EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 4, 2019, 1701-1716
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Mass Formula for Self-Dual Codes over Galois Rings $G R\left(p^{3}, r\right)$

Trilbe Lizann E. Vasquez ${ }^{1, *}$, Gaudencio C. Petalcorin, Jr. ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Let p be an odd prime and r a positive integer. Let $\operatorname{GR}\left(p^{3}, r\right)$ be the Galois ring of characteristic p^{3} and cardinality $p^{3 r}$. In this paper, we investigate the self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$ and give a method to construct self-dual codes over this ring. We establish a mass formula for self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$ and classify self-dual codes over $\operatorname{GR}\left(p^{3}, 2\right)$ of length 4 for $p=3,5$.

2010 Mathematics Subject Classifications: 94B05
Key Words and Phrases: Mass formula, self-dual codes, finite ring, Galois ring, classification

1. Introduction

It was shown in [6] that several well-known families of non-linear binary codes can be viewed as linear codes over the ring \mathbb{Z}_{4} of integers modulo 4 . This discovery led to much interest and attention given to codes over the ring \mathbb{Z}_{m} of integers modulo m and finite rings in general.

Self-dual codes are an important class of linear codes for both theoretical and practical reasons. It is a fundamental problem to classify self-dual codes, that is, to find a representative for each equivalence class of self-dual codes. However, determining the number of equivalence classes is difficult. This task will be made easier by a mass formula, which will tell us when we have a complete set of representatives from each equivalence class.

Mass formula for self-dual codes over the ring $\mathbb{Z}_{p^{e}}$ for any prime p and for any positive integer e are established by the effort of many authors [1, 5, 9-11]. A classification method of self-dual codes over \mathbb{Z}_{m} for arbitrary integer m is given in [13]. In particular, selfdual codes of length 4 over \mathbb{Z}_{p} were classified in [13] for all primes p in terms of their automorphism groups.

The Galois ring $\operatorname{GR}\left(p^{e}, r\right)$, where p is prime, e and r are positive integers, is the unique Galois extension of $\mathbb{Z}_{p^{e}}$ of degree r. Using a similar argument in [1], the mass formula

[^0]for self-dual codes over $\operatorname{GR}\left(p^{2}, 2\right)$ for odd primes p is obtained in [3]. Moreover, self-dual codes of length 4 over $\operatorname{GR}(p, 2)$ and $\operatorname{GR}\left(p^{2}, 2\right)$ are classified in [4] for all primes p up to equivalence in terms of automorphism group.

In this paper, we build on the method in [10] to establish a mass formula for self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$, where p is an odd prime and r is a positive integer. Using the mass formula, we classify self-dual codes of length 4 over $\operatorname{GR}\left(p^{3}, 2\right)$ for $p=3,5$.

2. Preliminaries

Let p be prime and e a positive integer. The modulo p reduction mapping

$$
\mu: \mathbb{Z}_{p^{e}} \rightarrow \mathbb{Z}_{p}, a \mapsto \bar{a}=a(\bmod p)
$$

induces the following modulo p reduction mapping between polynomial rings

$$
\mu: \mathbb{Z}_{p^{e}}[x] \rightarrow \mathbb{Z}_{p}[x], f(x)=\sum a_{i} x^{i} \mapsto \bar{f}(x)=\sum \bar{a}_{i} x^{i} .
$$

An irreducible polynomial $f(x)$ in $\mathbb{Z}_{p^{e}}[x]$ is said to be basic if $\bar{f}(x)$ is irreducible.
Let $f(x)$ be a monic basic irreducible polynomial over $\mathbb{Z}_{p^{e}}[x]$ of degree r. We can choose $f(x)$ so that $\omega=x+\langle f(x)\rangle$ is a primitive $\left(p^{r}-1\right)$ st root of unity. The Galois ring $\operatorname{GR}\left(p^{e}, r\right)$ of characteristic p^{e} and cardinality $p^{e r}$ is defined as

$$
\operatorname{GR}\left(p^{e}, r\right)=\mathbb{Z}_{p^{e}}[x] /\langle f(x)\rangle=\mathbb{Z}_{p^{e}}[\omega] .
$$

Every element of $\operatorname{GR}\left(p^{e}, r\right)$ can be expressed uniquely in the ω-adic representation

$$
a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{r-1} \omega^{r-1}, \text { where } a_{i} \in \mathbb{Z}_{p^{e}} .
$$

Note that $\operatorname{GR}\left(p^{e}, 1\right)=\mathbb{Z}_{p^{e}}$ and $\operatorname{GR}(p, r)=\mathbb{F}_{p^{r}}$, the Galois field of p^{r} elements.
The modulo p reduction can be naturally extended to

$$
\mu: \operatorname{GR}\left(p^{e}, r\right)=\mathbb{Z}_{p^{e}}[x] /\langle f(x)\rangle \rightarrow \mathbb{Z}_{p}[x] /\langle\bar{f}(x)\rangle=\mathbb{F}_{p^{r}}, a \mapsto \bar{a}=a(\bmod p) .
$$

Let $\mathcal{T}_{p^{r}}=\left\{0,1, \omega, \ldots, \omega^{p^{r}-2}\right\}$. Observe that the function $\left.\mu\right|_{\mathcal{T}_{p^{r}}}: \mathcal{T}_{p^{r}} \rightarrow \mathbb{F}_{p^{r}}$ is one-to-one and onto. Any element of $\operatorname{GR}\left(p^{e}, r\right)$ can be written uniquely in the p-adic representation

$$
b_{0}+p b_{1}+p^{2} b_{2}+\cdots+p^{e-1} b_{e-1}, \text { where } b_{i} \in \mathcal{T}_{p^{r}} .
$$

An element $a \in \operatorname{GR}\left(p^{e}, r\right)$ is a unit if and only if $\bar{a} \neq 0$.
For the further study of Galois rings, see $[8,16]$.
Let n be a positive integer and let S^{n} denote the collection of n-tuples over a finite set S. A code of length n over a finite field \mathbb{F} or a finite ring \mathcal{R} is a subspace of \mathbb{F}^{n} or an \mathcal{R}-submodule of \mathcal{R}^{n}, respectively. Every element of the code is called a codeword. A matrix G is called a generator matrix for a code \mathcal{C} if the rows of G generate all the elements of \mathcal{C} and none of the rows can be written as a linear combination of the other rows.

Two codewords $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are orthogonal if their Euclidean inner product $\sum_{i=1}^{n} x_{i} y_{i}$ is zero. The dual \mathcal{C}^{\perp} of a code \mathcal{C} of length n over S consists of
all $x \in S^{n}$ which are orthogonal to every codeword in \mathcal{C}. If $\mathcal{C} \subseteq \mathcal{C}^{\perp}$, then \mathcal{C} is said to be self-orthogonal. If $\mathcal{C}=\mathcal{C}^{\perp}$, then \mathcal{C} is said to be self-dual.

A code of length n and dimension k over a finite field \mathbb{F} is called an $[n, k]$ code and contains $|\mathbb{F}|^{k}$ codewords. An $[n, k]$ code is self-dual if and only if it is self-orthogonal and $k=\frac{n}{2}$. We say that a generator matrix G for an $[n, k]$ code is in standard form if $G=\left[I_{k} A\right]$, where I_{k} denotes the $k \times k$ identity matrix and A is some $k \times(n-k)$ matrix.

Let \mathcal{C} be a code of length n over the Galois ring $\operatorname{GR}\left(p^{e}, r\right) . \mathcal{C}$ has a generator matrix which, after a suitable permutation of coordinates, can be written as

$$
G=\left[\begin{array}{cccccc}
I_{k_{0}} & A_{0,1} & A_{0,2} & \cdots & A_{0, e-1} & A_{0, e} \tag{1}\\
0 & p I_{k_{1}} & p A_{1,2} & \cdots & p A_{1, e-1} & p A_{1, e} \\
0 & 0 & p^{2} I_{k_{2}} & \cdots & p^{2} A_{2, e-1} & p^{2} A_{2, e} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & p^{e-1} I_{k_{e-1}} & p^{e-1} A_{e-1, e}
\end{array}\right]
$$

where $I_{k_{i}}$ is the $k_{i} \times k_{i}$ identity matrix and the $A_{i j} \mathrm{~s}$ are matrices of appropriate sizes over $\operatorname{GR}\left(p^{e}, r\right)$. The columns are grouped into blocks of sizes $k_{0}, k_{1}, \ldots, k_{e-1}, k_{e}=n-\sum_{i=0}^{e-1} k_{i}$.

