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Abstract. This paper investigates a new class of algebra related to UP-algebras and semigroups
called fully UP-semigroups (or f -UP-semigroups). It establishes some structural properties of f -
UP-semigroups. It also introduces and examines f -UP-fields, f -UP-domains, f -UP-ideals, and
quotient f -UP-semigroups. Moreover, it investigates the relationship between an f -UP-field and
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1. Introduction

In 1966, Y. Imai and K. Iseki [5] introduced the idea of BCK-algebra as a generaliza-
tion of the concept of set-theoretic difference and propositional calculi. In the same year,
K. Iseki [6] introduced the notion of BCI-algebra as a generalization of BCK-algebra.
Studies on different types of algebraic structures followed, among them B-algebras, G-
algebras, BCH-algebras, BE-algebras, and SU-algebras. In 2009, C. Prabpayak and U.
Leerawat [11] introduced the notion of KU-algebra and investigated some related proper-
ties. In 2017, A. Iampan [3] introduced a class of algebra called UP-algebra (UP means
the University of Phayao). He established its structure and defined some concepts such as
UP-subalgebras, UP-ideals, congruences, and UP-homomorphism. He determined some
properties of UP-homomorphism, which led to four isomorphism theorems for UP-algebras.
He also presented some connections between UP-algebras and KU-algebras and showed
that the notion of UP-algebra is a generalization of KU-algebra.
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In 1993, Jun, Hong, and Roh [7] introduced a class of algebra related to BCI-algebras
and semigroups with distributive laws property, called a BCI-semigroup. Jun et al. [8, 9]
renamed the BCI-semigroup as the IS-algebra and studied related properties. In 2018, F.
Kareem and E. Hasan [10] introduced the concept of KU-semigroup which is a combination
of KU-algebra and semigroup. In the same year, A. Iampan [4] introduced a new class
of algebra called a fully UP-semigroup (or f -UP-semigroup) which is a combination of
UP-algebra and semigroup. In this study, the notion of f -UP-semigroup is investigated
and some of its properties are established.

2. Preliminaries

An algebra of type (2, 0) is an algebra with a binary operation and a constant element.

Definition 1. [11] A KU-algebra is an algebra (X; ∗, 0) of type (2, 0) satisfying the fol-
lowing axioms: for all x, y, z ∈ X,

(KU1) (x ∗ y) ∗ [(y ∗ z) ∗ (x ∗ z)] = 0,

(KU2) 0 ∗ x = x,

(KU3) x ∗ 0 = 0,

(KU4) x ∗ y = y ∗ x = 0 implies x = y.

Example 1. [11] Let X = {0, a, b, c} be a set with a binary operation ∗ defined by the
following Cayley table:

∗ 0 a b c
0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 0 0 0

Then, (X; ∗, 0) is a KU-algebra.

Definition 2. [3] A UP-algebra is an algebra (X; ∗, 0) of type (2, 0) satisfying the following
axioms: for all x, y, z ∈ X,

(UP1) (y ∗ z) ∗ [(x ∗ y) ∗ (x ∗ z)] = 0,

(UP2) 0 ∗ x = x,

(UP3) x ∗ 0 = 0,

(UP4) x ∗ y = y ∗ x = 0 implies x = y.

Example 2. [3] Let X = {0, a, b, c} be a set with a binary operation ∗ defined by the
following Cayley table:
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∗ 0 a b c
0 0 a b c
a 0 0 b b
b 0 a 0 b
c 0 a 0 0

Then, (X; ∗, 0) is a UP-algebra.

Definition 3. [3] Let X be a UP-algebra. A subset S of X is called a UP-subalgebra of
X if the constant zero of X is in S and (S; ∗, 0) itself forms a UP-algebra.

Definition 4. [1] Define x∧y = (y∗x)∗x. Then X is said to be a commutative UP-algebra
if for any x, y ∈ X, (y ∗ x) ∗ x = (x ∗ y) ∗ y, that is, x ∧ y = y ∧ x.

