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Abstract. In this paper, we have formulated a new deterministic model to describe the dynamics
of the spread of chikunguya between humans and mosquitoes populations. This model takes into
account the variation in mortality of humans and mosquitoes due to other causes than chikungunya
disease, the decay of acquired immunity and the immune sytem boosting. From the analysis, it
appears that the model is well posed from the mathematical and epidemiological standpoint. The
existence of a single disease free equilibrium has been proved. An explicit formula, depending on
the parameters of the model, has been obtained for the basic reproduction numberR0 which is used
in epidemiology. The local asymptotic stability of the disease free equilibrium has been proved.
The numerical simulation of the model has confirmed the local asymptotic stability of the disease
free equilbrium and the existence of endmic equilibrium. The varying effects of the immunity
parameters has been analyzed numerically in order to provide better conditions for reducing the
transmission of the disease.
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1. Introduction

Chikungunya is an infectious disease caused by a virus transmited by the bite of fe-
male mosquitoes belonging to the genus Aedes: Aedes aegypti and Aedes albopictus. The
chikungunya virus is present in sub-saharan Africa and in south-east Asia since 1952 [3].
It had been isolated for the first time in Tanzania and then spread to the rest of the world.
It is estimated that chikungunya is an emerging desease in Asia. Many vaccine trials have
been conducted since the 1970s but have proved ineffective [3]. Thus chikungunya disease
is a major public health problem. In January 2013, the mortality caused by chikungunya
was estimated at 1 per 1,000: most deaths occur in newborns, immunocompromised people
and the elderly [9].
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Many mathematical models have been formulated to describe the dynamics of chikun-
gunya transmission; see for example [2, 5, 8]. According to our knowledge the existing
models do not simultaneously take into account the variation of the mortality due to the
other causes than the disease, the decay of immunity and immune system boosting of the
host. They consider a constant mortality rate and only one compartment for recovered
hosts. Our model aims at correcting these inadequacies and proposing necessary condi-
tions to stop the spread of the disease . In [6, 7] the authors have developed a deterministic
model which describes the dynamics of malaria transmission. In their model they have
used death rates linearly dependent on the total population for humans and mosquitoes.
In [14], the authors have formulated a deterministic model in a populaton structured by
immune status and they study waning immunity and immune system boosting. They
have used three compartments of immune humans but they considered constant mortality
rates and their model did not take into account vector-borne diseases. By combining these
two approaches, we propose a model that best describes the transmission of chikungunya.
The model we formulate is based on the principle of compartmental analysis described in
[21, 22].

This paper is organized in five sections. The introduction is given in the first section.
The second section is dedicated to the formulation of the model. We present the basic
asumptions, the parameters and the variables used in the model. We describe the inter-
actions between the different classes of the model and we formulate the model. In the
third section we analyze the model. The existence, the positivity and the boudedness of
the solutions is demonstrasted. The disease free equilibrium and the basic reproduction
number are determined. The local asymptotic stability of the disease free equilibrium is
studied. In the fourth section the theoretical results of the analysis are illustrated by a
numerical simulation. In the fifth section we end the paper by a conclusion.

2. The mathematical model

We devide the humans population into five copartments and the mosquitos population
into two compartments. The varibles of the model are given by Table 1 and the pameters
are given Table 2 .

2.1. Assumptions

• Infected mosquito bites are the only ways to transmit viruses between mosquitoes
and humans.

• At birth, all newborns are supposed to be suseptible in both populations.

• Infected mosquitoes remain infected throughout the rest of their lives.

• The disease does not kill mosquitoes.

• After contact with the chikungunya virus, recovered humans no longer carry viruses.
So they can no longer transmit viruses to mosquitoes.
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Table 1: Variables used in the model

Variables Description

S(t) Number of susceptible humans at time t.
I(t) Number of infected humans at time t.
RF (t) Number of immune humans with high level of immunity at time t.
RW (t) Number of immune humans with intermediate level of immunity at time t.
RC(t) Number of immune humans with critically low level of immunity at time t.
NH(t) Total human population at t: NH(t) = S(t) + I(t) +RF (t) +RW (t) +RC(t).
SV (t) Number of susceptible mosquitoes at time t.
IV (t) Number of infective mosquitoes at time t.
NV (t) Total mosquito population at time t: NV (t) = SV (t) + IV (t).

