EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 4, 2019, 1483-1496 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Some Structural Properties of Fully UP-semigroups

Dianne P. Gomisong^{1,2,*}, Rowena T. Isla^{1,2}

 ¹ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
² Center for Graph Theory, Algebra and Analysis, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. This paper investigates a new class of algebra related to UP-algebras and semigroups called fully UP-semigroups (or f-UP-semigroups). It establishes some structural properties of f-UP-semigroups. It also introduces and examines f-UP-fields, f-UP-domains, f-UP-ideals, and quotient f-UP-semigroups. Moreover, it investigates the relationship between an f-UP-field and an f-UP-domain.

2010 Mathematics Subject Classifications: 03G25, 08A99

Key Words and Phrases: UP-algebra, f-UP-semigroup, f-UP-field, f-UP-domain, f-UP-ideal, Quotient f-UP-semigroup

1. Introduction

In 1966, Y. Imai and K. Iseki [5] introduced the idea of BCK-algebra as a generalization of the concept of set-theoretic difference and propositional calculi. In the same year, K. Iseki [6] introduced the notion of BCI-algebra as a generalization of BCK-algebra. Studies on different types of algebraic structures followed, among them B-algebras, Galgebras, BCH-algebras, BE-algebras, and SU-algebras. In 2009, C. Prabpayak and U. Leerawat [11] introduced the notion of KU-algebra and investigated some related properties. In 2017, A. Iampan [3] introduced a class of algebra called UP-algebra (UP means the University of Phayao). He established its structure and defined some concepts such as UP-subalgebras, UP-ideals, congruences, and UP-homomorphism. He determined some properties of UP-homomorphism, which led to four isomorphism theorems for UP-algebras. He also presented some connections between UP-algebras and KU-algebras and showed that the notion of UP-algebra is a generalization of KU-algebra.

http://www.ejpam.com

© 2019 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3527

Email addresses: dianne.gomisong@g.msuiit.edu.ph (D. Gomisong), rowena.isla@g.msuiit.edu.ph (R. Isla)

In 1993, Jun, Hong, and Roh [7] introduced a class of algebra related to BCI-algebras and semigroups with distributive laws property, called a BCI-semigroup. Jun et al. [8, 9] renamed the BCI-semigroup as the IS-algebra and studied related properties. In 2018, F. Kareem and E. Hasan [10] introduced the concept of KU-semigroup which is a combination of KU-algebra and semigroup. In the same year, A. Iampan [4] introduced a new class of algebra called a fully UP-semigroup (or f-UP-semigroup) which is a combination of UP-algebra and semigroup. In this study, the notion of f-UP-semigroup is investigated and some of its properties are established.

2. Preliminaries

An algebra of type (2,0) is an algebra with a binary operation and a constant element.

Definition 1. [11] A KU-algebra is an algebra (X; *, 0) of type (2, 0) satisfying the following axioms: for all $x, y, z \in X$,

(KU1) (x * y) * [(y * z) * (x * z)] = 0,(KU2) 0 * x = x,(KU3) x * 0 = 0,(KU4) x * y = y * x = 0 implies x = y.

Example 1. [11] Let $X = \{0, a, b, c\}$ be a set with a binary operation * defined by the following Cayley table:

Then, (X; *, 0) is a KU-algebra.

Definition 2. [3] A UP-algebra is an algebra (X; *, 0) of type (2, 0) satisfying the following axioms: for all $x, y, z \in X$,

(UP1) (y * z) * [(x * y) * (x * z)] = 0,(UP2) 0 * x = x,(UP3) x * 0 = 0,(UP4) x * y = y * x = 0 implies x = y.

Example 2. [3] Let $X = \{0, a, b, c\}$ be a set with a binary operation * defined by the following Cayley table:

*	0	a	b	с
0	0	a	b	с
a	0	0	b	b
b	0	a	0	b
с	0	a	0	0

Then, (X; *, 0) is a UP-algebra.

Definition 3. [3] Let X be a UP-algebra. A subset S of X is called a UP-subalgebra of X if the constant zero of X is in S and (S; *, 0) itself forms a UP-algebra.

Definition 4. [1] Define $x \wedge y = (y * x) * x$. Then X is said to be a *commutative* UP-algebra if for any $x, y \in X$, (y * x) * x = (x * y) * y, that is, $x \wedge y = y \wedge x$.

Definition 5. [3] Let X be a UP-algebra. Then, a subset I of X is called a UP-*ideal* of X if it satisfies:

- (i) the constant zero of X is in I, and
- (ii) for any $x, y, z \in X$, $x * (y * z) \in I$ and $y \in I$ imply $x * z \in I$.