Definition 5. [3] Let X be a UP-algebra. Then, a subset I of X is called a UP-ideal of
X if it satisfies:

(i) the constant zero of X is in I, and

(ii) for any x, y, z ∈ X, x ∗ (y ∗ z) ∈ I and y ∈ I imply x ∗ z ∈ I.

Proposition 1. [3] In a UP-algebra (X; ∗, 0), the following properties hold: for any
x, y, z ∈ X,

(i) x ∗ x = 0,

(ii) x ∗ y = 0 and y ∗ z = 0 imply x ∗ z = 0,

(iii) x ∗ y = 0 implies (z ∗ x) ∗ (z ∗ y) = 0,

(iv) x ∗ y = 0 implies (y ∗ z) ∗ (x ∗ z) = 0,

(v) x ∗ (y ∗ x) = 0,

(vi) (y ∗ x) ∗ x = 0 implies x = y ∗ x, and

(vii) x ∗ (y ∗ y) = 0.

The next result gives a relationship between UP-algebras and KU-algebras.

Theorem 1. [3] Any KU-algebra is a UP-algebra.

The converse of Theorem 1 does not hold. To see this, consider the UP-algebra (X; ∗, 0)
in Example 2. Let x = 0, y = a, and z = c. Observe that (x ∗ y) ∗ [(y ∗ z) ∗ (x ∗ z)] =
(0 ∗ a) ∗ [(a ∗ c) ∗ (0 ∗ c)] = a ∗ (b ∗ c) = a ∗ b = b 6= 0, so (KU1) is not satisfied. Thus,
(X; ∗, 0) is not a KU-algebra.

In view of Theorem 1, the notion of UP-algebras is a generalization of KU-algebras.

Proposition 2. [3] A nonempty subset S of a UP-algebra (X; ∗, 0) is a UP-subalgebra of
X if and only if S is closed under the ∗ operation.
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Let X be a UP-algebra and A be a nonempty subset of X. Then X ∗ A is given by

X ∗A =
⋃

x∈X,a∈A
(x ∗ a).

Theorem 2. [3] Let X be a UP-algebra and B a UP-ideal of X. Then X ∗ B ⊆ B. In
particular, B is a UP-subalgebra of X.

Let (X; ∗, 0) be a UP-algebra and B be a UP-ideal of X. Define the binary relation
∼B on X as follows: for all x, y ∈ X, x ∼B y if and only if x ∗ y ∈ B and y ∗ x ∈ B.
An equivalence relation ρ on X is called a congruence if for any x, y, z ∈ X, xρy implies
(x ∗ z)ρ(y ∗ z) and (z ∗ x)ρ(z ∗ y).

If x ∈ X, then the ρ-class of x is [x]ρ defined as [x]ρ = {y ∈ X : yρx}. The set
of all ρ-classes is called the quotient set of X by ρ, and is denoted by X/ρ. That is,
X/ρ = {[x]ρ : x ∈ X}.

Theorem 3. [3] Let (X; ∗, 0) be a UP-algebra and B a UP-ideal of X. Then the following
hold:

(i) the ∼B-class [0]∼B is a UP-ideal and a UP-subalgebra of X,

(ii) a ∼B-class [x]∼B is a UP-ideal of X if and only if x ∈ B,

(iii) a ∼B-class [x]∼B is a UP-subalgebra of X if and only if x ∈ B, and

(iv) (X/ ∼B; ∗, [0]∼B ) is a UP-algebra under the operation ∗ defined by [x]∼B∗[y]∼B = [x∗
y]∼B for all x, y ∈ X, called the quotient UP-algebra of X induced by the congruence
∼B.

Definition 6. [10] A KU-semigroup is a nonempty set X together with two binary oper-
ations ∗ and · and a constant 0 satisfying the following:

(KUS1) (X; ∗, 0) is a KU-algebra;

(KUS2) (X, ·) is a semigroup; and

(KUS3) the operation · is left and right distributive over the operation ∗, that is,
x · (y ∗ z) = (x · y) ∗ (x · z) and (x ∗ y) · z = (x · z) ∗ (y · z).