• Recovered humans acquire an immunity; this immunity gradually decreases several
years after recovery when a recovered human is no longer exposed to viruses.

• New exposure to viruses boosts the immune system then prolong the time in which
a recovered individual is immune.

• The mortality induced by other causes than the desease depends on the total pop-
ulation for both human and mosquitoe populations and is given by fH(NH) =
dH + d2HNH and fV (NV ) = dV + d2VNV respectively for humans and mosquitoes;
see [7, 15].

2.2. The interactions

Per time unit, bHNH(t) humans and bVNV (t) mosquitoes are born in the susceptible

compartments S and SV respectively. Due to bites by infcted mosquitoes, βH
IV
NH

S suscep-

tible humans and βV
I

NH
SV susceptible mosquitoes are newly infected. Then they enter

the infected compartments I and IV respectively. γI infected humans are recovered and
enter the compartment RF with high level of immunity. When there is no new exposure
after recovery, the immunity acquired by humans decays progressively and is lost. We
consider three levels of immunity and we divide human population into five compartments
of humans; see Table 1. µRF humans with high level of immunity will leave RF com-
partment and enter the compartment RW of intermediate level of immunity while λRW

humans leave RW compartment and enter the compartment RC of critically low level of
immunity and σRC humans leave RC compartment and return in the susceptible com-
partment S. When there is new exposure some humans in the RW and RC compartments

get their immune system boosted. Thus βV
IV
NH

(1 − θ)RC humans of RC compartment

and βH
IV
NH

RW humans of RW return into RF compartment; βH
IV
NH

θRC humans of RC

compartment return into RW compartment.
Per time unit, fV SV susceptible mosquitoes and fV IV infected mosquitoes leave the
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Table 2: Parameters used in the model

Parameters Meaning

bH Humans birth rate.
bV Mosquitoes birth rate.
pvh Probability of virus transmission from infected mosquitoe to susceptible human.
piv Probability of virus transmission from an infected human to a susceptible mosquito.
nv Number of bites done by a mosquito on the whole human population.
βH Average number of bites that cause a viruses transmission from infected mosquitoes

to susceptible humans. βH = nvpvh.
βV Average number of bites that cause a viruses transmission from infected humans.

to susceptible mosquitoes. βV = nvpiv.
dH Density independent part of the death rate for humans.
d2H Density dependent part of the death rate for humans.
dV Density independent part of the death rate for mosquitoes.
d2V Density dependent part of the death rate for mosquitoes.
dI Chikungunya induced death rate in human population

γ Recovery rate.
1

γ
is the average duration of the infectious period.

µ Immunity decay rate from high level RF to intermediate level RW .
λ Immunity decay rate from intermediate level RW to critially low level RC .
σ Immunity loss rate.
θ Immune system boosting probability from critially low level RC to intermediate level RW .

1− θ is Immune system boosting probability from RC to high level RF .

mosquito population due to death. fHS, (fH + dI)I, fHRF , fHRW and fHRC humans
die respevtively in S, I, RF , RW and RC compartments.
The quantities used in the interactions are all positive. The interactions described are
illustrated by Figure 1.
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Figure 1: A compartmental model of the chikungunya virus transmission.

The arrows with full lines represent the transfers of individuals. The arrows with dot-
ted lines indicate the direction of the infection: from humans to mosquitoes and from
mosquitoes to humans. The red arrows with dotted lines indicate that immune system
boost is due to bites of infected mosquitoes.

2.3. The mathematical model

Using the interactions illustrated by Figure 1, the dynamics of the transmission given
by the system of non linear differential equations (1).

dS

dt
= bHNH + σRC − βH

IV
NH

S − dHS − d2HNHS

dI

dt
= βH

IV
NH

S − (γ + dH + dI)I − d2HNHI

dRF

dt
= γI − (µ+ dH)RF − d2HNHRF + βH

IV
NH

((1− θ)RC +RW )

dRW

dt
= µRF − (dH + λ)RW − d2HNHRW + βH

IV
NH

(θRC −RW )

dRC

dt
= λRW − (dH + σ)RC − d2HNHRC − βH

IV
NH

RC

dSV
dt

= bVNV − dV SV − d2VNV SV − βV
I

NH
SV

dIV
dt

= βV
I

NH
SV − dV IV − d2VNV IV

dNH

dt
= (bH − dH)

1− NH

bH − dH
d2H

NH − dII

dNV

dt
= (bV − dV )

1− NV

bV − dV
d2V

NV

(1)
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where βH = nvpvh, βV = nvpiv.
bH − dH
d2H

is the carrying capacity for humans population and
bV − dV
d2V

is the carrying ca-

pacity for mosquitoes population. That is to say the maximum humans and the maximum
mosquitoes the ecosystem is able to sustain indefinitely.