Proposition 1. [3] In a UP-algebra (X; *, 0), the following properties hold: for any $x, y, z \in X$,

- $(i) \ x * x = 0,$
- (*ii*) x * y = 0 and y * z = 0 imply x * z = 0,
- (*iii*) x * y = 0 *implies* (z * x) * (z * y) = 0,
- (iv) x * y = 0 implies (y * z) * (x * z) = 0,
- $(v) \ x * (y * x) = 0,$
- (vi) (y * x) * x = 0 implies x = y * x, and
- (*vii*) x * (y * y) = 0.

The next result gives a relationship between UP-algebras and KU-algebras.

Theorem 1. [3] Any KU-algebra is a UP-algebra.

The converse of Theorem 1 does not hold. To see this, consider the UP-algebra (X; *, 0) in Example 2. Let x = 0, y = a, and z = c. Observe that $(x * y) * [(y * z) * (x * z)] = (0 * a) * [(a * c) * (0 * c)] = a * (b * c) = a * b = b \neq 0$, so (KU1) is not satisfied. Thus, (X; *, 0) is not a KU-algebra.

In view of Theorem 1, the notion of UP-algebras is a generalization of KU-algebras.

Proposition 2. [3] A nonempty subset S of a UP-algebra (X; *, 0) is a UP-subalgebra of X if and only if S is closed under the * operation.

Let X be a UP-algebra and A be a nonempty subset of X. Then X * A is given by $X * A = \bigcup_{x \in X, a \in A} (x * a).$

Theorem 2. [3] Let X be a UP-algebra and B a UP-ideal of X. Then $X * B \subseteq B$. In particular, B is a UP-subalgebra of X.

Let (X; *, 0) be a UP-algebra and B be a UP-ideal of X. Define the binary relation \sim_B on X as follows: for all $x, y \in X$, $x \sim_B y$ if and only if $x * y \in B$ and $y * x \in B$. An equivalence relation ρ on X is called a *congruence* if for any $x, y, z \in X$, $x\rho y$ implies $(x * z)\rho(y * z)$ and $(z * x)\rho(z * y)$.

If $x \in X$, then the ρ -class of x is $[x]_{\rho}$ defined as $[x]_{\rho} = \{y \in X : y\rho x\}$. The set of all ρ -classes is called the *quotient set of* X by ρ , and is denoted by X/ρ . That is, $X/\rho = \{[x]_{\rho} : x \in X\}$.

Theorem 3. [3] Let (X; *, 0) be a UP-algebra and B a UP-ideal of X. Then the following hold:

- (i) the \sim_B -class $[0]_{\sim_B}$ is a UP-ideal and a UP-subalgebra of X,
- (ii) $a \sim_B \text{-class } [x]_{\sim_B}$ is a UP-ideal of X if and only if $x \in B$,
- (iii) $a \sim_B$ -class $[x]_{\sim_B}$ is a UP-subalgebra of X if and only if $x \in B$, and
- (iv) $(X/\sim_B; *, [0]_{\sim_B})$ is a UP-algebra under the operation * defined by $[x]_{\sim_B} * [y]_{\sim_B} = [x * y]_{\sim_B}$ for all $x, y \in X$, called the quotient UP-algebra of X induced by the congruence \sim_B .

Definition 6. [10] A KU-semigroup is a nonempty set X together with two binary operations * and \cdot and a constant 0 satisfying the following:

- (KUS1) (X; *, 0) is a KU-algebra;
- (KUS2) (X, \cdot) is a semigroup; and
- (KUS3) the operation \cdot is left and right distributive over the operation *, that is, $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$.

Example 3. [10] Let $X = \{0, a, b, c\}$ be a set with the binary operations * and \cdot defined by the following Cayley tables:

*	0	a	b	с		•	0	a	b	\mathbf{c}
0	0	a	b	с	-	0	0	0	0	0
a	0	0	b	с		a	0	0	0	0
b	0	a	0	с		b	0	0	0	b
с	0	0	0	0		с	0	0	b	с

Then, $(X; *, \cdot, 0)$ is a KU-semigroup.

Definition 7. [4] A fully UP-semigroup (or f-UP-semigroup) is a nonempty set X together with two binary operations * and \cdot and a constant 0 satisfying the following:

- (fUP1) (X; *, 0) is a UP-algebra;
- (fUP2) (X, \cdot) is a semigroup; and

(fUP3) the operation \cdot is left and right distributive over the operation *.

A. Iampan [4] analogously introduced a left [resp., right] UP-semigroup as a nonempty set X together with two binary operations * and \cdot and a constant 0 satisfying (fUP1), (fUP2), and the operation \cdot is left [resp. right] distributive over the operation *. Thus, an f-UP-semigroup is both a left and a right UP-semigroup.

