EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 4, 2019, 1701-1716 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Mass Formula for Self-Dual Codes over Galois Rings $GR(p^3, r)$

Trilbe Lizann E. Vasquez^{1,*}, Gaudencio C. Petalcorin, Jr.¹

¹ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. Let p be an odd prime and r a positive integer. Let $\operatorname{GR}(p^3, r)$ be the Galois ring of characteristic p^3 and cardinality p^{3r} . In this paper, we investigate the self-dual codes over $\operatorname{GR}(p^3, r)$ and give a method to construct self-dual codes over this ring. We establish a mass formula for self-dual codes over $\operatorname{GR}(p^3, r)$ and classify self-dual codes over $\operatorname{GR}(p^3, 2)$ of length 4 for p = 3, 5.

2010 Mathematics Subject Classifications: 94B05

Key Words and Phrases: Mass formula, self-dual codes, finite ring, Galois ring, classification

1. Introduction

It was shown in [6] that several well-known families of non-linear binary codes can be viewed as linear codes over the ring \mathbb{Z}_4 of integers modulo 4. This discovery led to much interest and attention given to codes over the ring \mathbb{Z}_m of integers modulo m and finite rings in general.

Self-dual codes are an important class of linear codes for both theoretical and practical reasons. It is a fundamental problem to classify self-dual codes, that is, to find a representative for each equivalence class of self-dual codes. However, determining the number of equivalence classes is difficult. This task will be made easier by a mass formula, which will tell us when we have a complete set of representatives from each equivalence class.

Mass formula for self-dual codes over the ring \mathbb{Z}_{p^e} for any prime p and for any positive integer e are established by the effort of many authors [1, 5, 9–11]. A classification method of self-dual codes over \mathbb{Z}_m for arbitrary integer m is given in [13]. In particular, selfdual codes of length 4 over \mathbb{Z}_p were classified in [13] for all primes p in terms of their automorphism groups.

The Galois ring $GR(p^e, r)$, where p is prime, e and r are positive integers, is the unique Galois extension of \mathbb{Z}_{p^e} of degree r. Using a similar argument in [1], the mass formula

http://www.ejpam.com

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3565

Email addresses: trilbelizann.vasquez@g.msuiit.edu.ph (T.L. Vasquez), gaudencio.petalcorin@g.msuiit.edu.ph (G. Petalcorin)

for self-dual codes over $GR(p^2, 2)$ for odd primes p is obtained in [3]. Moreover, self-dual codes of length 4 over GR(p, 2) and $GR(p^2, 2)$ are classified in [4] for all primes p up to equivalence in terms of automorphism group.

In this paper, we build on the method in [10] to establish a mass formula for self-dual codes over $GR(p^3, r)$, where p is an odd prime and r is a positive integer. Using the mass formula, we classify self-dual codes of length 4 over $GR(p^3, 2)$ for p = 3, 5.

2. Preliminaries

Let p be prime and e a positive integer. The modulo p reduction mapping

$$\mu: \mathbb{Z}_{p^e} \to \mathbb{Z}_p, a \mapsto \bar{a} = a \pmod{p}$$

induces the following modulo p reduction mapping between polynomial rings

$$\mu: \mathbb{Z}_{p^e}[x] \to \mathbb{Z}_p[x], f(x) = \sum a_i x^i \mapsto \bar{f}(x) = \sum \bar{a}_i x^i$$

An irreducible polynomial f(x) in $\mathbb{Z}_{p^e}[x]$ is said to be *basic* if $\overline{f}(x)$ is irreducible.

Let f(x) be a monic basic irreducible polynomial over $\mathbb{Z}_{p^e}[x]$ of degree r. We can choose f(x) so that $\omega = x + \langle f(x) \rangle$ is a primitive $(p^r - 1)$ st root of unity. The *Galois ring* $GR(p^e, r)$ of characteristic p^e and cardinality p^{er} is defined as

$$\operatorname{GR}(p^e, r) = \mathbb{Z}_{p^e}[x]/\langle f(x) \rangle = \mathbb{Z}_{p^e}[\omega].$$

Every element of $GR(p^e, r)$ can be expressed uniquely in the ω -adic representation

 $a_0 + a_1\omega + a_2\omega^2 + \dots + a_{r-1}\omega^{r-1}$, where $a_i \in \mathbb{Z}_{p^e}$.

Note that $\operatorname{GR}(p^e, 1) = \mathbb{Z}_{p^e}$ and $\operatorname{GR}(p, r) = \mathbb{F}_{p^r}$, the Galois field of p^r elements.