Example 3. [10] Let X = {0, a, b, c} be a set with the binary operations ∗ and · defined
by the following Cayley tables:

∗ 0 a b c
0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 0 0 0

· 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 b
c 0 0 b c
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Then, (X; ∗, ·, 0) is a KU-semigroup.

Definition 7. [4] A fully UP-semigroup (or f -UP-semigroup) is a nonempty set X to-
gether with two binary operations ∗ and · and a constant 0 satisfying the following:

(fUP1) (X; ∗, 0) is a UP-algebra;

(fUP2) (X, ·) is a semigroup; and

(fUP3) the operation · is left and right distributive over the operation ∗.

A. Iampan [4] analogously introduced a left [resp., right ] UP-semigroup as a nonempty
set X together with two binary operations ∗ and · and a constant 0 satisfying (fUP1),
(fUP2), and the operation · is left [resp. right] distributive over the operation ∗. Thus,
an f -UP-semigroup is both a left and a right UP-semigroup.

Example 4. [4] Let X = {0, a, b, c} be a set with the binary operations ∗ and · defined
by the following Cayley tables:

∗ 0 a b c
0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 a b 0

· 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 a
c 0 0 a 0

Then, (X; ∗, ·, 0) is an f -UP-semigroup.

Example 5. Let X = {0, a, b, c} be a set with the binary operations ∗ and · defined by
the following Cayley tables:

∗ 0 a b c
0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 0 0 0

· 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 0
c 0 a b c

Then, routine calculations show that (X; ∗, ·, 0) is an f -UP-semigroup.

Example 6. Let X = {0, a, b, c, d} be a set with the binary operations ∗ and · defined by
the following Cayley tables:

∗ 0 a b c
0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 a b 0

· 0 a b c
0 0 0 0 0
a 0 a b c
b 0 b c a
c 0 c a b
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Then, routine calculations show that (X; ∗, ·, 0) is an f -UP-semigroup.

Hereinafter, let X denote the f -UP-semigroup (X; ∗, ·, 0), unless otherwise indicated.

Definition 8. A nonempty subset S of an f -UP-semigroupX is called an f -UP-subsemigroup
of X if the constant 0 of X is in S and (S; ∗, ·, 0) itself forms an f -UP-semigroup.

Obviously, {0} and X are f -UP-subsemigroups of X. In Example 4, the set S1 = {0, b}
is an f -UP-subsemigroup of X, while the set S2 = {0, b, c} is not an f -UP-subsemigroup
since b · c = a /∈ S2.

The following remark immediately follows from Definitions 8, 7, and 3.

Remark 1. Every f -UP-subsemigroup of (X; ∗, ·, 0) is a UP-subalgebra of X with respect
to ∗.

The converse of Remark 1 does not hold. To see this, consider Example 4. It can be
easily verified that S = {0, b, c} is a UP-subalgebra of (X; ∗, 0) but S is not an f -UP-
subsemigroup of (X; ∗, ·, 0) since b · c = a /∈ S.

Definition 9. An f -UP-semigroup X is said to be commutative if a · b = b · a for all
a, b ∈ X. If X is not commutative, then it is called a noncommutative f -UP-semigroup.

Routine calculations show that the f -UP-semigroups in Examples 4 and 6 are commu-
tative while the f -UP-semigroup in Example 5 is noncommutative since a·c = 0 6= a = c·a.

Definition 10. Let X be an f -UP-semigroup. An element e ∈ X is called a unity in X
if x · e = x = e · x for all x ∈ X.

Proposition 3. Let X be an f -UP-semigroup. If the unity of X exists, then it is unique.

Proof. Let X be an f -UP-semigroup with unity. Suppose 1, 1′ ∈ X both satisfy the
properties of being a unity. Then, for all x ∈ X, x · 1 = 1 · x = x and x · 1′ = 1′ · x = x. If
x = 1, we have 1 · 1′ = 1. If x = 1′, we have 1 · 1′ = 1′. Therefore, 1 = 1′.

If an f -UP-semigroup X has unity, it shall be denoted by 1.

Definition 11. Let X be an f -UP-semigroup with unity 1. An element a of X is called
1-invertible if there exists b ∈ X such that a · b = 1 = b · a.