Remark 1.
The carrying capacities for human population and mostiquitoes population are strictly
positve. Thus bH > dH and bV > dV . In the rest of this paper, we consider that bH > dH
and bV > dV .

We disignate the initial condition of the model, that is to say the initial number of indi-
viduals in the different compartments, by

(
S0, I0, RF0 , RW0 , RC0 , SV0 , IV0 , NH0 , NV0

)t
.

3. Mathematical analysis of the model

3.1. Existence, positivity and boundedness of the solutions

To prove that the model is well posed from the mathematical and epidmiological stand-
point, we begin by defining the folowing sets:

Ω1 =
{(

S, I, RF , RW , RC , SV , IV
)t ∈ R7

+

}
, (2)

Ω2 =


(
NH , NV

)t 0 < NH ≤
bH − dH
d2H

0 < NV ≤
bV − dV
d2V

 (3)

and

Ω = Ω1 × Ω2.

Noting the elements of Ω by x =
(
S, I, RF , RW , RC , SV , IV , NH , NV

)t
, we rewrite

the model (1) as the following autonomous differential system:

dxi
dt

= fi(x); i = 1; 2; ...; 9 (4)

We can state the following result:

Proposition 1.
For all initial condition x0 =

(
S0, I0, RF0 , RW0 , RC0 , SV0 , IV0 , NH0 , NV0

)t
in Ω, the

model (1) admits a unique solution defined for all time t ≥ 0.
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Proof
Each component fi of the function f is given by the member on the right of the i-th
equation of the model (1) which is a sum of polynomials and rational functions defined
on Ω. It shows that f ∈ C∞(Ω) and in particular f ∈ C1(Ω). So f is locally lips-
chitzian on Ω. Thus, by the Cauchy-Lipschitz theorem [4], for any initial condition

x0 =
(
S0, I0, RF0 , RW0 , RC0 , SV0 , IV0 , NH0 , NV0

)t ∈ Ω, the model (1) admits a
unique maximum solution defined for all time t ≥ 0 �

Theorem 1.
For all initial condition x0 ∈ Ω it exits, for the model (1), a unique solution that stays in
Ω for all time t ≥ 0.

Proof
The proposition 1 guarantees the existence and the uniqueness of the solution for each
initial condition. Now we must prove that Ω is positively invariant by the system (1).
That is to say for S0 ≥ 0, I0 ≥ 0,

RF0 ≥ 0, RW0 ≥ 0,RC0 ≥ 0, SV0 ≥ 0, IV0 ≥ 0, 0 < NH0 ≤
bH − dH
d2H

and 0 <

NV0 ≤
bV − dV
d2V

, the solution verifying this initial condition also satisfies the condition

S ≥ 0, I ≥ 0, RF ≥ 0, RW ≥ 0, RC ≥ 0, SV ≥ 0, IV ≥ 0,

0 < NH ≤
bH − dH
d2H

and 0 < NV ≤
bV − dV
d2V

.

To show the positivity of the solutions of the model we express each differential equa-
tion of the system (1) as a differential inequality and we use the technique of separation of
variables. After integration of the different differential inequalities, we obtain the positivity
of S, I, RF , RW , RC , SV , IV , NH and NV . This approach is also used in [1],[18].

Positivity of the number of susceptible humans S:
As bHNH + σRC ≥ 0,

dS

dt
≥ −βH

IV
NH

S − dHS − d2HNHS. (5)

Separating the variables and integrating we obtain

S ≥ S0 exp

(
−βH

IV
NH
− dH − d2HNH

)
. (6)

As exp

(
−βH

IV
NH
− dH − d2HNH

)
> 0,

S0 exp

(
−βH

IV
NH
− dH − d2HNH

)
≥ 0 for S0 ≥ 0. Thus S ≥ 0 for S0 ≥ 0.