Example 4. [4] Let $X = \{0, a, b, c\}$ be a set with the binary operations * and \cdot defined by the following Cayley tables:

*	0	a	b	с			0	a	b	\mathbf{c}
0	0	a	b	с	0)	0	0	0	0
a	0	0	b	с	a	ι	0	0	0	0
b	0	a	0	с	b)	0	0	0	a
с	0	a	b	0	С	;	0	0	a	0

Then, $(X; *, \cdot, 0)$ is an *f*-UP-semigroup.

Example 5. Let $X = \{0, a, b, c\}$ be a set with the binary operations * and \cdot defined by the following Cayley tables:

*	0	a	b	с	•	0	a	b	
0	0	a	b	с	0	0	0	0	
a	0	0	b	с	a	0	0	0	
b	0	a	0	с	b	0	0	0	
c	0	0	0	0	с	0	a	b	

Then, routine calculations show that $(X; *, \cdot, 0)$ is an *f*-UP-semigroup.

Example 6. Let $X = \{0, a, b, c, d\}$ be a set with the binary operations * and \cdot defined by the following Cayley tables:

*	0	a	b	с			0	a	b	\mathbf{c}
0	0	a	b	с	0		0	0	0	0
a	0	0	b	с	a	,	0	a	b	с
b	0	a	0	с	b		0	b	с	a
с	0	a	b	0	с		0	\mathbf{c}	a	b

Then, routine calculations show that $(X; *, \cdot, 0)$ is an f-UP-semigroup.

Hereinafter, let X denote the f-UP-semigroup $(X; *, \cdot, 0)$, unless otherwise indicated.

Definition 8. A nonempty subset S of an f-UP-semigroup X is called an f-UP-subsemigroup of X if the constant 0 of X is in S and $(S; *, \cdot, 0)$ itself forms an f-UP-semigroup.

Obviously, $\{0\}$ and X are f-UP-subsemigroups of X. In Example 4, the set $S_1 = \{0, b\}$ is an f-UP-subsemigroup of X, while the set $S_2 = \{0, b, c\}$ is not an f-UP-subsemigroup since $b \cdot c = a \notin S_2$.

The following remark immediately follows from Definitions 8, 7, and 3.

Remark 1. Every f-UP-subsemigroup of $(X; *, \cdot, 0)$ is a UP-subalgebra of X with respect to *.

The converse of Remark 1 does not hold. To see this, consider Example 4. It can be easily verified that $S = \{0, b, c\}$ is a UP-subalgebra of (X; *, 0) but S is not an f-UP-subsemigroup of (X; *, 0) since $b \cdot c = a \notin S$.

Definition 9. An f-UP-semigroup X is said to be *commutative* if $a \cdot b = b \cdot a$ for all $a, b \in X$. If X is not commutative, then it is called a *noncommutative* f-UP-semigroup.

Routine calculations show that the f-UP-semigroups in Examples 4 and 6 are commutative while the f-UP-semigroup in Example 5 is noncommutative since $a \cdot c = 0 \neq a = c \cdot a$.

Definition 10. Let X be an f-UP-semigroup. An element $e \in X$ is called a *unity* in X if $x \cdot e = x = e \cdot x$ for all $x \in X$.

Proposition 3. Let X be an f-UP-semigroup. If the unity of X exists, then it is unique.

Proof. Let X be an f-UP-semigroup with unity. Suppose $1, 1' \in X$ both satisfy the properties of being a unity. Then, for all $x \in X$, $x \cdot 1 = 1 \cdot x = x$ and $x \cdot 1' = 1' \cdot x = x$. If x = 1, we have $1 \cdot 1' = 1$. If x = 1', we have $1 \cdot 1' = 1'$. Therefore, 1 = 1'.

If an f-UP-semigroup X has unity, it shall be denoted by 1.

Definition 11. Let X be an f-UP-semigroup with unity 1. An element a of X is called 1-invertible if there exists $b \in X$ such that $a \cdot b = 1 = b \cdot a$.

We next introduce the concepts of f-UP-field and f-UP-domain analogous to the definitions of JB-field and JB-domain given by J. Endam and J. Vilela [2].

Definition 12. Let X be an f-UP-semigroup with unity 1. Then X is called an f-UP-field if the following hold:

- (i) the semigroup (X, \cdot) is commutative; and
- (ii) every $0 \neq a \in X$ is 1-invertible.

Definition 13. A nonzero element a of an f-UP-semigroup X is called a 0-divisor if there exists $b \in X$ such that $b \neq 0$ and either $a \cdot b = 0$ or $b \cdot a = 0$.

Note that 0 is not a 0-divisor.

Remark 2. An element cannot be 1-invertible and a 0-divisor at the same time. Thus, an f-UP-field has no 0-divisors.

Definition 14. Let X be an f-UP-semigroup with unity 1. Then X is called an f-UPdomain if the following hold:

- (i) the semigroup (X, \cdot) is commutative; and
- (ii) X has no 0-divisors.

The f-UP-semigroup in Example 6 is an f-UP-domain.