A code \mathcal{C} with generator matrix G as in (1) is said to be of type $\left\{k_{0}, k_{1}, \ldots, k_{e-1}\right\}$ and has $\left(p^{r}\right)^{\sum_{i=0}^{e-1}(e-i) k_{i}}$ codewords. The dual \mathcal{C}^{\perp} of \mathcal{C} is of type $\left\{k_{e}, k_{e-1}, \ldots, k_{1}\right\}$. It is known that $|\mathcal{C}|\left|\mathcal{C}^{\perp}\right|=p^{\text {ern }}$. If \mathcal{C} is a self-dual code of type $\left\{k_{0}, k_{1}, \ldots, k_{e-1}\right\}$, then we must have $k_{i}=k_{e-i}$ for all i.

For $0 \leq i \leq e-1$, define

$$
\operatorname{Tor}_{i}(\mathcal{C})=\left\{\bar{v}: p^{i} \bar{v} \in \mathcal{C}\right\}
$$

where \bar{v} is the image of v under the projection $\mu: \operatorname{GR}\left(p^{e}, r\right)^{n} \rightarrow \mathbb{F}_{p^{r}}^{n} . \operatorname{Tor}_{i}(\mathcal{C})$ is an $\left[n, k_{0}+\ldots+k_{i}\right]$ code over $\mathbb{F}_{p^{r}}$ and is called the i th torsion code of \mathcal{C}. In particular, $\operatorname{Tor}_{0}(\mathcal{C})$ is called the residue code and is denoted by $\operatorname{Res}(\mathcal{C})$. If \mathcal{C} has generator matrix G in (1), then $\operatorname{Tor}_{i}(\mathcal{C})$ has a generator matrix of the form

$$
G_{i}=\left[\begin{array}{ccccccc}
I_{k_{0}} & \bar{A}_{0,1} & \bar{A}_{0,2} & \cdots & \bar{A}_{0, i-1} & \cdots & \bar{A}_{0, e} \\
0 & I_{k_{1}} & \bar{A}_{1,2} & \cdots & \bar{A}_{1, i-1} & \cdots & \bar{A}_{1, e} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I_{k_{i}} & \cdots & \bar{A}_{i, e}
\end{array}\right],
$$

where $\bar{A}=\left(\bar{a}_{i j}\right)$ whenever $A=\left(a_{i j}\right)$.
Two codes over $\operatorname{GR}\left(p^{e}, r\right)$ are said to be equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates. Thus two codes \mathcal{C}_{1} and \mathcal{C}_{2} of length n over $\operatorname{GR}\left(p^{e}, r\right)$ are equivalent if there exists a monomial matrix P such that $\mathcal{C}_{2}=\mathcal{C}_{1} P=\left\{\mathbf{c} P: \mathbf{c} \in \mathcal{C}_{1}\right\}$, where P has exactly one entry ± 1 in every row and every column and all the other entries are zero. The automorphism group $\operatorname{Aut}(\mathcal{C})$ of a code \mathcal{C} of length n over $\operatorname{GR}\left(p^{e}, r\right)$ is the group of all such matrices P such that $\mathcal{C}=\mathcal{C} P$.

Let E_{n} be the signed symmetric group of order $\left|E_{n}\right|=2^{n} n!$. The number of codes equivalent to a code \mathcal{C} over $\operatorname{GR}\left(p^{3}, r\right)$ of length n is

$$
\frac{\left|E_{n}\right|}{|\operatorname{Aut}(\mathcal{C})|}
$$

and hence the number $N_{p^{3}, r}(n)$ of distinct self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$ of length n is

$$
N_{p^{3}, r}(n)=\sum_{\mathcal{C}} \frac{\left|E_{n}\right|}{|\operatorname{Aut}(\mathcal{C})|}
$$

where the sum runs through all inequivalent self-dual codes \mathcal{C} over $\operatorname{GR}\left(p^{3}, r\right)$ of length n. An explicit formula for $N_{p^{3}, r}(n)$, called the mass formula, would thus be useful for finding all inequivalent self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$ of given length.

For the further study of codes over finite fields and finite rings, see [7, 12].
We will need the following lemmas, the proofs of which are known.
Lemma 1. [14] Let $\sigma_{q}(n, k)$ be the number of self-orthogonal codes of even length n and dimension k over \mathbb{F}_{q}. If char $\mathbb{F}_{q} \neq 2$, then

$$
\sigma_{q}(n, k)=\frac{\left(q^{n-k}-\epsilon q^{n / 2-k}+\epsilon q^{n / 2}-1\right) \prod_{i=1}^{k-1}\left(q^{n-2 i}-1\right)}{\prod_{i=1}^{k}\left(q^{i}-1\right)}, k \geq 2
$$

where $\epsilon=1$ if $(-1)^{n / 2}$ is a square and $\epsilon=-1$ if $(-1)^{n / 2}$ is not a square.
Lemma 2. [15] Let V be an n-dimensional vector space over \mathbb{F}_{q}. The number $\binom{n}{k}_{q}$ of subspaces $U \subset V$ of dimension $k \leq n$ is given by

$$
\binom{n}{k}_{q}=\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)}
$$

3. Codes over GR $\left(p^{3}, r\right)$

Let \mathcal{C} be a code of length n over $\operatorname{GR}\left(p^{3}, r\right)$ and let G be a generator matrix for \mathcal{C}. We can write G in the following form:

$$
G=\left[\begin{array}{c}
A \tag{2}\\
p B \\
p^{2} C
\end{array}\right]=\left[\begin{array}{cccc}
I_{k} & A_{2} & A_{3} & A_{4} \\
0 & p I_{l} & p B_{3} & p B_{4} \\
0 & 0 & p^{2} I_{m} & p^{2} C_{4}
\end{array}\right],
$$

where I_{r} is the identity matrix of order r, and the other matrices have entries from $\operatorname{GR}\left(p^{3}, r\right)$ and are described as follows. We write A_{3}, B_{4} and A_{4} in their p-adic expansions
$A_{3}=A_{30}+p A_{31}, B_{4}=B_{40}+p B_{41}, A_{4}=A_{40}+p A_{41}+p^{2} A_{42}$, and the matrices A_{2}, B_{3}, $C_{4}, A_{i j}$ and $B_{i j}$ have entries from $\mathcal{T}_{p^{r}}$. The columns are grouped in blocks of sizes k, l, m and $h=n-(k+l+m)$. The code \mathcal{C} is said to be of type $\{k, l, m\}$ and has $p^{r(3 k+2 l+m)}$ codewords. The dual code \mathcal{C}^{\perp} is of type $\{h, m, l\}$ and has $p^{r(3 h+2 m+l)}$ codewords.