The modulo p reduction can be naturally extended to

$$\mu: \operatorname{GR}(p^e, r) = \mathbb{Z}_{p^e}[x]/\langle f(x) \rangle \to \mathbb{Z}_p[x]/\langle \bar{f}(x) \rangle = \mathbb{F}_{p^r}, a \mapsto \bar{a} = a \pmod{p}.$$

Let $\mathcal{T}_{p^r} = \{0, 1, \omega, \dots, \omega^{p^r-2}\}$. Observe that the function $\mu|_{\mathcal{T}_{p^r}} : \mathcal{T}_{p^r} \to \mathbb{F}_{p^r}$ is one-to-one and onto. Any element of $\mathrm{GR}(p^e, r)$ can be written uniquely in the *p*-adic representation

$$b_0 + pb_1 + p^2b_2 + \dots + p^{e-1}b_{e-1}$$
, where $b_i \in \mathcal{T}_{p^r}$.

An element $a \in GR(p^e, r)$ is a unit if and only if $\bar{a} \neq 0$.

For the further study of Galois rings, see [8, 16].

Let n be a positive integer and let S^n denote the collection of n-tuples over a finite set S. A code of length n over a finite field \mathbb{F} or a finite ring \mathcal{R} is a subspace of \mathbb{F}^n or an \mathcal{R} -submodule of \mathcal{R}^n , respectively. Every element of the code is called a *codeword*. A matrix G is called a *generator matrix* for a code \mathcal{C} if the rows of G generate all the elements of \mathcal{C} and none of the rows can be written as a linear combination of the other rows.

Two codewords $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are *orthogonal* if their Euclidean inner product $\sum_{i=1}^n x_i y_i$ is zero. The *dual* \mathcal{C}^{\perp} of a code \mathcal{C} of length n over S consists of

all $x \in S^n$ which are orthogonal to every codeword in \mathcal{C} . If $\mathcal{C} \subseteq \mathcal{C}^{\perp}$, then \mathcal{C} is said to be *self-orthogonal*. If $\mathcal{C} = \mathcal{C}^{\perp}$, then \mathcal{C} is said to be *self-dual*.

A code of length n and dimension k over a finite field \mathbb{F} is called an [n, k] code and contains $|\mathbb{F}|^k$ codewords. An [n, k] code is self-dual if and only if it is self-orthogonal and $k = \frac{n}{2}$. We say that a generator matrix G for an [n, k] code is in *standard form* if $G = [I_k A]$, where I_k denotes the $k \times k$ identity matrix and A is some $k \times (n-k)$ matrix.

Let \mathcal{C} be a code of length n over the Galois ring $GR(p^e, r)$. \mathcal{C} has a generator matrix which, after a suitable permutation of coordinates, can be written as

$$G = \begin{bmatrix} I_{k_0} & A_{0,1} & A_{0,2} & \cdots & A_{0,e-1} & A_{0,e} \\ 0 & pI_{k_1} & pA_{1,2} & \cdots & pA_{1,e-1} & pA_{1,e} \\ 0 & 0 & p^2I_{k_2} & \cdots & p^2A_{2,e-1} & p^2A_{2,e} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & p^{e-1}I_{k_{e-1}} & p^{e-1}A_{e-1,e} \end{bmatrix}$$
(1)

where I_{k_i} is the $k_i \times k_i$ identity matrix and the A_{ij} s are matrices of appropriate sizes over $GR(p^e, r)$. The columns are grouped into blocks of sizes $k_0, k_1, \ldots, k_{e-1}, k_e = n - \sum_{i=0}^{e-1} k_i$.

A code C with generator matrix G as in (1) is said to be of type $\{k_0, k_1, \ldots, k_{e-1}\}$ and has $(p^r)\sum_{i=0}^{e^{-1}(e^{-i})k_i}$ codewords. The dual C^{\perp} of C is of type $\{k_e, k_{e-1}, \ldots, k_1\}$. It is known that $|C||C^{\perp}| = p^{ern}$. If C is a self-dual code of type $\{k_0, k_1, \ldots, k_{e-1}\}$, then we must have $k_i = k_{e^{-i}}$ for all i.