We next introduce the concepts of f -UP-field and f -UP-domain analogous to the
definitions of JB-field and JB-domain given by J. Endam and J. Vilela [2].

Definition 12. Let X be an f -UP-semigroup with unity 1. Then X is called an f -UP-field
if the following hold:

(i) the semigroup (X, ·) is commutative; and

(ii) every 0 6= a ∈ X is 1-invertible.
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Definition 13. A nonzero element a of an f -UP-semigroup X is called a 0-divisor if there
exists b ∈ X such that b 6= 0 and either a · b = 0 or b · a = 0.

Note that 0 is not a 0-divisor.

Remark 2. An element cannot be 1-invertible and a 0-divisor at the same time. Thus,
an f -UP-field has no 0-divisors.

Definition 14. Let X be an f -UP-semigroup with unity 1. Then X is called an f -UP-
domain if the following hold:

(i) the semigroup (X, ·) is commutative; and

(ii) X has no 0-divisors.

The f -UP-semigroup in Example 6 is an f -UP-domain.

Remark 3. Every f -UP-field is an f -UP-domain.

3. Elementary Properties of f-UP-semigroups

This section presents some elementary properties of f -UP-semigroups. Throughout
this section, X means an f -UP-semigroup (X; ∗, ·, 0).

Theorem 4. Let a, b, c ∈ X. Then the following properties hold:

(i) a · 0 = 0 · a = 0,

(ii) a · (0 ∗ b) = (0 ∗ a) · b = a · b,

(iii) a · (b ∗ (0 ∗ c)) = (a · b) ∗ (a · c) and (b ∗ (0 ∗ c)) · a = (b · a) ∗ (c · a),

(iv) a · (b ∧ c) = (a · b) ∧ (a · c) and (a ∧ b) · c = (a · c) ∧ (b · c),

(v) If a · b = 0, then a · (b ∗ c) = a · c,

(vi) If a · c = 0, then (a ∗ b) · c = b · c.

Proof. Let a, b, c ∈ X.

(i) By Proposition 1(i) and (fUP3), a · 0 = a · (0 ∗ 0) = (a · 0) ∗ (a · 0) = 0. Similarly,
0 · a = 0.

(ii) By (UP2), a · (0 ∗ b) = a · b = (0 ∗ a) · b.

(iii) By (UP2) and (fUP3), a · (b ∗ (0 ∗ c)) = a · (b ∗ c) = (a · b) ∗ (a · c). Similarly,
(b ∗ (0 ∗ c)) · a = (b ∗ c) · a = (b · a) ∗ (c · a).

(iv) By Definition 4 and (fUP3), a · (b ∧ c) = a · [(c ∗ b) ∗ b] = [a · (c ∗ b)] ∗ (a · b) =
[(a ·c)∗(a ·b)]∗(a ·b) = (a ·b)∧(a ·c) and (a∧b) ·c = [(b∗a)∗a] ·c = [(b∗a) ·c]∗(a ·c) =
[(b · c) ∗ (a · c)] ∗ (a · c) = (a · c) ∧ (b · c).
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(v) Suppose a·b = 0. Then by (fUP3) and (UP2), a·(b∗c) = (a·b)∗(a·c) = 0∗(a·c) = a·c.

(vi) If a ·c = 0, then by (fUP3) and (UP2), (a∗b) ·c = (a ·c)∗(b ·c) = 0∗(b ·c) = b ·c.

The following theorem gives a necessary and sufficient condition for a subset of an
f -UP-semigroup to be an f -UP-subsemigroup.

Theorem 5. A nonempty subset S of an f -UP-semigroup (X; ∗, ·, 0) is an f -UP-subsemi-
group of X if and only if x ∗ y, x · y ∈ S for all x, y ∈ S.