Positivity of the number of infected humans I:

βH
IV
NH

S ≥ 0. That implies that

dI

dt
≥ −(γ + dH + dI)I − d2HNHI (7)
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By separating the variables and integrating, we have

I ≥ I0 exp (−(γ + dH + dI)− d2HNH) . (8)

We deduce that I ≥ 0 for I0 ≥ 0.
Positivity of the number of immune humans with high level of immunity RF :

As γI + βH
IV
NH

((1− θ)RC +RW ) ≥ 0,

dRF

dt
≥ −(µ+ dH)RF − d2HNHRF . (9)

By separating the variables and integrating,

RF ≥ RF0 exp(−(µ+ dH)− d2HNHR). (10)

We deduce that RF ≥ 0 for RF0 ≥ 0.
Positivity of the number of immune humans with intermediate level of immunity RW :

As µRF + βH
IV
NH

(θRC −RW ) ≥ 0,

dRW

dt
≥ −(dH + λ)RW − d2HNHRW . (11)

By separating the variables and integrating,

RW ≥ RW0 exp(−(dH + λ)− d2HNH). (12)

Thus RW ≥ 0 for RW0 ≥ 0.
Positivity of the number of immune humans with critically low level of immunity RC :

λRW ≥ 0. That implies that

dRC

dt
≥ −(dH + σ)RC − d2HNHRC − βH

IV
NH

RC . (13)

By separating the variables and integrating, we obtain

RC ≥ RW0 exp

(
−(dH + σ)− d2HNH − βH

IV
NH

)
. (14)

Thus RC ≥ 0 for RC0 ≥ 0.
Positivity of the number of susceptible mosquitoes SV :

bVNV ≥ 0. That implies that

dSV
dt
≥ −dV SV − d2VNV SV − βV

I

NH
SV . (15)

By separating the variables and integrating,

SV ≥ SV0 exp

(
−dV − d2VNV − βV

I

NH

)
. (16)
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Thus SV ≥ 0 for SV0 ≥ 0.
Positivity of the number of infected mosquitoes IV :

βV
I

NH
SV ≥ 0. That implies that

dIV
dt
≥ −dV IV − d2VNV IV . (17)

By separating the variables and integrating,

IV ≥ IV0 exp (−dV − d2VNV ) . (18)

We deduce that IV ≥ 0 for IV0 ≥ 0.

We have shown that ∀
(
S0, I0, RF0 , RW0 , RC0 , SV0 , IV0 , NH0 , NV0

)t ∈ Ω,(
S, I, RF , RW , RC , SV , IV

)t ∈ Ω1. Let’s show now that

∀
(
S0, I0, RF0 , RW0 , RC0 , SV0 , IV0 , NH0 , NV0

)t ∈ Ω,
(
NH , NV

)t ∈ Ω2. For that

we must show that 0 < NH ≤
bH − dH
d2H

and 0 < NV ≤
bV − dV
d2V

.

Boundedness of the solutions:
NH(t) = S(t) + I(t) +RF (t) +RW (t) +RC(t).
S(t), I(t), RF (t), RW (t) and RC(t) are positive. Thus NH is positive.

From
dNH

dt
= (bH − dH)

1− NH

bH − dH
d2H

NH − dII, we obtain the inequality

dNH

dt
≤ (bH − dH − d2HNH)NH . (19)

After separating the variables and integrating, we obtain

NH(t) ≤ bH − dH
d2H

(1− exp(−(bH − dH)t) +NH0 exp(−(bH − dH)t)) . (20)

Calculating the limit of NH(t) when t→ +∞ we finally obtain

NH(t) ≤ bH − dH
d2H

. (21)

As NV (t) = SV (t) + IV (t), NV (t) is positive.

dNV

dt
= (bV − dV )

1− NV

bV − dV
d2V

NV .

After integrating we obtain

NV (t) =
NV0(bV − dV )

d2VNV0 + (bV − dV − d2VNV0) e−(bV −dV )t
. (22)
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lim
t→+∞

NV (t) =
bV − dV
d2V

. (23)

From the relation 22 we find

dNV

dt
(t) = NV0

(
bV − dV

d2VNV0 + (bV − dV − d2VNV0)e−(bV −dV )t

)2

(bV − dV − d2VNV0) e−(bV −dV )t(24)

For
(
NH , NV

)t ∈ Ω2, the relation 24 implies that
dNV

dt
(t) ≥ 0. It means that NV is an

increasing function. Using the relation 23, we obtain

∀t ∈ [0 ; +∞[, NV0 ≤ NV (t) ≤ bV − dV
d2V

. (25)

Thus 0 < NV (t) ≤ bV − dV
b2V

. Therefore
(
NH , NV

)t ∈ Ω2 �

Theorem 1 shows that the model (1) is well posed from a mathematical and epidemi-
ological standpoint.