For $0 \le i \le e - 1$, define

$$\operatorname{Tor}_i(\mathcal{C}) = \{ \bar{v} : p^i \bar{v} \in \mathcal{C} \},\$$

where \bar{v} is the image of v under the projection $\mu : \operatorname{GR}(p^e, r)^n \to \mathbb{F}_{p^r}^n$. $\operatorname{Tor}_i(\mathcal{C})$ is an $[n, k_0 + \ldots + k_i]$ code over \mathbb{F}_{p^r} and is called the *i*th *torsion code* of \mathcal{C} . In particular, $\operatorname{Tor}_0(\mathcal{C})$ is called the *residue code* and is denoted by $\operatorname{Res}(\mathcal{C})$. If \mathcal{C} has generator matrix G in (1), then $\operatorname{Tor}_i(\mathcal{C})$ has a generator matrix of the form

$$G_{i} = \begin{bmatrix} I_{k_{0}} & \overline{A}_{0,1} & \overline{A}_{0,2} & \cdots & \overline{A}_{0,i-1} & \cdots & \overline{A}_{0,e} \\ 0 & I_{k_{1}} & \overline{A}_{1,2} & \cdots & \overline{A}_{1,i-1} & \cdots & \overline{A}_{1,e} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I_{k_{i}} & \cdots & \overline{A}_{i,e} \end{bmatrix},$$

where $\overline{A} = (\overline{a}_{ij})$ whenever $A = (a_{ij})$.

Two codes over $\operatorname{GR}(p^e, r)$ are said to be *equivalent* if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates. Thus two codes \mathcal{C}_1 and \mathcal{C}_2 of length n over $\operatorname{GR}(p^e, r)$ are equivalent if there exists a monomial matrix P such that $\mathcal{C}_2 = \mathcal{C}_1 P = \{\mathbf{c}P : \mathbf{c} \in \mathcal{C}_1\}$, where P has exactly one entry ± 1 in every row and every column and all the other entries are zero. The automorphism group $\operatorname{Aut}(\mathcal{C})$ of a code \mathcal{C} of length n over $\operatorname{GR}(p^e, r)$ is the group of all such matrices Psuch that $\mathcal{C} = \mathcal{C}P$. Let E_n be the signed symmetric group of order $|E_n| = 2^n n!$. The number of codes equivalent to a code C over $GR(p^3, r)$ of length n is

$$\frac{|E_n|}{|\operatorname{Aut}(\mathcal{C})|}$$

and hence the number $N_{p^3,r}(n)$ of distinct self-dual codes over $GR(p^3,r)$ of length n is

$$N_{p^3,r}(n) = \sum_{\mathcal{C}} \frac{|E_n|}{|\operatorname{Aut}(\mathcal{C})|}$$

where the sum runs through all inequivalent self-dual codes C over $\operatorname{GR}(p^3, r)$ of length n. An explicit formula for $N_{p^3,r}(n)$, called the mass formula, would thus be useful for finding all inequivalent self-dual codes over $\operatorname{GR}(p^3, r)$ of given length.

For the further study of codes over finite fields and finite rings, see [7, 12].

We will need the following lemmas, the proofs of which are known.

Lemma 1. [14] Let $\sigma_q(n,k)$ be the number of self-orthogonal codes of even length n and dimension k over \mathbb{F}_q . If char $\mathbb{F}_q \neq 2$, then

$$\sigma_q(n,k) = \frac{\left(q^{n-k} - \epsilon q^{n/2-k} + \epsilon q^{n/2} - 1\right) \prod_{i=1}^{k-1} (q^{n-2i} - 1)}{\prod_{i=1}^k (q^i - 1)}, \ k \ge 2$$

where $\epsilon = 1$ if $(-1)^{n/2}$ is a square and $\epsilon = -1$ if $(-1)^{n/2}$ is not a square.

Lemma 2. [15] Let V be an n-dimensional vector space over \mathbb{F}_q . The number $\binom{n}{k}_q$ of subspaces $U \subset V$ of dimension $k \leq n$ is given by

$$\binom{n}{k}_{q} = \frac{(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{k-1})}{(q^{k}-1)(q^{k}-q)\cdots(q^{k}-q^{k-1})}.$$

3. Codes over $\mathbf{GR}(p^3, r)$

Let \mathcal{C} be a code of length n over $\operatorname{GR}(p^3, r)$ and let G be a generator matrix for \mathcal{C} . We can write G in the following form:

$$G = \begin{bmatrix} A \\ pB \\ p^2C \end{bmatrix} = \begin{bmatrix} I_k & A_2 & A_3 & A_4 \\ 0 & pI_l & pB_3 & pB_4 \\ 0 & 0 & p^2I_m & p^2C_4 \end{bmatrix},$$
 (2)

where I_r is the identity matrix of order r, and the other matrices have entries from $GR(p^3, r)$ and are described as follows. We write A_3, B_4 and A_4 in their *p*-adic expansions

 $A_3 = A_{30} + pA_{31}, B_4 = B_{40} + pB_{41}, A_4 = A_{40} + pA_{41} + p^2A_{42}$, and the matrices A_2, B_3, C_4, A_{ij} and B_{ij} have entries from \mathcal{T}_{p^r} . The columns are grouped in blocks of sizes k, l, m and h = n - (k + l + m). The code \mathcal{C} is said to be of type $\{k, l, m\}$ and has $p^{r(3k+2l+m)}$ codewords. The dual code \mathcal{C}^{\perp} is of type $\{h, m, l\}$ and has $p^{r(3h+2l+m)}$ codewords.