If the code \mathcal{C} has generator matrix G in (2), then the residue code $\operatorname{Res}(\mathcal{C})$ has dimension k and generator matrix

$$
T_{0}=A(\bmod p)=\left[\begin{array}{llll}
I_{k} & \bar{A}_{2} & \bar{A}_{30} & \bar{A}_{40} \tag{3}
\end{array}\right],
$$

the first torsion code $\operatorname{Tor}_{1}(\mathcal{C})$ has dimension $k+l$ and generator matrix

$$
T_{1}=\left[\begin{array}{l}
A \tag{4}\\
B
\end{array}\right](\bmod p)=\left[\begin{array}{cccc}
I_{k} & \bar{A}_{2} & \bar{A}_{30} & \bar{A}_{40} \\
0 & I_{l} & \bar{B}_{3} & \bar{B}_{40}
\end{array}\right],
$$

and the second torsion $\operatorname{code}^{\operatorname{Tor}_{2}(\mathcal{C})}$ has dimension $k+l+m$ and generator matrix

$$
T_{2}=\left[\begin{array}{l}
A \tag{5}\\
B \\
C
\end{array}\right](\bmod p)=\left[\begin{array}{cccc}
I_{k} & \bar{A}_{2} & \bar{A}_{30} & \bar{A}_{40} \\
0 & I_{l} & \bar{B}_{3} & \bar{B}_{40} \\
0 & 0 & I_{m} & \bar{C}_{4}
\end{array}\right] .
$$

The following proposition gives a characterization of self-duality in $\operatorname{GR}\left(p^{3}, r\right)$.
Proposition 1. Let \mathcal{C} be a code over $G R\left(p^{3}, r\right)$ with generator matrix G as in (2). Then \mathcal{C} is self-dual if and only if $k=h, l=m$ and the following hold:

$$
\begin{array}{ll}
A A^{t} \equiv 0 & \left(\bmod p^{3}\right) \\
A B^{t} \equiv 0 & \left(\bmod p^{2}\right) \\
B B^{t} \equiv 0 & (\bmod p) \\
A C^{t} \equiv 0 & (\bmod p) . \tag{9}
\end{array}
$$

Proof. Suppose \mathcal{C} is a self-dual code over $\operatorname{GR}\left(p^{3}, r\right)$. We then have $G G^{t} \equiv 0\left(\bmod p^{3}\right)$, that is,

$$
\begin{aligned}
& A A^{t} \equiv 0 \\
& p A B^{t}\left(\bmod p^{3}\right) \\
& p^{2} B B^{t} \equiv 0 \quad\left(\bmod p^{3}\right) \\
& p^{2} A C^{t} \equiv 0 \quad\left(\bmod p^{3}\right) \\
&\left.m^{3}\right),
\end{aligned}
$$

which is equivalent to the set of conditions (6)-(9). Now, \mathcal{C} is of type $\{k, l, m\}$ and its dual code \mathcal{C}^{\perp} is of type $\{h, m, l\}$. Since \mathcal{C} is self-dual, we then have $k=h$ and $l=m$.

Conversely, let \mathcal{C} be a code such that $k=h, l=m$ and conditions (6)-(9) hold. Now, conditions (6)-(9) imply that $G G^{t} \equiv 0\left(\bmod p^{3}\right)$. So \mathcal{C} is a self-orthogonal code, i.e. $\mathcal{C} \subseteq \mathcal{C}^{\perp}$. Moreover, since $k=h$ and $l=m$, we then have $|\mathcal{C}|=\left|\mathcal{C}^{\perp}\right|$. Therefore $\mathcal{C}=\mathcal{C}^{\perp}$.

Corollary 1. A self-dual code \mathcal{C} over $G R\left(p^{3}, r\right)$ of type $\{k, l, l\}$ is of even length $n=$ $2(k+l)$.

Corollary 2. Let \mathcal{C} be a self-dual code over $G R\left(p^{3}, r\right)$ of length n and of type $\{k, l, l\}$. Then $\operatorname{Res}(\mathcal{C})$ is self-orthogonal, $\operatorname{Tor}_{1}(\mathcal{C})$ is self-dual, and $\operatorname{Tor}_{2}(\mathcal{C})=\operatorname{Res}(\mathcal{C})^{\perp}$.

Proof. Suppose \mathcal{C} has generator matrix G as in (2). Then the torsion codes $\operatorname{Res}(\mathcal{C})$, $\operatorname{Tor}_{1}(\mathcal{C})$ and $\operatorname{Tor}_{2}(\mathcal{C})$ have generator matrices T_{0}, T_{1} and T_{2} as in (3), (4) and (5) respectively.

From conditions (6) and (7), we obtain

$$
\begin{align*}
& A A^{t} \equiv 0 \quad(\bmod p) \tag{10}\\
& A B^{t} \equiv 0 \quad(\bmod p) . \tag{11}
\end{align*}
$$

It immediately follows from (10) that $T_{0} T_{0}^{t} \equiv 0(\bmod p)$, and so $\operatorname{Res}(\mathcal{C})$ is self-orthogonal.
Conditions (8), (10) and (11) imply that $T_{1} T_{1}^{t} \equiv 0(\bmod p)$, so that $\operatorname{Tor}_{1}(\mathcal{C})$ is selforthogonal. Since \mathcal{C} is self-dual, then $\operatorname{dim} \operatorname{Tor}_{1}(\mathcal{C})=k+l=\frac{n}{2}$. Thus $\operatorname{Tor}_{1}(\mathcal{C})$ is self-dual.

From Conditions (9)-(11), it follows that $T_{2} T_{0}^{t} \equiv 0(\bmod p)$, so $\operatorname{Tor}_{2}(\mathcal{C}) \subseteq \operatorname{Res}(\mathcal{C})^{\perp}$. From Corollary 1, $\operatorname{dim} \operatorname{Tor}_{2}(\mathcal{C})=k+2 l=n-k=\operatorname{dim} \operatorname{Res}(\mathcal{C})^{\perp}$. Consequently, $\left|\operatorname{Tor}_{2}(\mathcal{C})\right|=$ $\left|\operatorname{Res}(\mathcal{C})^{\perp}\right|$ and so $\operatorname{Tor}_{2}(\mathcal{C})=\operatorname{Res}(\mathcal{C})^{\perp}$.

4. Codes over $\operatorname{GR}\left(p^{3}, r\right)$ from a code over \mathbb{F}_{p}^{r}

We now use Proposition 1 to construct self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$ with prescribed first torsion code. We start with a self-dual $[n, k+l]$ code \mathcal{C}_{1} over $\mathbb{F}_{p^{r}}$ with generator matrix

$$
G^{\prime}=\left[\begin{array}{l}
A^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
I_{k} & A_{2}^{\prime} & A_{30}^{\prime} & A_{40}^{\prime} \\
0 & I_{l} & B_{3}^{\prime} & B_{40}^{\prime}
\end{array}\right],
$$

where the columns are grouped into blocks of sizes k, l, l and k. Note that $2(k+l)=n$. We want to obtain the number of self-dual codes \mathcal{C} over $\operatorname{GR}\left(p^{3}, r\right)$ such that $\operatorname{Tor}_{1}(\mathcal{C})=\mathcal{C}_{1}$.

Since \mathcal{C}_{1} is self-dual, then $G^{\prime} G^{\prime t} \equiv 0(\bmod p)$ and we obtain

$$
\begin{align*}
& I_{k}+A_{2}^{\prime} A_{2}^{\prime t}+A_{30}^{\prime} A_{30}^{\prime}{ }^{t}+A_{40}^{\prime} A_{40}^{\prime t} \equiv 0 \quad(\bmod p) \tag{12}\\
& A_{2}^{\prime}+A_{30}^{\prime} B_{3}^{\prime t}+A_{40}^{\prime} B_{40}^{\prime t} \equiv 0 \quad(\bmod p) \tag{13}\\
& I_{l}+B_{3}^{\prime} B_{3}^{\prime t}+B_{40}^{\prime} B_{40}^{\prime}{ }^{t} \equiv 0 \quad(\bmod p) . \tag{14}
\end{align*}
$$

Let $H=\left[\begin{array}{cc}A_{30}^{\prime} & A_{40}^{\prime} \\ B_{3}^{\prime} & B_{40}^{\prime}\end{array}\right]$ and $J=\left[\begin{array}{cc}I_{k} & -A_{2}^{\prime} \\ -A_{2}^{\prime t} & I_{l}+A_{2}^{\prime t} A_{2}^{\prime}\end{array}\right]$. Note that H and J are both square matrices of order $k+l$. From (12)-(14), we have

$$
H\left(-H^{t} J\right) \equiv I_{k+l} \quad(\bmod p)
$$

Hence, H is invertible modulo p. By a permutation of columns of H, we can assume that the $k \times k$ matrix A_{40}^{\prime} is invertible modulo p.