Proof. Let ∅ 6= S ⊆ X. Suppose S is an f -UP-subsemigroup of X. Then by Defini-
tion 8, (S; ∗, ·, 0) is an f -UP-semigroup. Thus, the binary operations ∗ and · are closed in
S, that is, x∗y, x ·y ∈ S for all x, y ∈ S. Conversely, suppose x∗y, x ·y ∈ S for all x, y ∈ S.
Then 0 = x ∗ x ∈ S. By Proposition 2, (S; ∗, 0) is a UP-subalgebra of X, hence (fUP1)
holds. Let x, y, z ∈ S ⊆ X. Then x · y ∈ S by our assumption and x · (y · z) = (x · y) · z
by associativity in X. Hence, (S, ·) is a semigroup and (fUP2) is satisfied. Moreover,
(fUP3) holds for all x, y, z ∈ S ⊆ X. Thus, S is an f -UP-subsemigroup of X.

Theorem 6. Let X be an f -UP-semigroup and {Ai : i ∈ I} a family of f -UP-subsemigroups

of X. Then
⋂
i∈I

Ai is an f -UP-subsemigroup of X.

Proof. Since Ai is an f -UP-subsemigroup of X, 0 ∈ Ai for all i ∈ I. Thus, 0 ∈
⋂
i∈I

Ai

and
⋂
i∈I

Ai 6= ∅. Let x, y ∈
⋂
i∈I

Ai. Then for all i ∈ I, x, y ∈ Ai and by Theorem 5,

x ∗ y, x · y ∈ Ai. Hence, x ∗ y, x · y ∈
⋂
i∈I

Ai. Therefore,
⋂
i∈I

Ai is an f -UP-subsemigroup of

X.

The next result shows a relationship between KU-semigroups and f -UP-semigroups.

Theorem 7. Any KU-semigroup is an f -UP-semigroup.

Proof. Let X = (X; ∗, ·, 0) be a KU-semigroup. By Theorem 1, (X; ∗, 0) is a UP-
algebra. By Definition 6, (X, ·) is a semigroup and left and right distributivity hold for ·
over ∗, thus X is an f -UP-semigroup.

Remark 4. The converse of Theorem 7 does not hold.

To see this, let X = {0, a, b, c, d} be a set with the binary operations ∗ and · defined
by the following Cayley tables:

∗ 0 a b c d
0 0 a b c d
a 0 0 0 0 0
b 0 b 0 0 0
c 0 b b 0 0
d 0 b b d 0

· 0 a b c d
0 0 0 0 0 0
a 0 0 0 0 0
b 0 0 0 0 0
c 0 0 0 0 0
d 0 0 0 0 0
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Then by routine calculations, (X; ∗, ·, 0) is an f -UP-semigroup. Let x = 0, y = c, and
z = a. Observe that (x∗y)∗ [(y∗z)∗(x∗z)] = (0∗c)∗ [(c∗a)∗(0∗a)] = c∗(b∗a) = c∗b = b,
so (KU1) is not satisfied. Thus, (X; ∗, ·, 0) is not a KU-semigroup.

Theorem 8. Let X be an f -UP-semigroup with unity 1 and let T be the set of all 1-
invertible elements of X. Then

(i) 1 ∈ T ,

(ii) 0 /∈ T , and

(iii) a · b ∈ T for all a, b ∈ T .

Proof. Let T be the set of all 1-invertible elements of X.

(i) Since 1 · 1 = 1, 1 ∈ T . Thus, T 6= ∅.

(ii) Suppose 0 ∈ T . Then there exists b ∈ X such that 0 · b = 1 = b · 0. But 0 · b = 0 and
so, 0 = 1, a contradiction. Thus, 0 /∈ T .

(iii) Let a, b ∈ T . Then there exist c, d ∈ X such that a · c = 1 = c · a and b · d = 1 = d · b.
Moreover, d · c ∈ X. By (fUP2), (a · b) · (d · c) = ((a · b) · d) · c = (a · (b · d)) · c =
(a ·1) ·c = a ·c = 1 and (d ·c) ·(a ·b) = ((d ·c) ·a) ·b = (d ·(c ·a)) ·b = (d ·1) ·b = d ·b = 1.
Hence, a · b ∈ T .

The next result establishes a relation between 0-divisors and the cancellation property
of an f -UP-semigroup.