If the code C has generator matrix G in (2), then the residue code Res(C) has dimension k and generator matrix

$$T_0 = A \pmod{p} = \begin{bmatrix} I_k & \overline{A}_2 & \overline{A}_{30} & \overline{A}_{40} \end{bmatrix}, \tag{3}$$

the first torsion code $\operatorname{Tor}_1(\mathcal{C})$ has dimension k+l and generator matrix

$$T_1 = \begin{bmatrix} A \\ B \end{bmatrix} \pmod{p} = \begin{bmatrix} I_k & \overline{A}_2 & \overline{A}_{30} & \overline{A}_{40} \\ 0 & I_l & \overline{B}_3 & \overline{B}_{40} \end{bmatrix},\tag{4}$$

and the second torsion code $\text{Tor}_2(\mathcal{C})$ has dimension k + l + m and generator matrix

$$T_2 = \begin{bmatrix} A \\ B \\ C \end{bmatrix} \pmod{p} = \begin{bmatrix} I_k & \overline{A}_2 & \overline{A}_{30} & \overline{A}_{40} \\ 0 & I_l & \overline{B}_3 & \overline{B}_{40} \\ 0 & 0 & I_m & \overline{C}_4 \end{bmatrix}.$$
 (5)

The following proposition gives a characterization of self-duality in $GR(p^3, r)$.

Proposition 1. Let C be a code over $GR(p^3, r)$ with generator matrix G as in (2). Then C is self-dual if and only if k = h, l = m and the following hold:

$$AA^t \equiv 0 \pmod{p^3} \tag{6}$$

$$AB^t \equiv 0 \pmod{p^2} \tag{7}$$

$$BB^{t} \equiv 0 \pmod{p} \tag{8}$$

$$AC^{t} \equiv 0 \pmod{p}.$$
 (9)

Proof. Suppose C is a self-dual code over $GR(p^3, r)$. We then have $GG^t \equiv 0 \pmod{p^3}$, that is,

$$AA^{t} \equiv 0 \pmod{p^{3}}$$
$$pAB^{t} \equiv 0 \pmod{p^{3}}$$
$$p^{2}BB^{t} \equiv 0 \pmod{p^{3}}$$
$$p^{2}AC^{t} \equiv 0 \pmod{p^{3}},$$

which is equivalent to the set of conditions (6)-(9). Now, C is of type $\{k, l, m\}$ and its dual code C^{\perp} is of type $\{h, m, l\}$. Since C is self-dual, we then have k = h and l = m.

Conversely, let \mathcal{C} be a code such that k = h, l = m and conditions (6)-(9) hold. Now, conditions (6)-(9) imply that $GG^t \equiv 0 \pmod{p^3}$. So \mathcal{C} is a self-orthogonal code, i.e. $\mathcal{C} \subseteq \mathcal{C}^{\perp}$. Moreover, since k = h and l = m, we then have $|\mathcal{C}| = |\mathcal{C}^{\perp}|$. Therefore $\mathcal{C} = \mathcal{C}^{\perp}$. \Box **Corollary 1.** A self-dual code C over $GR(p^3, r)$ of type $\{k, l, l\}$ is of even length n = 2(k+l).

Corollary 2. Let C be a self-dual code over $GR(p^3, r)$ of length n and of type $\{k, l, l\}$. Then Res(C) is self-orthogonal, $Tor_1(C)$ is self-dual, and $Tor_2(C) = Res(C)^{\perp}$.

Proof. Suppose C has generator matrix G as in (2). Then the torsion codes $\operatorname{Res}(C)$, $\operatorname{Tor}_1(C)$ and $\operatorname{Tor}_2(C)$ have generator matrices T_0 , T_1 and T_2 as in (3), (4) and (5) respectively.

From conditions (6) and (7), we obtain

$$AA^t \equiv 0 \pmod{p} \tag{10}$$

$$AB^t \equiv 0 \pmod{p}.\tag{11}$$

It immediately follows from (10) that $T_0 T_0^t \equiv 0 \pmod{p}$, and so $\operatorname{Res}(\mathcal{C})$ is self-orthogonal.