Let \mathcal{C}_{0} be the k-dimensional subspace of \mathcal{C}_{1} with generator matrix

$$
A^{\prime}=\left[\begin{array}{llll}
I_{k} & A_{2}^{\prime} & A_{30}^{\prime} & A_{40}^{\prime}
\end{array}\right] .
$$

From (12) and (13), \mathcal{C}_{0} is a self-orthogonal code and $\mathcal{C}_{0} \subseteq \mathcal{C}_{1} \subseteq \mathcal{C}_{0}^{\perp}$. Now, the dual of \mathcal{C}_{0}^{\perp} has dimension $n-k=k+2 l$. Hence we can write the generator matrix of \mathcal{C}_{0}^{\perp} as

$$
\left[\begin{array}{c}
A^{\prime} \\
B^{\prime} \\
C^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
I_{k} & A_{2}^{\prime} & A_{30}^{\prime} & A_{40}^{\prime} \\
0 & I_{l} & B_{3}^{\prime} & B_{40}^{\prime} \\
0 & 0 & I_{l} & C_{4}^{\prime}
\end{array}\right],
$$

where C_{4}^{\prime} is an $l \times k$ matrix over $\mathbb{F}_{p^{r}}$.
We wish to find matrices $A_{2}, A_{3}, A_{4}, B_{3}, B_{4}$ and C_{4} with entries from $\operatorname{GR}\left(p^{e}, r\right)$ satisfying conditions (6)-(9), which are equivalent to

$$
\begin{align*}
I_{k}+A_{2} A_{2}^{t}+A_{3} A_{3}^{t}+A_{4} A_{4}^{t} \equiv 0 & \left(\bmod p^{3}\right) \tag{15}\\
A_{2}+A_{3} B_{3}^{t}+A_{4} B_{4}^{t} \equiv 0 & \left(\bmod p^{2}\right) \tag{16}\\
I_{l}+B_{3} B_{3}^{t}+B_{4} B_{4}^{t} \equiv 0 & (\bmod p) \tag{17}\\
A_{3}+A_{4} C_{4}^{t} \equiv 0 & (\bmod p) . \tag{18}
\end{align*}
$$

The matrices A_{2}, B_{3} and C_{4} are considered modulo p, A_{3} and B_{4} are considered modulo p^{2}, and A_{4} modulo p^{3}. As previously done, we write the matrices in p-adic expansion: $A_{3}=A_{30}+p A_{31}, B_{4}=B_{40}+p B_{41}$ and $A_{4}=A_{40}+p A_{41}+p^{2} A_{42}$, where A_{31}, B_{41}, A_{41} and A_{42} have entries from $\mathcal{T}_{p^{r}}$.

Let $A_{2}, A_{30}, A_{40}, B_{3}$ and B_{40} be the matrices over $\mathcal{T}_{p^{r}}$ such that $\bar{A}_{2}=A_{2}^{\prime}, \bar{A}_{30}=A_{30}^{\prime}$, $\bar{A}_{40}=A_{40}^{\prime}, \bar{B}_{3}=B_{3}^{\prime}$ and $\bar{B}_{40}=B_{40}^{\prime}$. From (12) and (13), there exist matrices $\left(f_{i j}\right)$ and D with entries from $\operatorname{GR}\left(p^{3}, r\right)$ such that

$$
\begin{equation*}
A_{2}+A_{30} B_{3}^{t}+A_{40} B_{40}^{t}=p D \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{k}+A_{2} A_{2}^{t}+A_{30} A_{30}^{t}+A_{40} A_{40}^{t}=p\left(f_{i j}\right) . \tag{20}
\end{equation*}
$$

As in [10], B_{41} and C_{4} are uniquely determined by

$$
\begin{equation*}
B_{41}^{t} \equiv-A_{40}^{-1}\left(D+A_{31} B_{3}^{t}+A_{41} B_{40}^{t}\right) \quad(\bmod p) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{4}^{t} \equiv-A_{40}^{-1} A_{30} \quad(\bmod p) \tag{22}
\end{equation*}
$$

which are sufficient conditions for (16) and (18). Since (14) is the same as (17), we only have to look at (15). It then follows that the code \mathcal{C} is self-dual if and only if

$$
\begin{equation*}
f_{i j}+\widetilde{A_{30} A_{31}^{t}}+\widetilde{A_{40} A_{41}^{t}}+p\left(A_{31} A_{31}^{t}+A_{41} A_{41}^{t}+\widetilde{A_{40} A_{42}^{t}}\right) \equiv 0 \quad\left(\bmod p^{2}\right) \tag{23}
\end{equation*}
$$

Our goal is to count the number of matrices A_{31}, A_{41} and A_{42} satisfying (23).

For the remainder of this paper, we assume that p is an odd prime. Following the argument in Section 2.1 of [10], there are $p^{r k l}$ possible choices for $A_{31}, p^{\frac{r k(k-1)}{2}}$ for A_{41} and $p^{\frac{r k(k-1)}{2}}$ for A_{42}. Therefore, we have $p^{r k\left(\frac{n}{2}-1\right)}$ possible choices for the matrices A_{31}, A_{41} and A_{42}. We have proved the following result, which is analogous to Proposition 2.2 of [10].
Proposition 2. Let p be an odd prime. A self-dual code over $G R\left(p^{3}, r\right)$ can be induced from a self-dual code \mathcal{C}_{1} over $\mathbb{F}_{p^{r}}$. There are $p^{r k\left(\frac{n}{2}-1\right)}$ self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$ of length n corresponding to each subspace of \mathcal{C}_{1} of dimension k, where $0 \leq k \leq \frac{n}{2}$.

For the sake of completeness, we describe the matrices A_{31}, A_{41} and $A_{42} . A_{31}$ is an arbitrary $k \times l$ matrix with entries from $\mathcal{T}_{p^{r}}, A_{41}$ is determined by

$$
\begin{equation*}
f_{i j}+\widetilde{A_{30} A_{31}^{t}}+\widetilde{A_{40} A_{41}^{t}} \equiv 0 \quad(\bmod p), \tag{24}
\end{equation*}
$$

while A_{42} is determined by

$$
\begin{equation*}
\left(h_{i j}\right)+\widetilde{A_{40} A_{42}^{t}} \equiv 0 \quad(\bmod p), \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(f_{i j}\right)+\widetilde{A_{30} A_{31}^{t}}+\widetilde{A_{40} A_{41}^{t}}+p\left(A_{31} A_{31}^{t}+A_{41} A_{41}^{t}\right)=p\left(h_{i j}\right) . \tag{26}
\end{equation*}
$$

5. Mass Formula and Classification

Recall from Lemma 1 that $\sigma_{p^{r}}(n, k)$ is the number of self-orthogonal codes of even length n and dimension k over $\mathbb{F}_{p^{r}}$. Also, from Lemma $2,\binom{n}{k}_{p^{r}}$ is the number of k dimensional subspaces of an n-dimensional vector space over $\mathbb{F}_{p^{r}}$, where $0 \leq k \leq n$. The following theorem gives the mass formula for self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$.

Theorem 1. Let p be an odd prime and let $N_{p^{3}, r}(n)$ denote the number of distinct self-dual codes of even length $n=2 m$ over $\operatorname{GR}\left(p^{3}, r\right)$. Then

$$
N_{p^{3}, r}(n)=\sigma_{p^{r}}(n, m) \sum_{k=0}^{m}\binom{m}{k}_{p^{r}} p^{r k(n / 2-1)} .
$$

Proof. From Lemma 1, there are $\sigma_{p^{r}}(n, m)$ self-dual codes of length n over $\mathbb{F}_{p^{r}}$. Let \mathcal{C}_{1} be one such self-dual code. Lemma 2 tells us that there are $\binom{m}{k}_{p^{r}}$ subspaces $\mathcal{C}_{0} \subseteq \mathcal{C}_{1}$ of dimension k, where $0 \leq k \leq m$. Finally, from Proposition 2, there are $p^{r k(m-1)}$ self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$ corresponding to \mathcal{C}_{0}. The result immediately follows.