Remark 3. Every f-UP-field is an f-UP-domain.

3. Elementary Properties of *f*-UP-semigroups

This section presents some elementary properties of f-UP-semigroups. Throughout this section, X means an f-UP-semigroup $(X; *, \cdot, 0)$.

Theorem 4. Let $a, b, c \in X$. Then the following properties hold:

$$(i) \ a \cdot 0 = 0 \cdot a = 0,$$

(*ii*)
$$a \cdot (0 * b) = (0 * a) \cdot b = a \cdot b$$
,

(*iii*) $a \cdot (b * (0 * c)) = (a \cdot b) * (a \cdot c)$ and $(b * (0 * c)) \cdot a = (b \cdot a) * (c \cdot a)$,

- (iv) $a \cdot (b \wedge c) = (a \cdot b) \wedge (a \cdot c)$ and $(a \wedge b) \cdot c = (a \cdot c) \wedge (b \cdot c)$,
- (v) If $a \cdot b = 0$, then $a \cdot (b * c) = a \cdot c$,
- (vi) If $a \cdot c = 0$, then $(a * b) \cdot c = b \cdot c$.

Proof. Let $a, b, c \in X$.

- (i) By Proposition 1(i) and (fUP3), $a \cdot 0 = a \cdot (0 * 0) = (a \cdot 0) * (a \cdot 0) = 0$. Similarly, $0 \cdot a = 0$.
- (*ii*) By (UP2), $a \cdot (0 * b) = a \cdot b = (0 * a) \cdot b$.
- (*iii*) By (UP2) and (*f*UP3), $a \cdot (b * (0 * c)) = a \cdot (b * c) = (a \cdot b) * (a \cdot c)$. Similarly, $(b * (0 * c)) \cdot a = (b * c) \cdot a = (b \cdot a) * (c \cdot a)$.
- (*iv*) By Definition 4 and (*f*UP3), $a \cdot (b \wedge c) = a \cdot [(c * b) * b] = [a \cdot (c * b)] * (a \cdot b) = [(a \cdot c) * (a \cdot b)] * (a \cdot b) = (a \cdot b) \wedge (a \cdot c)$ and $(a \wedge b) \cdot c = [(b * a) * a] \cdot c = [(b * a) \cdot c] * (a \cdot c) = [(b \cdot c) * (a \cdot c)] * (a \cdot c) = (a \cdot c) \wedge (b \cdot c).$

- (v) Suppose $a \cdot b = 0$. Then by (fUP3) and (UP2), $a \cdot (b \cdot c) = (a \cdot b) \cdot (a \cdot c) = 0 \cdot (a \cdot c) = a \cdot c$.
- (vi) If $a \cdot c = 0$, then by (fUP3) and (UP2), $(a * b) \cdot c = (a \cdot c) * (b \cdot c) = 0 * (b \cdot c) = b \cdot c$. \Box

The following theorem gives a necessary and sufficient condition for a subset of an f-UP-semigroup to be an f-UP-subsemigroup.

Theorem 5. A nonempty subset S of an f-UP-semigroup $(X; *, \cdot, 0)$ is an f-UP-subsemigroup of X if and only if $x * y, x \cdot y \in S$ for all $x, y \in S$.

Proof. Let $\emptyset \neq S \subseteq X$. Suppose S is an f-UP-subsemigroup of X. Then by Definition 8, $(S; *, \cdot, 0)$ is an f-UP-semigroup. Thus, the binary operations * and \cdot are closed in S, that is, $x * y, x \cdot y \in S$ for all $x, y \in S$. Conversely, suppose $x * y, x \cdot y \in S$ for all $x, y \in S$. Then $0 = x * x \in S$. By Proposition 2, (S; *, 0) is a UP-subalgebra of X, hence (fUP1) holds. Let $x, y, z \in S \subseteq X$. Then $x \cdot y \in S$ by our assumption and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ by associativity in X. Hence, (S, \cdot) is a semigroup and (fUP2) is satisfied. Moreover, (fUP3) holds for all $x, y, z \in S \subseteq X$. Thus, S is an f-UP-subsemigroup of X.

Theorem 6. Let X be an f-UP-semigroup and $\{A_i : i \in I\}$ a family of f-UP-subsemigroups of X. Then $\bigcap_{i \in I} A_i$ is an f-UP-subsemigroup of X.

Proof. Since A_i is an f-UP-subsemigroup of X, $0 \in A_i$ for all $i \in I$. Thus, $0 \in \bigcap_{i \in I} A_i$ and $\bigcap_{i \in I} A_i \neq \emptyset$. Let $x, y \in \bigcap_{i \in I} A_i$. Then for all $i \in I$, $x, y \in A_i$ and by Theorem 5, $x * y, x \cdot y \in A_i$. Hence, $x * y, x \cdot y \in \bigcap_{i \in I} A_i$. Therefore, $\bigcap_{i \in I} A_i$ is an f-UP-subsemigroup of X.