Conditions (8), (10) and (11) imply that $T_1T_1^t \equiv 0 \pmod{p}$, so that $\operatorname{Tor}_1(\mathcal{C})$ is self-orthogonal. Since \mathcal{C} is self-dual, then $\dim \operatorname{Tor}_1(\mathcal{C}) = k + l = \frac{n}{2}$. Thus $\operatorname{Tor}_1(\mathcal{C})$ is self-dual.

From Conditions (9)-(11), it follows that $T_2T_0^t \equiv 0 \pmod{p}$, so $\operatorname{Tor}_2(\mathcal{C}) \subseteq \operatorname{Res}(\mathcal{C})^{\perp}$. From Corollary 1, dim $\operatorname{Tor}_2(\mathcal{C}) = k + 2l = n - k = \dim \operatorname{Res}(\mathcal{C})^{\perp}$. Consequently, $|\operatorname{Tor}_2(\mathcal{C})| = |\operatorname{Res}(\mathcal{C})^{\perp}|$ and so $\operatorname{Tor}_2(\mathcal{C}) = \operatorname{Res}(\mathcal{C})^{\perp}$.

4. Codes over $\mathbf{GR}(p^3, r)$ from a code over \mathbb{F}_p^r

We now use Proposition 1 to construct self-dual codes over $GR(p^3, r)$ with prescribed first torsion code. We start with a self-dual [n, k + l] code C_1 over \mathbb{F}_{p^r} with generator matrix

$$G' = \begin{bmatrix} A' \\ B' \end{bmatrix} = \begin{bmatrix} I_k & A'_2 & A'_{30} & A'_{40} \\ 0 & I_l & B'_3 & B'_{40} \end{bmatrix},$$

where the columns are grouped into blocks of sizes k, l, l and k. Note that 2(k + l) = n. We want to obtain the number of self-dual codes C over $GR(p^3, r)$ such that $Tor_1(C) = C_1$.

Since C_1 is self-dual, then $G'G'^t \equiv 0 \pmod{p}$ and we obtain

$$I_k + A'_2 A'^{t}_2 + A'_{30} A'^{t}_{30} + A'_{40} A'^{t}_{40} \equiv 0 \pmod{p}$$
(12)

$$A_2' + A_{30}' B_3'^{t} + A_{40}' B_{40}'^{t} \equiv 0 \pmod{p}$$
⁽¹³⁾

$$I_l + B'_3 B'_3{}^t + B'_{40} B'_{40}{}^t \equiv 0 \pmod{p}.$$
 (14)

Let $H = \begin{bmatrix} A'_{30} & A'_{40} \\ B'_3 & B'_{40} \end{bmatrix}$ and $J = \begin{bmatrix} I_k & -A'_2 \\ -A'_2{}^t & I_l + A'_2{}^t A'_2 \end{bmatrix}$. Note that H and J are both square matrices of order k + l. From (12)-(14), we have

$$H(-H^t J) \equiv I_{k+l} \pmod{p}.$$

Hence, H is invertible modulo p. By a permutation of columns of H, we can assume that the $k \times k$ matrix A'_{40} is invertible modulo p.

Let \mathcal{C}_0 be the k-dimensional subspace of \mathcal{C}_1 with generator matrix

$$A' = \begin{bmatrix} I_k & A'_2 & A'_{30} & A'_{40} \end{bmatrix}$$

From (12) and (13), C_0 is a self-orthogonal code and $C_0 \subseteq C_1 \subseteq C_0^{\perp}$. Now, the dual of C_0^{\perp} has dimension n - k = k + 2l. Hence we can write the generator matrix of C_0^{\perp} as

$$\begin{bmatrix} A'\\ B'\\ C' \end{bmatrix} = \begin{bmatrix} I_k & A'_2 & A'_{30} & A'_{40}\\ 0 & I_l & B'_3 & B'_{40}\\ 0 & 0 & I_l & C'_4 \end{bmatrix},$$

where C'_4 is an $l \times k$ matrix over \mathbb{F}_{p^r} .

We wish to find matrices A_2, A_3, A_4, B_3, B_4 and C_4 with entries from $GR(p^e, r)$ satisfying conditions (6)-(9), which are equivalent to

$$I_k + A_2 A_2^t + A_3 A_3^t + A_4 A_4^t \equiv 0 \pmod{p^3}$$
(15)

$$A_2 + A_3 B_3^t + A_4 B_4^t \equiv 0 \pmod{p^2}$$
(16)

$$I_l + B_3 B_3^t + B_4 B_4^t \equiv 0 \pmod{p}$$
(17)

$$A_3 + A_4 C_4^t \equiv 0 \pmod{p}.$$
 (18)

The matrices A_2 , B_3 and C_4 are considered modulo p, A_3 and B_4 are considered modulo p^2 , and A_4 modulo p^3 . As previously done, we write the matrices in p-adic expansion: $A_3 = A_{30} + pA_{31}$, $B_4 = B_{40} + pB_{41}$ and $A_4 = A_{40} + pA_{41} + p^2A_{42}$, where A_{31} , B_{41} , A_{41} and A_{42} have entries from \mathcal{T}_{p^r} .