When $r=1$, Theorem 1 coincides with the result in [10] for $\mathbb{Z}_{p^{3}}$.
We now give a classification of self-dual codes over $\operatorname{GR}\left(p^{3}, 2\right)$ of length 4 for $p=3,5$. Our goal is to find a representative for each equivalence classes of codes. In defining the equivalence of codes over $\operatorname{GR}\left(p^{3}, 2\right)$, we allow permutation of coordinates and (if necessary) multiplying certain coordinates by -1 . All computations for this paper were done with the computer algebra package MAGMA [2].

5.1. Building-up

Using the construction method discussed in Section 4, a general way to construct selfdual codes over $\operatorname{GR}\left(p^{3}, 2\right)$ of length 4 can be described. Note that a self-dual code of length 4 over $\operatorname{GR}\left(p^{3}, 2\right)$ has one of the following three types: $\{0,2,2\},\{1,1,1\}$ or $\{2,0,0\}$.

We start with a self-dual code $\mathcal{C}^{[4]_{p}}$ over $\mathbb{F}_{p^{2}}$ of length 4 with generator matrix $\left[I_{2} A\right]$, where A is a 2×2 matrix over $\mathbb{F}_{p^{2}}$ and $A A^{t} \equiv-I_{2}(\bmod p)$. Let $\mathcal{C}^{[4, k]_{p}}$ be a self-dual code over $\operatorname{GR}\left(p^{3}, 2\right)$ of length 4 and type $\{k, l, l\}$ induced from $\mathcal{C}^{[4]_{p}}$, where $k=0,1,2$ and $l=2-k$.

For $\alpha \in \mathbb{F}_{p^{r}}$, we denote by $\widehat{\alpha}$ the element in $\mathcal{T}_{p^{r}}$ such that $\bar{\alpha}=\alpha$. Given a matrix $M=\left(\alpha_{i j}\right)$ over $\mathbb{F}_{p^{r}}$, we denote by \widehat{M} the matrix $\left(\widehat{\alpha}_{i j}\right)$ over $\mathcal{T}_{p^{r}}$.
Proposition 3. $\mathcal{C}^{[4,0]_{p}}$ has generator matrix $\mathfrak{m}_{p}(\widehat{A})=\left[\begin{array}{cc}p I_{2} & p \widehat{A} \\ 0 & p^{2} I_{2}\end{array}\right]$.
Proof. This immediately follows from the construction method discussed in Section 4, where we take $k=0$ and $l=2$.

We now describe the generator matrix of $\mathcal{C}^{[4,1]_{p}}$. Let $a_{1} \in \mathbb{F}_{p^{2}}$. By adding a_{1} times the second row of the matrix $\left[I_{2} A\right]$ to its first row, and permuting the last two columns whenever necessary so that the $(1,4)$ entry is nonzero, we obtain a matrix over $\mathbb{F}_{p^{2}}$ of the form

$$
G=\left[\begin{array}{cccc}
1 & a_{1} & b_{1} & c_{1} \\
0 & 1 & d_{1} & e_{1}
\end{array}\right]
$$

where $a_{1}, b_{1}, c_{1}, d_{1}, e_{1} \in \mathbb{F}_{p^{r}}$ and $c_{1} \neq 0$. The code $\mathcal{C}^{[4] p}$ is equivalent to the code with generator matrix G. Let

$$
\widehat{G}=\left[\begin{array}{llll}
1 & a & b & c \\
0 & 1 & d & e
\end{array}\right]
$$

Since c_{1} is nonzero, then c is a nonzero element of $\mathcal{T}_{p^{r}}$. Thus, c is a unit of $\operatorname{GR}\left(p^{3}, 2\right)$.
Proposition 4. $\mathcal{C}^{[4,1]_{p}}$ has generator matrix

$$
\mathfrak{m}_{p}(\widehat{G}, x)=\left[\begin{array}{cccc}
1 & a & b+p x & c+p y+p^{2} z \\
0 & p & p d & p e+p^{2} q \\
0 & 0 & p^{2} & p^{2} r
\end{array}\right]
$$

where x is an arbitrary element of $\mathcal{T}_{p^{r}}$ and $y, z, q, r \in \mathcal{T}_{p^{r}}$ such that

$$
\begin{aligned}
y & \equiv-(2 c)^{-1}(F+2 b x) \quad(\bmod p) \\
z & \equiv-(2 c)^{-1} H \quad(\bmod p) \\
q & \equiv-c^{-1}(D+d x+e y) \quad(\bmod p) \\
r & \equiv-c^{-1} b \quad(\bmod p)
\end{aligned}
$$

with

$$
F=\frac{1}{p}\left(1+a^{2}+b^{2}+c^{2}\right)
$$

$$
\begin{aligned}
H & =\frac{1}{p}\left(F+2 b x+2 c y+p x^{2}+p y^{2}\right) \\
D & =\frac{1}{p}(a+b d+c e)
\end{aligned}
$$

Proof. Let $A_{2}=(a), A_{30}=(b), A_{40}=(c)$. From (20), we obtain

$$
p F=\left(1+a^{2}+b^{2}+c^{2}\right)
$$

where $F=\left(f_{i j}\right)$. The matrices $A_{31}=(x)$ and $A_{41}=(y)$ satisfy (24). Hence, we have

$$
\begin{aligned}
F+2 b x+2 c y & \equiv 0 \quad(\bmod p) \\
y & \equiv-(2 c)^{-1}(F+2 b x) \quad(\bmod p)
\end{aligned}
$$

Next, we obtain

$$
p H=\left(F+2 b x+2 c y+p x^{2}+p y^{2}\right)
$$

from (26), where $H=\left(h_{i j}\right)$. The matrix $A_{42}=(z)$ satisfies (25), which gives us

$$
\begin{aligned}
H+2 c z & \equiv 0 \quad(\bmod p) \\
z & \equiv-(2 c)^{-1} H \quad(\bmod p)
\end{aligned}
$$

Now, let $C_{4}=(r)$. From (22), we have $r \equiv c^{-1} b(\bmod p)$. Finally, let $B_{3}=(d)$, $B_{40}=(e)$ and $B_{41}=(q)$. We compute

$$
p D=(a+b d+c e)
$$

from (19). Then from (21), it follows that $q \equiv-c^{-1}(D+d x+e y)(\bmod p)$.
We now describe the generator matrix of $\mathcal{C}^{[4,2]_{p}}$. We permute the columns of the matrix [$\left.I_{2} A\right]$ whenever necessary, so that the $(1,1)$ entry of A is nonzero. We write

$$
\left[\begin{array}{ll}
I_{2} & A
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & s_{1} & t_{1} \\
0 & 1 & u_{1} & v_{1}
\end{array}\right]
$$

where $s_{1}, t_{1}, u_{1}, v_{1} \in \mathbb{F}_{p^{r}}$ and $s_{1} \neq 0$. Let

$$
\widehat{A}=\left[\begin{array}{cc}
s & t \\
u & v
\end{array}\right]
$$

Since s_{1} is nonzero, then s is a nonzero element of $\mathcal{T}_{p^{2}}$, and thus, is a unit of $\operatorname{GR}\left(p^{3}, 2\right)$. Also, since A has an inverse modulo p, then $\operatorname{det} A=s_{1} v_{1}-t_{1} u_{1} \neq 0$, which implies that $s v-t u \neq 0$ and $(s v-t u) / s=v-t u s^{-1}$ has an inverse modulo p.