The next result shows a relationship between KU-semigroups and f-UP-semigroups.

Theorem 7. Any KU-semigroup is an f-UP-semigroup.

Proof. Let $X = (X; *, \cdot, 0)$ be a KU-semigroup. By Theorem 1, (X; *, 0) is a UP-algebra. By Definition 6, (X, \cdot) is a semigroup and left and right distributivity hold for \cdot over *, thus X is an f-UP-semigroup.

Remark 4. The converse of Theorem 7 does not hold.

To see this, let $X = \{0, a, b, c, d\}$ be a set with the binary operations * and \cdot defined by the following Cayley tables:

*	0	a	b	с	d			0	a	b	с	d
0	0	a	b	с	d	-	0	0	0	0	0	0
a	0	0	0	0	0		a	0	0	0	0	0
b	0	b	0	0	0		b	0	0	0	0	0
c	0	b	b	0	0		с	0	0	0	0	0
d	0	b	b	d	0		d	0	0	0	0	0

Then by routine calculations, $(X; *, \cdot, 0)$ is an *f*-UP-semigroup. Let x = 0, y = c, and z = a. Observe that (x*y)*[(y*z)*(x*z)] = (0*c)*[(c*a)*(0*a)] = c*(b*a) = c*b = b, so (KU1) is not satisfied. Thus, $(X; *, \cdot, 0)$ is not a KU-semigroup.

Theorem 8. Let X be an f-UP-semigroup with unity 1 and let T be the set of all 1invertible elements of X. Then

- (i) $1 \in T$,
- (*ii*) $0 \notin T$, and
- (*iii*) $a \cdot b \in T$ for all $a, b \in T$.

Proof. Let T be the set of all 1-invertible elements of X.

- (i) Since $1 \cdot 1 = 1, 1 \in T$. Thus, $T \neq \emptyset$.
- (*ii*) Suppose $0 \in T$. Then there exists $b \in X$ such that $0 \cdot b = 1 = b \cdot 0$. But $0 \cdot b = 0$ and so, 0 = 1, a contradiction. Thus, $0 \notin T$.
- (*iii*) Let $a, b \in T$. Then there exist $c, d \in X$ such that $a \cdot c = 1 = c \cdot a$ and $b \cdot d = 1 = d \cdot b$. Moreover, $d \cdot c \in X$. By (fUP2), $(a \cdot b) \cdot (d \cdot c) = ((a \cdot b) \cdot d) \cdot c = (a \cdot (b \cdot d)) \cdot c = (a \cdot 1) \cdot c = a \cdot c = 1$ and $(d \cdot c) \cdot (a \cdot b) = ((d \cdot c) \cdot a) \cdot b = (d \cdot (c \cdot a)) \cdot b = (d \cdot 1) \cdot b = d \cdot b = 1$. Hence, $a \cdot b \in T$.

The next result establishes a relation between 0-divisors and the cancellation property of an f-UP-semigroup.

Theorem 9. If an f-UP-semigroup X has no 0-divisors, then left and right cancellation laws hold, that is, for all $a, b, c \in X$, $a \neq 0$, $a \cdot b = a \cdot c$ implies b = c (left cancellation) and $b \cdot a = c \cdot a$ implies b = c (right cancellation). If either left or right cancellation law holds, then X has no 0-divisors.

Proof. Let $a, b, c \in X$ such that $a \cdot b = a \cdot c$ and $a \neq 0$. Then $a \cdot (b * c) = (a \cdot b) * (a \cdot c) = 0$ by Proposition 1(*i*). Since X has no 0-divisors and $a \neq 0$, we have b * c = 0. Since $a \cdot b = a \cdot c$, we have $0 = a \cdot (b * c) = (a \cdot b) * (a \cdot c) = (a \cdot c) * (a \cdot b) = a \cdot (c * b)$ and so, c * b = 0. By (UP4), b = c. Hence, the left cancellation law holds. Similarly, the right cancellation law holds.

Conversely, suppose one of the cancellation laws holds, say, the left cancellation. Let a be a nonzero element of X and $b \in X$. Suppose $a \cdot b = 0$. Then by Theorem 4(i), $a \cdot b = a \cdot 0$ and so by left cancellation, b = 0. Suppose $b \cdot a = 0$ and $b \neq 0$. Then by Theorem 4(i), $b \cdot a = b \cdot 0$ and so by left cancellation, a = 0, a contradiction. Therefore, b = 0 and X has no 0-divisors. Similarly, the right cancellation law implies that X has no 0-divisors. \Box

Theorem 10. A finite commutative f-UP-semigroup X with more than one element and without 0-divisors is an f-UP-field.

