4 = 2 \circ 4 = 3 \neq 5 = 4 \circ 1 = (4 \circ 0) \circ 1$. Observe that $(1 \circ 0) \circ (3 \circ 0) = 2 \circ 3 = 5 \neq 4 = 3 \circ 1$ and $(2 \circ 5) \circ 5 = 4 \circ 5 = 1 \neq 2$.

However, for a commutative dual B-algebra, the following proposition holds.

Proposition 4. Suppose X^D is a commutative B-algebra. Then the following hold for all x, y in X^D : (i) $(x \circ 1) \circ (y \circ 1) = y \circ x$ (ii) $(y \circ x) \circ x = y$.

Proof: Let X^D be a commutative B-algebra. (i)By Definition 8 and Lemma 2(i), $(x \circ 1) \circ (y \circ 1) = [(y \circ 1) \circ 1] \circ x = y \circ x$. (ii)Applying Lemma 2(iii), Definition 8, (DB3), Lemma 2(i), (DB1), and (DB2), $(y \circ x) \circ x = x \circ [(y \circ 1) \circ x] = x \circ [(x \circ 1) \circ y] = ([(x \circ 1) \circ 1] \circ x) \circ y = (x \circ x) \circ y = 1 \circ y = y$.

Lemma 4. If X^D is a commutative dual B-algebra, then the right cancellation law holds, that is, $x \circ z = y \circ z$ implies x = y for all x, y, z in X^D .

Proof: Suppose X^D is commutative and $x \circ z = y \circ z$ for any x, y, z in X^D . Then by Proposition 4(ii), we can write $x = (x \circ z) \circ z = (y \circ z) \circ z = y$.

Proposition 5. If X^D is a commutative dual B-algebra, then the following hold for all x, y, z in X^D :

$$\begin{array}{ll} \text{(i)} \ x \circ (y \circ z) = y \circ (x \circ z) & \text{(iii)} \ x \circ (y \circ x) = (x \circ y) \circ (x \circ 1) \\ \text{(ii)} \ (x \circ y) \circ z = (z \circ y) \circ x & \text{(iv)} \ y \circ [(y \circ x) \circ x] = 1. \end{array}$$

Proof: Suppose X^D is commutative and $x, y, z \in X^D$. (i) By (DB3) and Definition 8, $x \circ (y \circ z) = [(y \circ 1) \circ x] \circ z = [(x \circ 1) \circ y] \circ z = y \circ (x \circ z)$. (ii) Applying Lemma 2(iii) and since X^D is commutative, $(x \circ y) \circ z = y \circ [(x \circ 1) \circ z] = y \circ [(z \circ 1) \circ x] = (z \circ y) \circ x$. (iii) Write $x \circ (y \circ x) = y \circ (x \circ x)$ by (i). Then $y \circ (x \circ x) = y \circ 1 = (x \circ y) \circ (x \circ 1)$ by (DB1) and Lemma 2(viii). (iv) Follows directly from Proposition 4(ii) and (DB1).

Corollary 1. If X^D is a dual B-algebra satisfying a symmetric condition, then X^D is commutative.

Proof: Let X^D be a dual B-algebra satisfying a symmetric condition. Then $(x \circ 1) \circ y = (1 \circ x) \circ y = x \circ y = y \circ x = (1 \circ y) \circ x = (y \circ 1) \circ x$. This implies that X^D is commutative. \Box

The following corollary follows from Theorem 4 and Corollary 1.

Corollary 2. Suppose X is a BCK-algebra satisfying a symmetric condition. Then X is a commutative dual B-algebra.

The following results present the relationship between a commutative dual B-algebra and some algebras, namely, CI-algebra and dual BCI-algebra. Comparing the axioms and properties of commutative dual B-algebra, CI-algebra and dual BCI-algebra, we have the following remarks.

Remark 5.