3.2. Disease free equilibrium and basic reproduction number R0

3.2.1. Disease free equilibrium

Theorem 2.
The model (1) has a unique disease free equilibrium given by

Edfe =

(
bH − dH
d2H

, 0, 0, 0, 0,
bV − dV
d2V

, 0,
bH − dH
d2H

,
bV − dV
d2V

)t

. (26)

Proof
When there is no disease, I = IV = 0. We note the disease free equilibrium by
Edfe =

(
Ss, 0, Rs

F , R
s
W , R

s
C , S

s
V , 0, N s

H , N
s
V

)t
where N s

H and N s
V are the total popu-

lations respectively of humans and mosquitoes at the equilibrium. So NH 6= 0 and NV 6= 0.
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By replacing I and IV by 0 in the model (1), we find Edfe after solving the sytem below:

bHNH + σRC − dHSs − d2HNHS
s = 0

− (µ+ dH)Rs
F − d2HN s

HR
s
F = 0

−(µ+ dH)Rs
F − d2HN s

HR
s
F = 0

µRs
F − (dH + λ)Rs

W − d2HN s
HR

s
W = 0

λRs
W − (dH + σ)Rs

C − d2HN s
HR

s
C = 0

bVN
s
V − dV Ss

V − d2VN s
V S

s
V = 0

(bH − dH)

1− NH

bH − dH
d2H

NH = 0

(bV − dV )

1− NV

bV − dV
d2V

NV = 0

(27)

After solving, we find N s
H =

bH − dH
d2H

, N s
V =

bV − dV
d2V

, Ss = N s
H ,

Ss
V = N s

V and RF = RC = RW = 0. Thus

Edfe =

(
bH − dH
d2H

, 0, 0, 0, 0,
bV − dV
d2V

, 0,
bH − dH
d2H

,
bV − dV
d2V

)t

�

3.2.2. Basic reproduction number

The basic reproduction number is the average number of secondary infections produced
by a single infected individual in a population completely susceptible. We determine the
basic reproduction number by using the next generation method described in [11, 17].
After chikungunya disease, recovered humans no longer have virus in their body. So the
infected compartments are only I and IV . We define the new infections rates in the infected
comparments by the relation (28) and the exchange rates of each infected compartment
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with the other compartments is given by the relation (29).

F(X) =

 FI(X)

FIV (X)

 =


βH

IV
NH

S

βV
I

NH
SV

 , (28)

V(X) =

 VI(X)

VIV (X)

 =

 (γ + dH + dI)I + d2HNHI

dV IV + d2VNV IV

 (29)

With these functions, we calculate the next generation matrix FV −1 where F and V are
the following matrices:

F =


∂FI

∂I
(Edfe)

∂FI

∂IV
(Edfe)

∂FIV

∂I
(Edfe)

∂FIV

∂IV
(Edfe)

 =


0 βH

βV
N s

V

N s
H

0

 (30)

V =


∂VI
∂I

(Edfe)
∂VI
∂IV

(Edfe)

∂VIV
∂I

(Edfe)
∂VIV
∂IV

(Edfe)

 =

 bH + γ + dI 0

0 bV

 (31)

Thus the next generation matrix is given by

FV −1 =


0

βH
bV

βV
N s

V

N s
H(bH + γ + dI)

0

 (32)

R0 is the spectral radius of the next generation matrix; R0 = ρ
(
FV −1

)
. After detrmining

the eigenvalues of FV −1, we obtain R0 =

√
βHβVN

s
V

N s
H (bH + γ + dI) bV

.

We can also write R0 =
√
R0HR0V where R0H =

βH
bV

and R0V =
βVN

s
V

N s
H (bH + dI + γ)

.

R0H is the average number of secondary infections produced by a single infected mosquito
in a population of humans all susceptibles. R0V is the average number of secondary infec-
tions produced by a single infected human in a population of mosquitoes all susceptibles.