Let A_2 , A_{30} , A_{40} , B_3 and B_{40} be the matrices over \mathcal{T}_{p^r} such that $\overline{A}_2 = A'_2$, $\overline{A}_{30} = A'_{30}$, $\overline{A}_{40} = A'_{40}$, $\overline{B}_3 = B'_3$ and $\overline{B}_{40} = B'_{40}$. From (12) and (13), there exist matrices (f_{ij}) and D with entries from $\mathrm{GR}(p^3, r)$ such that

$$A_2 + A_{30}B_3^t + A_{40}B_{40}^t = pD (19)$$

and

$$I_k + A_2 A_2^t + A_{30} A_{30}^t + A_{40} A_{40}^t = p(f_{ij}).$$
⁽²⁰⁾

As in [10], B_{41} and C_4 are uniquely determined by

$$B_{41}^t \equiv -A_{40}^{-1}(D + A_{31}B_3^t + A_{41}B_{40}^t) \pmod{p}$$
(21)

and

$$C_4^t \equiv -A_{40}^{-1} A_{30} \pmod{p},\tag{22}$$

which are sufficient conditions for (16) and (18). Since (14) is the same as (17), we only have to look at (15). It then follows that the code C is self-dual if and only if

$$f_{ij} + \widetilde{A_{30}A_{31}^t} + \widetilde{A_{40}A_{41}^t} + p(A_{31}A_{31}^t + A_{41}A_{41}^t + \widetilde{A_{40}A_{42}^t}) \equiv 0 \pmod{p^2}$$
(23)

Our goal is to count the number of matrices A_{31} , A_{41} and A_{42} satisfying (23).

1707

For the remainder of this paper, we assume that p is an odd prime. Following the argument in Section 2.1 of [10], there are p^{rkl} possible choices for A_{31} , $p^{\frac{rk(k-1)}{2}}$ for A_{41} and $p^{\frac{rk(k-1)}{2}}$ for A_{42} . Therefore, we have $p^{rk(\frac{n}{2}-1)}$ possible choices for the matrices A_{31} , A_{41} and A_{42} . We have proved the following result, which is analogous to Proposition 2.2 of [10].

Proposition 2. Let p be an odd prime. A self-dual code over $GR(p^3, r)$ can be induced from a self-dual code C_1 over \mathbb{F}_{p^r} . There are $p^{rk(\frac{n}{2}-1)}$ self-dual codes over $GR(p^3, r)$ of length n corresponding to each subspace of C_1 of dimension k, where $0 \le k \le \frac{n}{2}$.

For the sake of completeness, we describe the matrices A_{31} , A_{41} and A_{42} . A_{31} is an arbitrary $k \times l$ matrix with entries from \mathcal{T}_{p^r} , A_{41} is determined by

$$f_{ij} + \widetilde{A_{30}A_{31}^t} + \widetilde{A_{40}A_{41}^t} \equiv 0 \pmod{p},$$
 (24)

while A_{42} is determined by

$$(h_{ij}) + \widetilde{A_{40}A_{42}^t} \equiv 0 \pmod{p},$$
 (25)

where

$$(f_{ij}) + \widetilde{A_{30}A_{31}^t} + \widetilde{A_{40}A_{41}^t} + p(A_{31}A_{31}^t + A_{41}A_{41}^t) = p(h_{ij}).$$
(26)

5. Mass Formula and Classification

Recall from Lemma 1 that $\sigma_{p^r}(n,k)$ is the number of self-orthogonal codes of even length n and dimension k over \mathbb{F}_{p^r} . Also, from Lemma 2, $\binom{n}{k}_{p^r}$ is the number of kdimensional subspaces of an n-dimensional vector space over \mathbb{F}_{p^r} , where $0 \leq k \leq n$. The following theorem gives the mass formula for self-dual codes over $\mathrm{GR}(p^3, r)$.