- (i) The class of commutative dual *B*-algebras is a subclass of *CI*-algebras since (DB1) is equivalent to (CI1), (DB2) is equivalent to (CI2), and Proposition 5(i) is equivalent to (CI3).
- (ii) (DB1) is equivalent to (DBCI1), Lemma 2(v) is equivalent to (DBCI2), Proposition 5(iv) is equivalent to (DBCI4), (DB2) is equivalent to Proposition 1(iv)

Example 10. Consider the non-commutative dual *B*-algebra $X = \{0, 1, 2, 3, 4, 5\}$ in Example 2. Now $2 \circ (4 \circ 5) = 2 \circ 1 = 2 \neq 0 = 4 \circ 4 = 4 \circ (2 \circ 5)$. Hence, *X* does not satisfy (CI3).

The following corollaries follow from Remark 5 and Theorem 1.

Corollary 3. If X^D is a commutative dual B-algebra, then X^D is a CI-algebra.

Corollary 4. Every commutative dual B-algebra is a dual Q-algebra.

The converse of Corollary 3 is not always true as shown in the following example.

Example 11. Let $X = \{1, a, b, c, d\}$ be a set with the following Cayley table:

*	1	a	b	\mathbf{c}	d
1	1	a	b	\mathbf{c}	d
a	1	1	b	b	d
b	1	a	1	a	d
\mathbf{c}	1	1	1	1	d
d	1 1 1 1 d	d	d	d	1

Then (X, *, 1) is a CI-algebra [5] but is not a dual B-algebra since it does not satisfy (DB3). Indeed, $a \circ (b \circ c) = a \circ a = 1 \neq b = a \circ c = (1 \circ a) \circ c = [(b \circ 1) \circ a] \circ c$.

Theorem 5. If X is a CI-algebra satisfying a symmetric condition, then X is a commutative dual B-algebra.

Proof: Suppose X is a CI-algebra satisfying a symmetric condition. By Remark 5, it remains to show that X satisfies (DB3) and that X is commutative. Applying (CI3) and the hypothesis, $x \circ (y \circ z) = y \circ (x \circ z) = (y \circ 1) \circ (z \circ x) = z \circ [(y \circ 1) \circ x] = [(y \circ 1) \circ x] \circ z$. Hence, X satisfies (DB3). By Corollary 1, it follows that X is commutative.

Example 12. Consider the non-commutative dual *B*-algebra $X = \{0, 1, 2, 3, 4, 5\}$ in Example 2. Observe that $(1 \circ 2) \circ [(2 \circ 4) \circ (1 \circ 4)] = 1 \circ (3 \circ 5) = 1 \circ 2 = 1 \neq 0$. Hence, X^D does not satisfy (DBCI3) and so X^D is not a dual BCI-algebra.

However, if commutativity holds for a dual B-algebra, then it is also a dual BCI-algebra as shown in the next theorem.

Theorem 6. Every commutative dual B-algebra is a dual BCI-algebra.

Proof: Let X^D be a commutative dual B-algebra. By Remark 5, it remains to show that X^D satisfies (DBCI3). By Proposition 5(ii), Proposition 4(ii), and (DB1), $(x \circ y) \circ [(y \circ z) \circ (x \circ z)] = (x \circ y) \circ ([(x \circ z) \circ z] \circ y) = (x \circ y) \circ (x \circ y) = 1$. Hence, X satisfies (DBCI3). Therefore, X is a dual BCI-algebra.

Note that the converse of Theorem 6 is not always true as shown in the following example.

Example 13. Let $X = \{0, 1, a, b, c\}$ with binary operation "*" on X defined by the following table on the left:

*	0	1	a	b	\mathbf{c}		0	0	1	a	b	\mathbf{c}
0	0	0	a	a	a		0	0	1	a	b	c
1	1	0	a	a	a	-	1	0	0	a	a	a
a	a	a	0	0	0	ŧ.	a	a	a	0	1	1
b	b	a	1	0	1	1	b	a	a	0	0	1
\mathbf{c}	c	a	1	1	0	(c	a	a	0	1	0

Then X=(X,*,0) is a BCI-algebra [13]. Note that $(X,\circ,0)$ is a dual BCI-algebra. Now, $1\circ(b\circ c)=1\circ 1=0\neq 1=a\circ c=(a\circ 1)\circ c=[(b\circ 0)\circ 1]\circ c$. Thus, X does not satisfy (DB3). Hence, X is not a dual B-algebra.