Replacing βH and βV respectively by nvpvh and nvpiv, we obtain R0H =
nvpvh
bV

,
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R0V =
nvpivN

s
V

N s
H (bH + dI + γ)

and R0 = nv

√
pvhpivN

s
V

N s
H (bH + γ + dI) bV

.

Substituting N s
H by

bH − dH
d2H

and N s
V by

bV − dV
d2V

we finally obtain

R0 = nv

√
d2Hpvhpiv(bV − dV )

bV d2V (bH − dH)(bH + γ + dI)
. (33)

3.2.3. Stability of disease free equilibrium

Theorem 3.
The disease free equilibrium Edfe is locally asymptoptically stable for R0 < 1 and unstable
for R0 > 1.

Proof
The jacobian matrix of the system (1) at the disease free equilibrium is given below:

J =



−bH 0 0 0 σ 0 −βH dH 0
0 J22 0 0 0 0 βH 0 0
0 γ J33 0 0 0 0 0 0
0 0 µ J44 0 0 0 0 0
0 0 0 λ J55 0 0 0 0
0 −βV 0 0 0 −bV 0 0 dV

0 βV
N∗V
N∗H

0 0 0 0 −bV 0 0

0 −dI 0 0 0 0 0 J88 0
0 0 0 0 0 0 −dIV 0 J99


where J22 = −(bH + γ + dI); J33 = −(bH + µ); J44 = −(bH + λ);
J55 = −(bH + σ); J88 = −(bH − dH); J99 = −(bV − dV ).
The characteristic polynomial of J is given by

P (x) = (x+ bH)(x+ bV )(x− J33)(x− J44)(x− J55)(x− J88)(x− J99)T (x) (34)

where

T (x) = x2 + (bH + γ + dI + bV )x+ bV (bH + γ + dI)
(
1−R2

0

)
. (35)

−bH , −bV , −(bH +µ), −(bH +λ), −(bH +σ), −(bH−dH), −(bV −dV ) are eigenvalues of
J which are all negative reals. The other eigenvalues of J are the roots of the polynomial
T .
For R0 < 1, the coefficients of T namely 1, (bH + γ + dI + bV ) and
bV (bH + γ + dI)

(
1−R2

0

)
are all strictly positive. For R0 > 1 the coefficients 1 and

(bH + γ + dI + bV ) are strictly positive while the coefficients
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bV (bH + γ + dI)
(
1−R2

0

)
is strictly negative. As T is a polynomial of second degree, the

criterion of Routh-Hurwitz [13] allows us to affirm that the roots of T have all their real
parts strictly negative for R0 < 1 and T has at least an eigenvalue whose real part is
strictly positive for R0 > 1. Thus the eigenvalues of J have all their real parts strictly
negative for R0 < 1 and at least an eigenvalue of J has a strictly positive real part for
R0 > 1. Therefore Edfe is locally asymptotically stable for R0 < 1 and unstable for
R0 > 1 �

The proof of Theorem 3 is based on the analysis of the characteristic polynomial of
Jacobian matrix, see [16] for a similar approach.

Due to the complexity of the system (1), the existence of endemic equilibrium is not
shown analytically. However, we can confirm the existence of endemic equilibrium numer-
ically in the next section.

4. Numerical simulation

In this section, we illustrate by the numerical simulation the theoretical results obtained
from the analysis; see Theorem 3 . Our objective is to show the
conformity between the theoretical results of the analysis and the numerical results. We
use MATLAB ode45; see [10, 12, 19, 20].
We set the initial condition to S0 = 4950, I0 = 50, RF0 = 0, RW0 = 0, RC0 = 0, SV0 =
9900, IV0 = 100, NH0 = 5000 and NV0 = 10000.
We take the same values for bH , dH , d2H , bV , dV and d2V as in [6] and we assume that an
infectious human will stay infectious during 100 days.
1

γ
is the average time that an infectious human will stay in the infectious compartment.