Theorem 1. Let p be an odd prime and let $N_{p^3,r}(n)$ denote the number of distinct self-dual codes of even length n = 2m over $GR(p^3, r)$. Then

$$N_{p^{3},r}(n) = \sigma_{p^{r}}(n,m) \sum_{k=0}^{m} \binom{m}{k}_{p^{r}} p^{rk(n/2-1)}.$$

Proof. From Lemma 1, there are $\sigma_{p^r}(n,m)$ self-dual codes of length n over \mathbb{F}_{p^r} . Let \mathcal{C}_1 be one such self-dual code. Lemma 2 tells us that there are $\binom{m}{k}_{p^r}$ subspaces $\mathcal{C}_0 \subseteq \mathcal{C}_1$ of dimension k, where $0 \leq k \leq m$. Finally, from Proposition 2, there are $p^{rk(m-1)}$ self-dual codes over $\mathrm{GR}(p^3, r)$ corresponding to \mathcal{C}_0 . The result immediately follows.

When r = 1, Theorem 1 coincides with the result in [10] for \mathbb{Z}_{p^3} .

We now give a classification of self-dual codes over $GR(p^3, 2)$ of length 4 for p = 3, 5. Our goal is to find a representative for each equivalence classes of codes. In defining the equivalence of codes over $GR(p^3, 2)$, we allow permutation of coordinates and (if necessary) multiplying certain coordinates by -1. All computations for this paper were done with the computer algebra package MAGMA [2].

5.1. Building-up

Using the construction method discussed in Section 4, a general way to construct selfdual codes over $GR(p^3, 2)$ of length 4 can be described. Note that a self-dual code of length 4 over $GR(p^3, 2)$ has one of the following three types: $\{0, 2, 2\}, \{1, 1, 1\}$ or $\{2, 0, 0\}$.

We start with a self-dual code $C^{[4]_p}$ over \mathbb{F}_{p^2} of length 4 with generator matrix $[I_2 A]$, where A is a 2 × 2 matrix over \mathbb{F}_{p^2} and $AA^t \equiv -I_2 \pmod{p}$. Let $C^{[4,k]_p}$ be a self-dual code over $GR(p^3, 2)$ of length 4 and type $\{k, l, l\}$ induced from $C^{[4]_p}$, where k = 0, 1, 2 and l = 2 - k.

For $\alpha \in \mathbb{F}_{p^r}$, we denote by $\widehat{\alpha}$ the element in \mathcal{T}_{p^r} such that $\overline{\widehat{\alpha}} = \alpha$. Given a matrix $M = (\alpha_{ij})$ over \mathbb{F}_{p^r} , we denote by \widehat{M} the matrix $(\widehat{\alpha}_{ij})$ over \mathcal{T}_{p^r} .

Proposition 3. $\mathcal{C}^{[4,0]_p}$ has generator matrix $\mathfrak{m}_p(\widehat{A}) = \begin{bmatrix} pI_2 & p\widehat{A} \\ 0 & p^2I_2 \end{bmatrix}$.

Proof. This immediately follows from the construction method discussed in Section 4, where we take k = 0 and l = 2.

We now describe the generator matrix of $\mathcal{C}^{[4,1]_p}$. Let $a_1 \in \mathbb{F}_{p^2}$. By adding a_1 times the second row of the matrix $[I_2 \ A]$ to its first row, and permuting the last two columns whenever necessary so that the (1,4) entry is nonzero, we obtain a matrix over \mathbb{F}_{p^2} of the form

$$G = \begin{bmatrix} 1 & a_1 & b_1 & c_1 \\ 0 & 1 & d_1 & e_1 \end{bmatrix},$$

where $a_1, b_1, c_1, d_1, e_1 \in \mathbb{F}_{p^r}$ and $c_1 \neq 0$. The code $\mathcal{C}^{[4]_p}$ is equivalent to the code with generator matrix G. Let

$$\widehat{G} = \begin{bmatrix} 1 & a & b & c \\ 0 & 1 & d & e \end{bmatrix}.$$

Since c_1 is nonzero, then c is a nonzero element of \mathcal{T}_{p^r} . Thus, c is a unit of $GR(p^3, 2)$.

Proposition 4. $\mathcal{C}^{[4,1]_p}$ has generator matrix

$$\mathfrak{m}_{p}(\widehat{G}, x) = \begin{bmatrix} 1 & a & b + px & c + py + p^{2}z \\ 0 & p & pd & pe + p^{2}q \\ 0 & 0 & p^{2} & p^{2}r \end{bmatrix},$$

where x is an arbitrary element of \mathcal{T}_{p^r} and $y, z, q, r \in \mathcal{T}_{p^r}$ such that

$$y \equiv -(2c)^{-1}(F+2bx) \pmod{p}$$

$$z \equiv -(2c)^{-1}H \pmod{p}$$

$$q \equiv -c^{-1}(D+dx+ey) \pmod{p}$$

$$r \equiv -c^{-1}b \pmod{p},$$

with

$$F = \frac{1}{p}(1+a^2+b^2+c^2)$$

T. L. Vasquez, G. Petalcorin / Eur. J. Pure Appl. Math, 12 (4) (2019), 1701-1716

$$H = \frac{1}{p}(F + 2bx + 2cy + px^2 + py^2)$$
$$D = \frac{1}{p}(a + bd + ce)$$