Theorem 9. If an f -UP-semigroup X has no 0-divisors, then left and right cancellation
laws hold, that is, for all a, b, c ∈ X, a 6= 0, a · b = a · c implies b = c (left cancellation)
and b · a = c · a implies b = c (right cancellation). If either left or right cancellation law
holds, then X has no 0-divisors.

Proof. Let a, b, c ∈ X such that a ·b = a ·c and a 6= 0. Then a ·(b∗c) = (a ·b)∗(a ·c) = 0
by Proposition 1(i). Since X has no 0-divisors and a 6= 0, we have b∗c = 0. Since a·b = a·c,
we have 0 = a · (b ∗ c) = (a · b) ∗ (a · c) = (a · c) ∗ (a · b) = a · (c ∗ b) and so, c ∗ b = 0. By
(UP4), b = c. Hence, the left cancellation law holds. Similarly, the right cancellation law
holds.

Conversely, suppose one of the cancellation laws holds, say, the left cancellation. Let a
be a nonzero element of X and b ∈ X. Suppose a ·b = 0. Then by Theorem 4(i), a ·b = a ·0
and so by left cancellation, b = 0. Suppose b · a = 0 and b 6= 0. Then by Theorem 4(i),
b · a = b · 0 and so by left cancellation, a = 0, a contradiction. Therefore, b = 0 and X has
no 0-divisors. Similarly, the right cancellation law implies that X has no 0-divisors.

Theorem 10. A finite commutative f -UP-semigroup X with more than one element and
without 0-divisors is an f -UP-field.



D.Gomisong, R. Isla / Eur. J. Pure Appl. Math, 12 (4) (2019), 1483-1496 1492

Proof. Let a1, a2, . . . , an be the distinct elements of X. Let a ∈ X with a 6= 0. Now,
a · ai ∈ X for all i = 1, 2, . . . , n and so {a · a1, a · a2, . . . , a · an} ⊆ X. If a · ai = a · aj ,
then by Theorem 9, ai = aj . Thus, the elements a · a1, a · a2, . . . , a · an are distinct and so
X = {a · a1, a · a2, . . . , a · an}. Hence, one of the elements, say a · ai, must be equal to a.
Since X is commutative, ai ·a = a ·ai = a. Let b ∈ X. Then there exists aj ∈ X such that
b = a ·aj . Thus, b ·ai = ai · b = ai · (a ·aj) = (ai ·a) ·aj = a ·aj = b. This implies that ai is
the unity of X. We denote the unity of X by 1. Now, 1 ∈ X = {a ·a1, a ·a2, . . . , a ·an} and
so one of the elements, say a ·ak, must be equal to 1. By commutativity, ak ·a = a ·ak = 1.
Hence, every nonzero element of X is 1-invertible. Therefore, X is an f -UP-field.

As a consequence of Theorem 10, the following corollary holds.

Corollary 1. Every finite f -UP-domain is an f -UP-field.

4. f-UP-Ideal and the Quotient f-UP-semigroup

Definition 15. A nonempty subset I of an f -UP-semigroup X is called an f -UP-ideal
of X if the following hold:

(fUPI1) the constant 0 of X is in I,

(fUPI2) for any x, y, z ∈ X, x ∗ (y ∗ z) ∈ I and y ∈ I imply x ∗ z ∈ I, and

(fUPI3) for any a ∈ I, x ∈ X, a · x, x · a ∈ I.

Obviously, the subsets {0} and X are f -UP-ideals of X. Consider the f -UP-semigroup
in Example 4. Routine calculations show that the set I1 = {0, a, b} is an f -UP-ideal of X
while the set I2 = {0, b, c} is not an f -UP-ideal of X since b · c = a /∈ I2.

Theorem 11. Let (X; ∗, ·, 0) be an f -UP-semigroup and I an f -UP-ideal of X. Then I
is an f -UP-subsemigroup of X.

Proof. By (fUP1), (X; ∗, 0) is a UP-algebra and by definition, I is a UP-ideal of the
UP-algebra X. By Theorem 2, I is a UP-subalgebra of X. Let x, y ∈ I ⊆ X. Then by
Proposition 2, x ∗ y ∈ I. Since I is an f -UP-ideal of the f -UP-semigroup X, x · y ∈ I by
(fUPI3). Thus, I is an f -UP-subsemigroup of X by Theorem 5.