Proof. Let a_1, a_2, \ldots, a_n be the distinct elements of X. Let $a \in X$ with $a \neq 0$. Now, $a \cdot a_i \in X$ for all $i = 1, 2, \ldots, n$ and so $\{a \cdot a_1, a \cdot a_2, \ldots, a \cdot a_n\} \subseteq X$. If $a \cdot a_i = a \cdot a_j$, then by Theorem 9, $a_i = a_j$. Thus, the elements $a \cdot a_1, a \cdot a_2, \ldots, a \cdot a_n$ are distinct and so $X = \{a \cdot a_1, a \cdot a_2, \ldots, a \cdot a_n\}$. Hence, one of the elements, say $a \cdot a_i$, must be equal to a. Since X is commutative, $a_i \cdot a = a \cdot a_i = a$. Let $b \in X$. Then there exists $a_j \in X$ such that $b = a \cdot a_j$. Thus, $b \cdot a_i = a_i \cdot b = a_i \cdot (a \cdot a_j) = (a_i \cdot a) \cdot a_j = a \cdot a_j = b$. This implies that a_i is the unity of X. We denote the unity of X by 1. Now, $1 \in X = \{a \cdot a_1, a \cdot a_2, \ldots, a \cdot a_n\}$ and so one of the elements, say $a \cdot a_k$, must be equal to 1. By commutativity, $a_k \cdot a = a \cdot a_k = 1$. Hence, every nonzero element of X is 1-invertible. Therefore, X is an f-UP-field.

As a consequence of Theorem 10, the following corollary holds.

Corollary 1. Every finite f-UP-domain is an f-UP-field.

4. *f*-UP-Ideal and the Quotient *f*-UP-semigroup

Definition 15. A nonempty subset I of an f-UP-semigroup X is called an f-UP-*ideal* of X if the following hold:

(fUPI1) the constant 0 of X is in I,

(*f*UPI2) for any $x, y, z \in X$, $x * (y * z) \in I$ and $y \in I$ imply $x * z \in I$, and

(*f*UPI3) for any $a \in I, x \in X, a \cdot x, x \cdot a \in I$.

Obviously, the subsets $\{0\}$ and X are f-UP-ideals of X. Consider the f-UP-semigroup in Example 4. Routine calculations show that the set $I_1 = \{0, a, b\}$ is an f-UP-ideal of X while the set $I_2 = \{0, b, c\}$ is not an f-UP-ideal of X since $b \cdot c = a \notin I_2$.

Theorem 11. Let $(X; *, \cdot, 0)$ be an f-UP-semigroup and I an f-UP-ideal of X. Then I is an f-UP-subsemigroup of X.

Proof. By (*f*UP1), (*X*; *, 0) is a UP-algebra and by definition, *I* is a UP-ideal of the UP-algebra *X*. By Theorem 2, *I* is a UP-subalgebra of *X*. Let $x, y \in I \subseteq X$. Then by Proposition 2, $x * y \in I$. Since *I* is an *f*-UP-ideal of the *f*-UP-semigroup *X*, $x \cdot y \in I$ by (*f*UP13). Thus, *I* is an *f*-UP-subsemigroup of *X* by Theorem 5.

Theorem 12. Let X be an f-UP-semigroup and $\{A_i : i \in \mathscr{I}\}$ be a nonempty collection of f-UP-ideals of X. Then $\bigcap_{i \in \mathscr{A}} A_i$ is an f-UP-ideal of X.

Proof. Suppose $\{A_i : i \in \mathscr{I}\}$ is a nonempty collection of f-UP-ideals of X. Since $0 \in A_i$ for all $i \in \mathscr{I}, 0 \in \bigcap_{i \in \mathscr{I}} A_i$ and so $\bigcap_{i \in \mathscr{I}} A_i \neq \varnothing$. Suppose $x, y, z \in X$ such that $x * (y * z) \in \bigcap_{i \in \mathscr{I}} A_i$ and $y \in \bigcap_{i \in \mathscr{I}} A_i$. Then $x * (y * z) \in A_i$ and $y \in A_i$ for all $i \in \mathscr{I}$. Since

each A_i is an *f*-UP-ideal for all $i \in \mathscr{I}$, it follows that $x * z \in A_i$ for all $i \in \mathscr{I}$. Hence, $x * z \in \bigcap_{i \in \mathscr{I}} A_i$. Let $a \in \bigcap_{i \in \mathscr{I}} A_i$ and $x \in X$. Then $a \in A_i$ for all $i \in \mathscr{I}$. Since each A_i is an *f*-UP-ideal for all $i \in \mathscr{I}$, $a \cdot x, x \cdot a \in A_i$ for all $i \in \mathscr{I}$. Hence, $a \cdot x, x \cdot a \in \bigcap_{i \in \mathscr{I}} A_i$. Therefore, $\bigcap_{i \in \mathscr{I}} A_i$ is an *f*-UP-ideal of *X*.