By analogy
1

µ
is the average time that a human of RF compartment will stay in this

compartment before moving to RW compartment;
1

λ
is the average time that a human of

RW compartment will stay in this compartment before moving to RC compartment and
1

σ
is the average time that a human of RC compartment will stay in this compartment

before loosing his immunity.
A recovered human acquire lasting immunity. Several years are necessary so that immunity
is lost. We estimate that one year lasts 365 days. We assume that, when there is no new
exposure, immunity will decay to the intermediate level after 25 years, to the critically
low level after 35 years and it is lost after 45 years.
When there is new exposure, we assume that the probability of immune system boosting
from critically low level to intermediate level is θ = 0.6. It means that 1 − θ = 0.4. The
values used for the numerical simulation are given by Table 3. With these values, we
obtain Edfe =

(
133280, 0, 0, 0, 0, 12125, 0, 133280, 12125

)t
.
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Table 3: Values used for the numerical simualtion.

Parameters Values References

bH 0.04 [6]
bV 0.13 [6]
pvh 0.07 [6]
piv 0.45 [6]
dH 1.6× 10−5 [6]
d2H 3× 10−7 [6]
dV 0.033 [6]
d2V 8× 10−6 [6]
dI 0.001 [9]
γ 0.01 assumed
µ 1.096× 10−4 assumed
λ 7.828× 10−5 assumed
σ 6.088× 10−5 assumed
θ 0.6 assumed

4.1. The varying effects of R0 on the behaviour of the model

We fix the values of Table 3 and we choose nv appropriately so that R0 < 1 on the
one hand and R0 > 1 on the other hand.
For nv = 1.1408, R0 = 0.75. Then the dynamics of the transmission is given by Figure 2
for humans and Figure 3 for the mosquitoes.

Figure 2: Dynamics of the transmission in the human population for R0 = 0.75 < 1.

The disease will die out and all humans will be susceptible.

With nv = 11.4079, we obtain R0 = 7.5 > 1. Then the dynamics of the transmission is
given by the Figure 4 for humans and Figure 5 for the mosquitoes.
Figure 2 and Figure 3 show that the solution of the model approaches the disease free
eqilibrium whenR0 < 1. This confirms the stability of the desease free equilibrium. Figure
4 and Figure 5 show that the solution of the model does not approache the disease free
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Figure 3: Dynamics of the transmission in the mosquioes population for R0 = 0.75 < 1.

The disease will die out and all mosquitoes will be susceptible.

Figure 4: Dynamics of the transmission in the human population for R0 = 7.5 > 1.

There are infected humans every time.

eqilibrium when R0 > 1. There will always be infected humans and infected mosquitoes
when R0 > 1. This confirms the existence of endemic equilibrium of the system (1) when
R0 > 1.

4.2. The varying effects of the immunity parameters on the behaviour of
the model

In this subsection we provide further simulations showing the varying effects of the
immunity parameters (µ, λ, σ and θ) on the behaviour of the system (1). We analyze
these effects for R0 > 1. For each parameter, we fixe the other values of table 3 and
we simulate the varying effects of the parameter concerned. Figures 6, 7 and 8 show the
varying effects of µ, λ and σ respectively on the dynamics of the infected humans. As for
θ, its varying effects are difficult to be observed by the curve of I but the curve of RW

shows clearly its varying effects; see Figure 9.
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Figure 5: Dynamics of the transmission in the population of mosquitoes for R0 = 7.5 > 1.

There are infected mosquitoes every time.

Figure 6: Varying effects of µ.

The increase of µ towards 1 favors the transmission of the disease in the human population.

Figure 7: Varying effects of λ.

The increase of λ towards 1 favors the transmission of the disease in the human population.
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Figure 8: Varying effects of σ.

The increase of σ towards 1 favors the transmission of the disease in the human population.

Figure 9: Varying effects of θ.

The increase of θ towards 1 has a positive effect on the dynamics of the intermediate level
of immunity.

5. Conclusion

In this paper a deterministic model have been formulated to describe chikungunya
transmission between a population of mosquitoes and a human population structured by
immune status. The analysis of the model and the basic reproduction number expressed
in terms of the parameters made possible to predict whether the disease will disappear
(R0 < 1) or persist (R0 > 1). The numerical simulation have permitted to confirm the
theoretical results obtained from the analysis. The numerical results have also shown that
the decay of the immunity is a factor which favors the transmission of the disease and
boosting the immune system helps to get more immune humans. Some medical researches
must aim at preventing the decay of the immunity and boosting the immune system .
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[21] Yves Cherruault. Biomathématique. Collection que sais-je? (n◦ 2052) P.U.F.1983.
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