However if a dual BCI-algebra X satisfies the symmetric condition, then X is also a dual B-algebra as shown in the next theorem.

Theorem 7. If X is a dual BCI-algebra satisfying a symmetric condition, then X is a commutative dual B-algebra.

Proof: Suppose X is a dual BCI-algebra satisfying a symmetric condition. Then Proposition 1(iv) becomes $x = 1 \circ x = x \circ 1$. By Remark 5, it remains to show that X satisfies (DB3) and is commutative. Applying the hypothesis, Proposition 1(iii) and (iv), $x \circ (y \circ z) = x \circ (z \circ y) = z \circ (x \circ y) = z \circ [x \circ (1 \circ y)] = [x \circ (1 \circ y)] \circ z = [(1 \circ y) \circ x] \circ z = [(y \circ 1) \circ x] \circ z$. Hence, X satisfies (DB3). Also by the hypothesis and Proposition 1(iii), $(x \circ 1) \circ y = y \circ (x \circ 1) = x \circ (y \circ 1) = (y \circ 1) \circ x$. Therefore, X is commutative.

REFERENCES 1506

5. Conclusion

In this paper, the notion of a dual B-algebra is presented together with some of its properties and characterizations. Not every B-algebra is a dual B-algebra and not every dual B-algebra is a B-algebra. However, there exists an algebra that is both a B-algebra and a dual B-algebra. The different relationships of the dual B-algebra to BCK-algebra, CI-algebra, and dual BCI-algebra is given. The concept of commutativity in a dual B-algebra was introduced and some properties were provided.

Acknowledgements

This research is funded by the Commission on Higher Education (CHED) and Mindanao State University-Iligan Institute of Technology, Philippines.

References

- [1] N. Al-Shehrie. Derivations of B-algebras. *JKAU*: Sci., 22(1):71–83, 2010.
- [2] Y. Imai and K. Iseki. On Axiom Systems of Propositional Calculi. *Proceedings of Japan Academy*, 42(1):19–22, 1966.
- [3] K. Kim and Y. Yon. Dual BCK-algebra and MV-algebra. Scientiae Mathematicae Japonicae, 42(1):393–399, 2007.
- [4] M. Kondo and Y.B. Jun. The Class of B-algebras Coincides with the Class of Groups. Scientiae Mathematicae Japonicae, 7:175–177, 2002.
- [5] B.L. Meng. CI-algebra. Scientiae Mathematicae Japonicae, 2009:695–701, 2009.
- [6] J. Meng and Y. Jun. BCK-algebra. Kyung Moonsa, Seoul, 1994.
- [7] J. Neggers and S.S. Ahn. On Q-algebras. *International Journal of Mathematics and Mathematical Sciences*, 27:749–757, 2001.
- [8] J. Neggers and H. Kim. A Fundamental Theorem of B-homomorphism for B-algebras. *Inter.Math.J.*, 2:207–214, 2002.
- [9] J. Neggers and H. Kim. On B-algebras. Mat. Vesnik, 54:21–29, 2002.
- [10] E. Roh and Y. Jun. Positive Implicative Ideals of BCK-algebras Based on Intersectional Soft Sets. *Journal of Applied Mathematics*, 2013.
- [11] A. Saeid. CI-algebra is Equivalent to Dual Q-Algebra. Journal of the Egyptian Mathematical Society, 21:1–2, 2013.
- [12] A. Walendziak. On Commutative BE-algebras. Scientiae Mathematicae Japonicae, 2008:585–588, 2008.

REFERENCES 1507

[13] O. Zahiri and R. Burzooei. Graph of BCI-algebras. *International Journal of Mathematics and Mathematical Sciences*, 2012.