Theorem 12. Let X be an f -UP-semigroup and {Ai : i ∈ I } be a nonempty collection

of f -UP-ideals of X. Then
⋂
i∈I

Ai is an f -UP-ideal of X.

Proof. Suppose {Ai : i ∈ I } is a nonempty collection of f -UP-ideals of X. Since

0 ∈ Ai for all i ∈ I , 0 ∈
⋂
i∈I

Ai and so
⋂
i∈I

Ai 6= ∅. Suppose x, y, z ∈ X such that

x ∗ (y ∗ z) ∈
⋂
i∈I

Ai and y ∈
⋂
i∈I

Ai. Then x ∗ (y ∗ z) ∈ Ai and y ∈ Ai for all i ∈ I . Since
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each Ai is an f -UP-ideal for all i ∈ I , it follows that x ∗ z ∈ Ai for all i ∈ I . Hence,

x ∗ z ∈
⋂
i∈I

Ai. Let a ∈
⋂
i∈I

Ai and x ∈ X. Then a ∈ Ai for all i ∈ I . Since each Ai is

an f -UP-ideal for all i ∈ I , a · x, x · a ∈ Ai for all i ∈ I . Hence, a · x, x · a ∈
⋂
i∈I

Ai.

Therefore,
⋂
i∈I

Ai is an f -UP-ideal of X.

Let (X; ∗, ·, 0) be an f -UP-semigroup and I be an f -UP-ideal of X. Define the binary
relation ∼I on X as follows: for all x, y ∈ X, x ∼I y if and only if x ∗ y ∈ I and
y ∗ x ∈ I. Denote [x]I as the equivalence class containing x ∈ X and X/I as the set of
all equivalence classes of X with respect to “∼I”, that is, [x]I = {y ∈ X : x ∼I y} and
X/I = {[x]I : x ∈ X}.

Remark 5. Let X be an f -UP-semigroup and I be an f -UP-ideal of X. Then x ∈ [x]I
for all x ∈ X.

Lemma 1. Let X be an f -UP-semigroup and I be an f -UP-ideal of X. Then [x]I = [y]I
if and only if x ∼I y.

Proof. Suppose [x]I = [y]I . Since y ∈ [y]I = [x]I , we have x ∼I y. Conversely, suppose
x ∼I y. Let z ∈ [x]I . Then x ∼I z. By symmetric property, z ∼I x. By transitivity,
z ∼I y and by symmetric property, y ∼I z and so, z ∈ [y]I . Thus, [x]I ⊆ [y]I . Let
z ∈ [y]I . Then y ∼I z. By transitivity, x ∼I z, that is, z ∈ [x]I . Thus, [y]I ⊆ [x]I . Hence,
[x]I = [y]I .

Proposition 4. Let X be an f -UP-semigroup and I be an f -UP-ideal of X. Then

(i) [0]I = I,

(ii) [x]I = I if and only if x ∈ I, for all x ∈ I, and

(iii) I ∗ [x]I = [x]I for all x ∈ X.

Proof. Let I be an f -UP-ideal of X.

(i) If x ∈ [0]I , then by definition, 0 ∼I x and by (UP2), x = 0 ∗ x ∈ I. Thus, [0]I ⊆ I.
Let x ∈ I. By (UP2), 0 ∗ x = x ∈ I. By (UP3) and (fUPI1), x ∗ 0 = 0 ∈ I. Thus,
0 ∼I x and so, x ∈ [0]I . Hence, I ⊆ [0]I . Therefore, [0]I = I.

(ii) Suppose [x]I = I. Then by Remark 5, x ∈ I. Conversely, let x ∈ I. By (UP2),
0∗x = x ∈ I. By (UP3) and (fUPI1), x∗0 = 0 ∈ I. Thus, 0 ∼I x, and by Lemma 1,
[0]I = [x]I . By (i), I = [x]I .