Proposition 5. $\mathcal{C}^{[4,2]_{p}}$ has generator matrix

$$
\mathfrak{m}_{p}\left(\widehat{A}, y_{12}, z_{12}\right)=\left[I_{2} \widehat{A}+p Y+p^{2} Z\right]
$$

where y_{12} and z_{12} are arbitrary elements of $\mathcal{T}_{p^{2}}$ and $Y=\left(y_{i j}\right)$ and $Z=\left(z_{i j}\right)$ are matrices over $\mathcal{T}_{p^{2}}$ satisfying

$$
\begin{aligned}
& F+\widetilde{\widehat{A} Y^{t}} \equiv 0 \quad(\bmod p) \\
& H+\widehat{\widehat{A} Z^{t}} \equiv 0 \quad(\bmod p)
\end{aligned}
$$

with $F=\frac{1}{p}\left(I_{2}+\widehat{A} \widehat{A}^{t}\right)$ and $H=\frac{1}{p}\left(F+\widetilde{\widehat{A} Y^{t}}+p Y Y^{t}\right)$.
Proof. Let $A_{40}=\widehat{A}$. From (20), we compute

$$
p F=I_{2}+\widehat{A} \widehat{A}^{t},
$$

where $F=\left(f_{i j}\right)$. Note that F is a symmetric matrix. The matrix $A_{41}=Y=\left(y_{i j}\right)$, with entries from $\mathcal{T}_{p^{2}}$, satisfies (24). We then have $F+\widehat{\widehat{A} Y^{t}} \equiv 0(\bmod p)$, that is,

$$
\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{12} & f_{22}
\end{array}\right]+\left[\begin{array}{ll}
s & t \\
u & v
\end{array}\right]\left[\begin{array}{ll}
y_{11} & y_{21} \\
y_{12} & y_{22}
\end{array}\right]+\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{ll}
s & u \\
t & v
\end{array}\right] \equiv 0 \quad(\bmod p) .
$$

Hence Y satisfies

$$
\begin{aligned}
f_{11}+2 s y_{11}+2 t y_{12} & \equiv 0 \quad(\bmod p) \\
f_{22}+2 u y_{21}+2 v y_{22} & \equiv 0 \quad(\bmod p) \\
f_{12}+s y_{21}+t y_{22}+u y_{11}+v y_{12} & \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Observe that y_{11}, y_{21} and y_{22} can each be expressed in terms of y_{12}. Thus y_{11}, y_{21} and y_{22} are determined by \widehat{A} and y_{12}.

Next we compute

$$
p H=F+\widetilde{\widehat{A} Y^{t}}+p Y Y^{t}
$$

from (26), where $H=\left(h_{i j}\right)$. The matrix $A_{42}=Z=\left(z_{i j}\right)$, with entries from $\mathcal{T}_{p^{2}}$, satisfies (25). Hence Z satisfies $H+\widetilde{\widehat{A} Z^{t}} \equiv 0(\bmod p)$, that is,

$$
\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right]+\left[\begin{array}{ll}
s & t \\
u & v
\end{array}\right]\left[\begin{array}{ll}
z_{11} & z_{21} \\
z_{12} & z_{22}
\end{array}\right]+\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]\left[\begin{array}{ll}
s & u \\
t & v
\end{array}\right] \equiv 0 \quad(\bmod p) .
$$

Using a similar argument as earlier, we see that z_{11}, z_{21} and z_{22} are determined by \widehat{A} and z_{12}.

5.2. Self-dual codes over $\operatorname{GR}(27,2)$

We consider $\operatorname{GR}(27,2)=\mathbb{Z}_{27}[\omega]$, where $\omega^{2}+5 \omega+26=0$ and $\omega^{8}=1$, and $\mathbb{F}_{9}=\mathbb{Z}_{3}[\bar{\omega}]$, where $\bar{\omega}^{2}+2 \omega+2=0$ and $\bar{\omega}^{8}=1$.

From [4], there exist two inequivalent self-dual codes of length 4 over $\mathbb{F}_{9}: \mathcal{C}_{1}^{[4]_{3}}$ and $\mathcal{C}_{2}^{[4]_{3}}$ with generator matrices

$$
\left[\begin{array}{ll}
I_{2} & A_{3,1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \bar{\omega}^{2} & 0 \\
0 & 1 & 0 & \bar{\omega}^{2}
\end{array}\right] \text { and }\left[\begin{array}{ll}
I_{2} & A_{3,2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & \bar{\omega}^{4} & 1
\end{array}\right]
$$

respectively. The matrices

$$
G_{3,1,0}=\left[\begin{array}{cccc}
1 & 0 & 0 & \bar{\omega}^{2} \\
0 & 1 & \bar{\omega}^{2} & 0
\end{array}\right], G_{3,1,1}=\left[\begin{array}{cccc}
1 & 1 & \bar{\omega}^{2} & \bar{\omega}^{2} \\
0 & 1 & 0 & \bar{\omega}^{2}
\end{array}\right] \text { and } G_{3,1, \bar{\omega}}=\left[\begin{array}{cccc}
1 & \bar{\omega} & \bar{\omega}^{2} & \bar{\omega}^{3} \\
0 & 1 & 0 & \bar{\omega}^{2}
\end{array}\right]
$$

generate codes which are equivalent to $\mathcal{C}_{1}^{[4]_{3}}$, while the matrices

$$
G_{3,2,0}=\left[\begin{array}{ll}
I_{2} & A_{3,2}
\end{array}\right] \text { and } G_{3,2, \bar{\omega}}=\left[\begin{array}{cccc}
1 & \bar{\omega} & \bar{\omega}^{3} & \bar{\omega}^{2} \\
0 & 1 & \bar{\omega}^{4} & 1
\end{array}\right]
$$

generate codes which are equivalent to $\mathcal{C}_{2}^{[4] 3}$.
Table 1: Self-dual Codes of Length 4 over $\operatorname{GR}(27,2)$.

Type	Generator Matrix	No. of Codes	$\|\operatorname{Aut}(\mathcal{C})\|$
\{0, 2, 2\}	$\mathfrak{m}_{3}\left(\widehat{A}_{3,1}\right)$	1	32
	$\mathfrak{m}_{3}\left(\widehat{A}_{3,2}\right)$	1	48
\{1, 1, 1\}	$\mathfrak{m}_{3}\left(\widehat{G}_{3,1,0}, 0\right)$	1	16
	$\mathfrak{m}_{3}\left(\widehat{G}_{3,1,1}, 0\right), \mathfrak{m}_{3}\left(\widehat{G}_{3,1, \bar{\omega}}, 0\right), \mathfrak{m}_{3}\left(\widehat{G}_{3,2, \bar{\omega}}, 0\right)$	3	8
	$\begin{aligned} & \mathfrak{m}_{3}\left(\widehat{G}_{3,1,0}, x\right) \text {, where } x \in\{1, \omega\} \\ & \mathfrak{m}_{3}\left(\widehat{G}_{3,1,1}, x\right) \text {, where } x \in\left\{1, \omega, \omega^{2}, \omega^{3}\right\} \\ & \mathfrak{m}_{3}\left(\widehat{G}_{3,2,0}, 0\right), \\ & \mathfrak{m}_{3}\left(\widehat{G}_{3,2, \bar{\omega}}, x\right) \text {, where } x \in\left\{1, \omega^{2}, \omega^{3}, \omega^{5}\right\} \\ & \hline \end{aligned}$	11	4
	$\begin{aligned} & \mathfrak{m}_{3}\left(\widehat{G}_{3,1, \bar{\omega}}, x\right), \text { where } x \in\{1, \omega\}, \\ & \mathfrak{m}_{3}\left(\widehat{G}_{3,2,0}, \omega\right) \end{aligned}$	3	2
\{2, 0, 0\}	$\mathfrak{m}_{3}\left(\widehat{A}_{3,1}, 0,0\right)$	1	32
	$\mathfrak{m}_{3}\left(\widehat{A}_{3,2}, 0,0\right)$	1	16
	$\begin{aligned} & \mathfrak{m}_{3}\left(\widehat{A}_{3,1}, 0, z\right), \text { where } z \in\{1, \omega\} \\ & \mathfrak{m}_{3}\left(\widehat{A}_{3,1}, 1, z\right), \text { where } z \in\left\{0,1, \omega, \ldots, \omega^{7}\right\} \\ & \mathfrak{m}_{3}\left(\widehat{A}_{3,1}, \omega, z\right), \text { where } z \in\left\{0,1, \omega, \ldots, \omega^{7}\right\} \\ & \mathfrak{m}_{3}\left(\widehat{A}_{3,2}, 0, z\right) \text {, where } z \in\left\{1, \omega, \omega^{2}, \omega^{3}\right\} \\ & \mathfrak{m}_{3}\left(\widehat{A}_{3,2}, \omega, z\right) \text {, where } z \in\left\{0,1, \omega, \ldots, \omega^{7}\right\} \end{aligned}$	33	8

In Table 1, we give the list of inequivalent self-dual codes over $\operatorname{GR}(27,2)$ of length 4. Using the mass formula in Theorem 1, we make the following computations, confirming that Table 1 gives a complete classification.

$$
N_{27,2}(4)=\sigma_{9}(4,2) \sum_{k=0}^{2}\binom{2}{k}_{9} 3^{2 k}=20+1800+1620=\sum_{\mathcal{C}} \frac{2^{4} \cdot 4!}{|\operatorname{Aut}(\mathcal{C})|}
$$

Hence there are 55 self-dual codes of length 4 over $\operatorname{GR}(27,2)$.