Let $(X; *, \cdot, 0)$ be an f-UP-semigroup and I be an f-UP-ideal of X. Define the binary relation \sim_I on X as follows: for all $x, y \in X$, $x \sim_I y$ if and only if $x * y \in I$ and $y * x \in I$. Denote $[x]_I$ as the equivalence class containing $x \in X$ and X/I as the set of all equivalence classes of X with respect to " \sim_I ", that is, $[x]_I = \{y \in X : x \sim_I y\}$ and $X/I = \{[x]_I : x \in X\}$.

Remark 5. Let X be an f-UP-semigroup and I be an f-UP-ideal of X. Then $x \in [x]_I$ for all $x \in X$.

Lemma 1. Let X be an f-UP-semigroup and I be an f-UP-ideal of X. Then $[x]_I = [y]_I$ if and only if $x \sim_I y$.

Proof. Suppose $[x]_I = [y]_I$. Since $y \in [y]_I = [x]_I$, we have $x \sim_I y$. Conversely, suppose $x \sim_I y$. Let $z \in [x]_I$. Then $x \sim_I z$. By symmetric property, $z \sim_I x$. By transitivity, $z \sim_I y$ and by symmetric property, $y \sim_I z$ and so, $z \in [y]_I$. Thus, $[x]_I \subseteq [y]_I$. Let $z \in [y]_I$. Then $y \sim_I z$. By transitivity, $x \sim_I z$, that is, $z \in [x]_I$. Thus, $[y]_I \subseteq [x]_I$. Hence, $[x]_I = [y]_I$.

Proposition 4. Let X be an f-UP-semigroup and I be an f-UP-ideal of X. Then

(*i*)
$$[0]_I = I$$
,

- (ii) $[x]_I = I$ if and only if $x \in I$, for all $x \in I$, and
- (iii) $I * [x]_I = [x]_I$ for all $x \in X$.

Proof. Let I be an f-UP-ideal of X.

- (i) If $x \in [0]_I$, then by definition, $0 \sim_I x$ and by (UP2), $x = 0 * x \in I$. Thus, $[0]_I \subseteq I$. Let $x \in I$. By (UP2), $0 * x = x \in I$. By (UP3) and (*f*UPI1), $x * 0 = 0 \in I$. Thus, $0 \sim_I x$ and so, $x \in [0]_I$. Hence, $I \subseteq [0]_I$. Therefore, $[0]_I = I$.
- (*ii*) Suppose $[x]_I = I$. Then by Remark 5, $x \in I$. Conversely, let $x \in I$. By (UP2), $0 * x = x \in I$. By (UP3) and (*f*UPI1), $x * 0 = 0 \in I$. Thus, $0 \sim_I x$, and by Lemma 1, $[0]_I = [x]_I$. By (*i*), $I = [x]_I$.
- (*iii*) For all $x \in X$, $[x]_I = [0 * x]_I = [0]_I * [x]_I$ as defined in Theorem 3(*iv*). By (*i*), $[x]_I = I * [x]_I$.

Theorem 13. If X is an f-UP-semigroup and I an f-UP-ideal of X, then $(X/I; *, \cdot, [0]_I)$ is an f-UP-semigroup, where * and \cdot are defined by $[x]_I * [y]_I = [x*y]_I$ and $[x]_I \cdot [y]_I = [x \cdot y]_I$, respectively. If X is commutative, then X/I is commutative and if X has unity, then X/I has unity.

Proof. Let I be an f-UP-ideal of X. Then I is a UP-ideal of the UP-algebra (X; *, 0). By Theorem 3, $(X/I; *, [0]_I)$ is a UP-algebra, where * is defined by $[x]_I * [y]_I = [x * y]_I$. We show that the binary operation \cdot on X/I is well-defined. Let $[x]_I = [x']_I$ and $[y]_I = [y']_I$. Then $x \sim_I x'$ and $y \sim_I y'$ which imply $x * x', x' * x, y * y', y' * y \in I$. By Theorem 4(*iii*), (UP2), and (fUPI3), $(x \cdot y) * (x \cdot y') = x \cdot (y * (0 * y')) = x \cdot (y * y') \in I$ and $(x \cdot y') * (x \cdot y) = x \cdot (y'*(0*y)) = x \cdot (y'*y) \in I$. Thus, $x \cdot y \sim_I x \cdot y'$. Similarly, $(x \cdot y') * (x' \cdot y') = (x*(0*x')) \cdot y' = (x*x') \cdot y' \in I$ and $(x' \cdot y') * (x \cdot y') = (x'*(0*x)) \cdot y' = (x'*x) \cdot y' \in I$. Thus, $x \cdot y \sim_I x' \cdot y'$. By transitivity, $x \cdot y \sim_I x' \cdot y'$. By Lemma 1, $[x]_I \cdot [y]_I = [x \cdot y]_I = [x' \cdot y']_I = [x']_I \cdot [y']_I$.