(iii) For all x ∈ X, [x]I = [0 ∗ x]I = [0]I ∗ [x]I as defined in Theorem 3(iv). By (i),
[x]I = I ∗ [x]I .
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Theorem 13. If X is an f -UP-semigroup and I an f -UP-ideal of X, then (X/I; ∗, ·, [0]I)
is an f -UP-semigroup, where ∗ and · are defined by [x]I∗[y]I = [x∗y]I and [x]I ·[y]I = [x·y]I ,
respectively. If X is commutative, then X/I is commutative and if X has unity, then X/I
has unity.

Proof. Let I be an f -UP-ideal of X. Then I is a UP-ideal of the UP-algebra (X; ∗, 0).
By Theorem 3, (X/I; ∗, [0]I) is a UP-algebra, where ∗ is defined by [x]I ∗ [y]I = [x∗y]I . We
show that the binary operation · on X/I is well-defined. Let [x]I = [x′]I and [y]I = [y′]I .
Then x ∼I x′ and y ∼I y′ which imply x ∗ x′, x′ ∗ x, y ∗ y′, y′ ∗ y ∈ I. By Theorem 4(iii),
(UP2), and (fUPI3), (x ·y)∗ (x ·y′) = x · (y ∗ (0∗y′)) = x · (y ∗y′) ∈ I and (x ·y′)∗ (x ·y) =
x·(y′∗(0∗y)) = x·(y′∗y) ∈ I. Thus, x·y ∼I x·y′. Similarly, (x·y′)∗(x′·y′) = (x∗(0∗x′))·y′ =
(x∗x′) ·y′ ∈ I and (x′ ·y′)∗ (x ·y′) = (x′ ∗ (0∗x)) ·y′ = (x′ ∗x) ·y′ ∈ I. Thus, x ·y′ ∼I x′ ·y′.
By transitivity, x · y ∼I x′ · y′. By Lemma 1, [x]I · [y]I = [x · y]I = [x′ · y′]I = [x′]I · [y′]I .

Let [x]I , [y]I , [z]I ∈ X/I. Since (X, ·) is a semigroup, then

[x]I · ([y]I · [z]I) = [x]I · [y · z]I
= [x · (y · z)]I
= [(x · y) · z]I
= [x · y]I · [z]I
= ([x]I · [y]I) · [z]I .

Hence, (X/I, ·) is semigroup. Moreover, by distributive property on X,

[x]I · ([y]I ∗ [z]I) = [x]I · [y ∗ z]I
= [x · (y ∗ z)]I
= [(x · y) ∗ (x · z)]I
= [x · y]I ∗ [x · z]I
= ([x]I · [y]I) ∗ ([x]I · [z]I)

and

([x]I ∗ [y]I) · [z]I = [x ∗ y]I · [z]I
= [(x ∗ y) · z]I
= [(x · z) ∗ (y · z)]I
= [x · z]I ∗ [y · z]I
= ([x]I · [z]I) ∗ ([y]I · [z]I).

Thus, the distributive property holds on X/I. Therefore, (X/I; ∗, ·, [0]I) is an f -UP-
semigroup. Suppose X is commutative. Then x · y = y · x for all x, y ∈ X. Let [x]I , [y]I ∈
X/I. Then [x]I · [y]I = [x · y]I = [y ·x]I = [y]I · [x]I . Hence, X/I is commutative. If X has
unity 1, then X/I has unity [1]I since [x]I · [1]I = [x ·1]I = [x]I and [1]I · [x]I = [1 ·x]I = [x]I
for any x ∈ X.

The f -UP-semigroup (X/I; ∗, ·, [0]I) in Theorem 13 is called the quotient f -UP-semigroup
of X by I.
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5. Conclusion

This paper investigated fully UP-semigroups, a new class of algebra related to UP-
algebras and semigroups, which was introduced by A. Iampan [4] in 2018. It established
some structural properties of f -UP-semigroups. It also introduced and examined f -UP-
fields, f -UP-domains, f -UP-ideals, and quotient f -UP-semigroups. Moreover, the rela-
tionship between an f -UP-field and an f -UP-domain is determined. In the subsequent
study, we introduce and investigate homomorphisms on f -UP-semigroups, which lead to
the isomorphism theorems on f -UP-semigroups.
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