5.3. Self-dual codes over $\operatorname{GR}(125,2)$

We consider $\operatorname{GR}(125,2)=\mathbb{Z}_{125}[\omega]$, where $\omega^{2}+89 \omega+57=0$ and $\omega^{24}=1$, and $\mathbb{F}_{25}=\mathbb{Z}_{5}[\bar{\omega}]$, where $\bar{\omega}^{2}+4 \omega+2=0$ and $\bar{\omega}^{24}=1$.

From [4], there exist three inequivalent self-dual codes of length 4 over $\mathbb{F}_{25}: \mathcal{C}_{1}^{[4]_{5}}, \mathcal{C}_{2}^{[4]_{5}}$ and $\mathcal{C}_{3}^{[4]_{5}}$ with generator matrices $\left[I_{2} A_{5,1}\right],\left[\begin{array}{ll}I_{2} & A_{5,2}\end{array}\right]$ and $\left[I_{2} A_{5,3}\right]$ respectively, where

$$
A_{5,1}=\left[\begin{array}{cc}
\bar{\omega}^{6} & 0 \\
0 & \bar{\omega}^{6}
\end{array}\right], A_{5,2}=\left[\begin{array}{cc}
\bar{\omega}^{8} & \bar{\omega}^{4} \\
\bar{\omega}^{16} & \bar{\omega}^{8}
\end{array}\right] \text { and } A_{5,3}=\left[\begin{array}{cc}
1 & \bar{\omega}^{21} \\
\bar{\omega}^{9} & 1
\end{array}\right],
$$

respectively. $\mathcal{C}_{1}^{[4]]_{5}}$ is equivalent to codes with generator matrices

$$
\begin{gathered}
G_{5,1,0}=\left[\begin{array}{cccc}
1 & 0 & 0 & \bar{\omega}^{6} \\
0 & 1 & \bar{\omega}^{6} & 1
\end{array}\right], G_{5,1,1}=\left[\begin{array}{cccc}
1 & 1 & \bar{\omega}^{6} & \bar{\omega}^{6} \\
0 & 1 & 0 & \bar{\omega}^{6}
\end{array}\right], G_{5,1, \bar{\omega}}=\left[\begin{array}{cccc}
1 & \bar{\omega} & \bar{\omega}^{6} & \bar{\omega}^{7} \\
0 & 1 & 0 & \bar{\omega}^{6}
\end{array}\right], \\
G_{5,1, \bar{\omega}^{2}}=\left[\begin{array}{cccc}
1 & \bar{\omega}^{2} & \bar{\omega}^{6} & \bar{\omega}^{8} \\
0 & 1 & 0 & \bar{\omega}^{6}
\end{array}\right] \text { and } G_{5,1, \bar{\omega}^{3}}=\left[\begin{array}{cccc}
1 & \bar{\omega}^{3} & \bar{\omega}^{6} & \bar{\omega}^{9} \\
0 & 1 & 0 & \bar{\omega}^{6}
\end{array}\right],
\end{gathered}
$$

$\mathcal{C}_{2}^{[4]_{5}}$ is equivalent to codes with generator matrices

$$
\begin{aligned}
& G_{5,2,0}=\left[\begin{array}{ll}
I_{2} & A_{5,2}
\end{array}\right], G_{5,2,1}=\left[\begin{array}{cccc}
1 & 1 & \bar{\omega}^{12} & \bar{\omega}^{3} \\
0 & 1 & \bar{\omega}^{16} & \bar{\omega}^{8}
\end{array}\right], \\
& G_{5,2, \bar{\omega}}=\left[\begin{array}{cccc}
1 & \bar{\omega} & \bar{\omega}^{19} & \bar{\omega}^{18} \\
0 & 1 & \bar{\omega}^{16} & \bar{\omega}^{8}
\end{array}\right] \text { and } G_{5,2, \bar{\omega}^{2}}=\left[\begin{array}{cccc}
1 & \bar{\omega}^{2} & \bar{\omega}^{21} & \bar{\omega}^{22} \\
0 & 1 & \bar{\omega}^{16} & \bar{\omega}^{8}
\end{array}\right],
\end{aligned}
$$

while $\mathcal{C}_{3}^{[4]_{5}}$ is equivalent to codes with generator matrices

$$
\begin{gathered}
G_{5,3,0}=\left[I_{2} A_{5,3}\right], G_{5,3,1}=\left[\begin{array}{cccc}
1 & 1 & \bar{\omega}^{11} & \bar{\omega}^{7} \\
0 & 1 & \bar{\omega}^{9} & 1
\end{array}\right], G_{5,3, \bar{\omega}^{2}}=\left[\begin{array}{cccc}
1 & \bar{\omega}^{2} & \bar{\omega}^{16} & \bar{\omega}^{11} \\
0 & 1 & \bar{\omega}^{9} & 1
\end{array}\right], \\
G_{5,3, \bar{\omega}^{6}}=\left[\begin{array}{cccc}
1 & \bar{\omega}^{6} & \bar{\omega}^{2} & \bar{\omega}^{8} \\
0 & 1 & \bar{\omega}^{9} & 1
\end{array}\right] \text { and } G_{5,3, \bar{\omega}^{15}}=\left[\begin{array}{cccc}
1 & \bar{\omega}^{15} & \bar{\omega}^{6} & \bar{\omega}^{9} \\
0 & 1 & \bar{\omega}^{9} & 1
\end{array}\right] .
\end{gathered}
$$

Let J_{1} and J_{2} be subsets of \mathcal{T}_{25}, with

$$
\begin{aligned}
& J_{1}=\left\{0,1, \omega, \omega^{2}, \omega^{4}, \omega^{5}, \omega^{7}, \omega^{9}, \omega^{10}, \omega^{11}, \omega^{13}, \omega^{17}\right\} \\
& J_{2}=\left\{0,1, \omega, \omega^{2}, \omega^{4}, \omega^{5}, \omega^{6}, \omega^{7}, \omega^{10}, \omega^{11}, \omega^{15}, \omega^{16}\right\} .
\end{aligned}
$$

Table 2 gives the list of inequivalent self-dual codes over $\operatorname{GR}(125,2)$ of length 4.
Using the mass formula in Theorem 1, we make the following computations, confirming that Table 2 gives a complete classification.

$$
N_{125,2}(4)=\sigma_{25}(4,2) \sum_{k=0}^{2}\binom{2}{k}_{25} 5^{2 k}=52+33800+32500=\sum_{\mathcal{C}} \frac{2^{4} \cdot 4!}{|\operatorname{Aut}(\mathcal{C})|}
$$

Hence there are 904 self-dual codes of length 4 over $\operatorname{GR}(125,2)$.

Table 2: Self-dual Codes of Length 4 over $\operatorname{GR}(125,2)$.