Let $[x]_I, [y]_I, [z]_I \in X/I$. Since (X, \cdot) is a semigroup, then

$$\begin{split} [x]_I \cdot ([y]_I \cdot [z]_I) &= [x]_I \cdot [y \cdot z]_I \\ &= [x \cdot (y \cdot z)]_I \\ &= [(x \cdot y) \cdot z]_I \\ &= [(x \cdot y)_I \cdot [z]_I \\ &= ([x]_I \cdot [y]_I) \cdot [z]_I \end{split}$$

Hence, $(X/I, \cdot)$ is semigroup. Moreover, by distributive property on X,

$$\begin{split} [x]_{I} \cdot ([y]_{I} * [z]_{I}) &= [x]_{I} \cdot [y * z]_{I} \\ &= [x \cdot (y * z)]_{I} \\ &= [(x \cdot y) * (x \cdot z)]_{I} \\ &= [x \cdot y]_{I} * [x \cdot z]_{I} \\ &= ([x]_{I} \cdot [y]_{I}) * ([x]_{I} \cdot [z]_{I}) \end{split}$$

and

$$([x]_{I} * [y]_{I}) \cdot [z]_{I} = [x * y]_{I} \cdot [z]_{I} = [(x * y) \cdot z]_{I} = [(x \cdot z) * (y \cdot z)]_{I} = [x \cdot z]_{I} * [y \cdot z]_{I} = ([x]_{I} \cdot [z]_{I}) * ([y]_{I} \cdot [z]_{I}).$$

Thus, the distributive property holds on X/I. Therefore, $(X/I; *, \cdot, [0]_I)$ is an f-UPsemigroup. Suppose X is commutative. Then $x \cdot y = y \cdot x$ for all $x, y \in X$. Let $[x]_I, [y]_I \in X/I$. Then $[x]_I \cdot [y]_I = [x \cdot y]_I = [y \cdot x]_I = [y]_I \cdot [x]_I$. Hence, X/I is commutative. If X has unity 1, then X/I has unity $[1]_I$ since $[x]_I \cdot [1]_I = [x \cdot 1]_I = [x]_I$ and $[1]_I \cdot [x]_I = [1 \cdot x]_I = [x]_I$ for any $x \in X$.

The f-UP-semigroup $(X/I; *, \cdot, [0]_I)$ in Theorem 13 is called the quotient f-UP-semigroup of X by I.

5. Conclusion

This paper investigated fully UP-semigroups, a new class of algebra related to UPalgebras and semigroups, which was introduced by A. Iampan [4] in 2018. It established some structural properties of f-UP-semigroups. It also introduced and examined f-UPfields, f-UP-domains, f-UP-ideals, and quotient f-UP-semigroups. Moreover, the relationship between an f-UP-field and an f-UP-domain is determined. In the subsequent study, we introduce and investigate homomorphisms on f-UP-semigroups, which lead to the isomorphism theorems on f-UP-semigroups.

Acknowledgements

This research is funded by the Philippine Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP) and the Mindanao State University-Iligan Institute of Technology. The authors wish to express their sincere thanks to the referees for their valuable suggestions for the improvement of this paper.

References

- M. Ansari A. Haidar and A. Koam. On a Graph Associated to UP-algebras. Mathematical and Computational Applications, 23(61), 2018.
- [2] J. Endam and J. Vilela. On JB-semigroups. Applied Mathematical Sciences, 9(59): 2901-2911, 2015.
- [3] A. Iampan. A new branch of the logical algebra: UP-algebras. Journal of Algebra and Related Topics, 5(1):35-54, 2017.
- [4] A. Iampan. Introducing fully UP-semigroups. Discussiones Mathematicae, General Algebra and Applications, 38:297-306, 2018.
- [5] Y. Imai and K. Iseki. On Axiom Systems of Propositional Calculi XIV. Proc. Japan Academy, 42:19-22, 1996.
- [6] K. Iseki. Algebra Related with a Propositional Calculus. Proc. Japan Academy, 42:351-366, 1966.
- [7] Y. Jun S. Hong and E.Roh. BCI-semigroups. Honam Math., 15(1):59-64, 1993.
- [8] Y. Jun E. Roh and X. Xin. A Class of Algebras Related to BCI-algebras and Semigroups. Soochow J. Math., 4 (24):309-321.
- [9] Y. Jun E. Roh and X. Xin. I-ideals Generated by a Set in IS-algebras. Bull Kcrean Math. Soc., 35: 615-624, 1998.

[11] C. Prabpayak and U. Leerawat. On ideals and congruence in KU-algebras. Scientia Magna Journal, 5(1):54-57, 2009.