Type	Generator Matrix	No. of Codes	$\|\operatorname{Aut}(\mathcal{C})\|$
\{0,2,2\}	$\mathfrak{m}_{5}\left(\widehat{A}_{5,1}\right)$	1	32
	$\mathfrak{m}_{5}\left(\widehat{A}_{5,2}\right)$	1	24
	$\mathfrak{m}_{5}\left(\widehat{A}_{5,3}\right)$	1	16
\{1, 1, 1\}	$\mathfrak{m}_{5}\left(\widehat{G}_{5,1,0}, 0\right)$	1	16
	$\mathfrak{m}_{5}\left(\widehat{G}_{5,1,1}, 0\right), \mathfrak{m}_{5}\left(\widehat{G}_{5,1, \bar{\omega}^{3}}, 0\right), \mathfrak{m}_{5}\left(\widehat{G}_{5,3, \bar{\omega}^{15}}, 0\right)$	3	8
	$\mathfrak{m}_{5}\left(\widehat{G}_{5,2,0}, 0\right), \mathfrak{m}_{5}\left(\widehat{G}_{5,2,1}, 0\right)$	2	6
	$\begin{aligned} & \mathfrak{m}_{5}\left(\widehat{G}_{5,1, \bar{\omega}}, 0\right), \mathfrak{m}_{5}\left(\widehat{G}_{5,1, \bar{\omega}^{2}}, 0\right), \mathfrak{m}_{5}\left(\widehat{G}_{5,3,0}, 0\right), \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,1,0}, x\right), \text { where } x \in\left\{1, \omega, \ldots, \omega^{5}\right\}, \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,1,1}, x\right), \text { where } x \in\left\{1, \omega, \ldots, \omega^{11}\right\}, \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,2, \bar{\omega}}, x\right), \text { where } x \in\left\{0,1, \omega, \ldots, \omega^{23}\right\}, \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,3, \bar{\omega}^{6}}, x\right), \text { where } x \in\left\{0,1, \omega, \ldots, \omega^{23}\right\}, \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,3, \bar{\omega}^{15}}, x\right), \text { where } x \in\left\{1, \omega, \ldots, \omega^{11}\right\} \end{aligned}$	83	4
	$\begin{aligned} & \mathfrak{m}_{5}\left(\widehat{G}_{5,1, \bar{\omega}}, x\right), \text { where } x \in\left\{1, \omega, \ldots, \omega^{11}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,1, \bar{\omega}^{2}}, x\right), \text { where } x \in\left\{1, \omega, \ldots, \omega^{11}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,1, \bar{\omega}^{3}}, x\right), \text { where } x \in\left\{1, \omega, \ldots, \omega^{5}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,2,0}, x\right), \text { where } x \in\left\{1, \omega, \ldots, \omega^{7}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,2,1}, x\right), \text { where } x \in\left\{1, \omega, \ldots, \omega^{7}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,2, \bar{\omega}^{2}}, x\right), \text { where } x \in\left\{0,1, \omega, \ldots, \omega^{23}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,3,0}, x\right), \text { where } x \in\left\{1, \omega, \ldots, \omega^{11}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,3,1}, x\right), \text { where } x \in\left\{0,1, \omega, \ldots, \omega^{23}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{G}_{5,3, \bar{\omega}^{2}}, x\right), \text { where } x \in\left\{0,1, \omega, \ldots, \omega^{23}\right\} \end{aligned}$	133	2
\{2,0,0\}	$\mathfrak{m}_{5}\left(\widehat{A}_{5,1}, 0,0\right)$	1	32
	$\mathfrak{m}_{5}\left(\widehat{A}_{5,2}, 0,0\right)$	1	24
	$\mathfrak{m}_{5}\left(\widehat{A}_{5,3}, \omega^{21}, \omega^{3}\right)$	1	16
	$\begin{aligned} & \mathfrak{m}_{5}\left(\widehat{A}_{5,1}, 0, z\right), \text { where } z \in\left\{1, \omega, \ldots, \omega^{5}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{A}_{5,1}, y, z\right), \text { where } y \in\left\{1, \omega, \ldots, \omega^{5}\right\}, z \in \mathcal{T}_{25} \\ & \mathfrak{m}_{5}\left(\widehat{A}_{5,2}, 0, z\right), \text { where } z \in\left\{1, \omega, \ldots, \omega^{7}\right\} \\ & \mathfrak{m}_{5}\left(\widehat{A}_{5,2}, y, z\right), \text { where } y \in\left\{1, \omega, \ldots, \omega^{7}\right\}, z \in \mathcal{T}_{25} \\ & \mathfrak{m}_{5}\left(\widehat{A}_{5,3}, y, z\right), \text { where } y \in J_{1}, z \in \mathcal{T}_{25}, \\ & \mathfrak{m}_{5}\left(\widehat{A}_{5,3}, \omega^{21}, z\right), \text { where } z \in J_{2} \end{aligned}$	676	8

6. Conclusion

We discussed a method to construct self-dual codes over $\operatorname{GR}\left(p^{3}, r\right)$ from a self-dual code over $\mathbb{F}_{p^{r}}$, where p is an odd prime and r is a positive integer. This construction method led to a mass formula and classification of self-dual codes of length 4 over $\operatorname{GR}\left(p^{3}, 2\right)$ for $p=3,5$.

In this study, we only dealt with the case when p is an odd prime. Letting $p=2$ in
(24), we obtain

$$
f_{i j}+\widetilde{A_{30} A_{31}^{t}}+\widetilde{A_{40} A_{41}^{t}} \equiv 0 \quad(\bmod 2) .
$$

Since the diagonal entries of \widetilde{X} are all 0 , then we must have $f_{i i} \equiv 0(\bmod 2)$ for each i. Hence, from (20), the diagonal entries of $I_{k}+A_{2} A_{2}^{t}+A_{30} A_{30}^{t}+A_{40} A_{40}^{t}=2\left(f_{i j}\right)$ must be doubly even.

Thus, in the case of $p=2$, the construction algorithm becomes more complicated because we need an additional property for the self-dual codes over $\mathbb{F}_{2^{r}}$. We are still investigating the mass formula for self-dual codes over $\mathrm{GR}(8, r)$.

Acknowledgements

This research is funded by the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP).

References

[1] JM Balmaceda, RA Betty, and F Nemenzo. Mass formula for self-dual codes over $\mathbb{Z}_{p^{2}}$. Discrete Math., 308:2984-3002, 2008.
[2] W Bosma, J Cannon, and C Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
[3] W-H Choi. Mass formula for self-dual codes over Galois rings $\operatorname{GR}\left(p^{2}, 2\right)$. Korean J. Math., 24 (4):751-764, 2016.
[4] W-H Choi. The classification of self-dual codes over Galois rings of length 4. Bulletin of the Korean Mathematical Society, 55:1371-1387, 2018.
[5] P Gaborit. Mass formulas for self-dual codes over \mathbb{Z}_{4} and $\mathbb{F}_{q}+u \mathbb{F}_{q}$ rings. IEEE Trans. Inform. Theory, 42:1222-1228, 1996.
[6] AR Hammons, PV Kumar, AR Calderbank, NJA Sloane, and P Solé. The \mathbb{Z}_{4}-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory, 40 (2):301-319, 1994.
[7] WC Huffman and V Pless. Fundamentals of Error-Correcting Codes. Cambridge University Press, United Kingdom, 2004.
[8] BR McDonald. Finite Rings with Identity. Marcel Dekker, Inc., New York, 1974.
[9] K Nagata, F Nemenzo, and H Wada. Constructive algorithm of self-dual errorcorrecting codes. In 11th International Workshop on Algebraic and Combinatorial Coding Theory, pages 215-220, 2008.
[10] K Nagata, F Nemenzo, and H Wada. The number of self-dual codes over $\mathbb{Z}_{p^{3}}$. Des. Codes Cryptogr., 50:291-303, 2009.
[11] K Nagata, F Nemenzo, and H Wada. Mass formula and structure of self-dual codes over $\mathbb{Z}_{2^{s}}$. Des. Codes Cryptogr., 67:293-316, 2013.
[12] GH Norton and A Sălăgean. On the structure of linear and cyclic codes over a finite chain ring. $A A E C C, 10(3): 489-506,2000$.
[13] YH Park. The classification of self-dual modular codes. Finite Fields and Their Applications, 17:442-460, 2011.
[14] V Pless. The number of isotropic subspaces in a finite geometry. Atti. Accad. Naz. Lincei Rendic, 39:418-421, 1965.
[15] JH van Lint and RM Wilson. A Course in Combinatorics. Cambridge University Press, United Kingdom, 1993.
[16] Z-X Wan. Finite Fields and Galois Rings. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3565
 Email addresses: trilbelizann.vasquez@g.msuiit.edu.ph (T.L. Vasquez), gaudencio.petalcorin@g.msuiit.edu.ph (G. Petalcorin)