Proof. Let $A_2 = (a)$, $A_{30} = (b)$, $A_{40} = (c)$. From (20), we obtain

$$pF = (1 + a^2 + b^2 + c^2)$$

where $F = (f_{ij})$. The matrices $A_{31} = (x)$ and $A_{41} = (y)$ satisfy (24). Hence, we have

$$F + 2bx + 2cy \equiv 0 \pmod{p}$$
$$y \equiv -(2c)^{-1}(F + 2bx) \pmod{p}.$$

Next, we obtain

$$pH = (F + 2bx + 2cy + px^2 + py^2)$$

from (26), where $H = (h_{ij})$. The matrix $A_{42} = (z)$ satisfies (25), which gives us

$$H + 2cz \equiv 0 \pmod{p}$$
$$z \equiv -(2c)^{-1}H \pmod{p}.$$

Now, let $C_4 = (r)$. From (22), we have $r \equiv c^{-1}b \pmod{p}$. Finally, let $B_3 = (d)$, $B_{40} = (e)$ and $B_{41} = (q)$. We compute

$$pD = (a + bd + ce)$$

from (19). Then from (21), it follows that $q \equiv -c^{-1}(D + dx + ey) \pmod{p}$.

We now describe the generator matrix of $\mathcal{C}^{[4,2]_p}$. We permute the columns of the matrix $[I_2 A]$ whenever necessary, so that the (1,1) entry of A is nonzero. We write

$$[I_2 \ A] = \begin{bmatrix} 1 & 0 & s_1 & t_1 \\ 0 & 1 & u_1 & v_1 \end{bmatrix},$$

where $s_1, t_1, u_1, v_1 \in \mathbb{F}_{p^r}$ and $s_1 \neq 0$. Let

$$\widehat{A} = \begin{bmatrix} s & t \\ u & v \end{bmatrix}.$$

Since s_1 is nonzero, then s is a nonzero element of \mathcal{T}_{p^2} , and thus, is a unit of $\operatorname{GR}(p^3, 2)$. Also, since A has an inverse modulo p, then det $A = s_1v_1 - t_1u_1 \neq 0$, which implies that $sv - tu \neq 0$ and $(sv - tu)/s = v - tus^{-1}$ has an inverse modulo p.

Proposition 5. $C^{[4,2]_p}$ has generator matrix

$$\mathfrak{m}_p(A, y_{12}, z_{12}) = [I_2 \ A + pY + p^2 Z],$$

1710

where y_{12} and z_{12} are arbitrary elements of \mathcal{T}_{p^2} and $Y = (y_{ij})$ and $Z = (z_{ij})$ are matrices over \mathcal{T}_{p^2} satisfying

$$F + \widehat{\widehat{AY}^t} \equiv 0 \pmod{p}$$
$$H + \widehat{\widehat{AZ^t}} \equiv 0 \pmod{p},$$
$$H = 1 (E + \widehat{\widehat{AY^t}} + \pi YY^t)$$

with $F = \frac{1}{p}(I_2 + \widehat{A}\widehat{A}^t)$ and $H = \frac{1}{p}(F + \widehat{A}Y^t + pYY^t)$.

Proof. Let $A_{40} = \hat{A}$. From (20), we compute

$$pF = I_2 + AA^t,$$

where $F = (f_{ij})$. Note that F is a symmetric matrix. The matrix $A_{41} = Y = (y_{ij})$, with entries from \mathcal{T}_{p^2} , satisfies (24). We then have $F + \widehat{AY^t} \equiv 0 \pmod{p}$, that is,

$$\begin{bmatrix} f_{11} & f_{12} \\ f_{12} & f_{22} \end{bmatrix} + \begin{bmatrix} s & t \\ u & v \end{bmatrix} \begin{bmatrix} y_{11} & y_{21} \\ y_{12} & y_{22} \end{bmatrix} + \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} s & u \\ t & v \end{bmatrix} \equiv 0 \pmod{p}.$$

Hence Y satisfies

$$f_{11} + 2sy_{11} + 2ty_{12} \equiv 0 \pmod{p}$$

$$f_{22} + 2uy_{21} + 2vy_{22} \equiv 0 \pmod{p}$$

$$f_{12} + sy_{21} + ty_{22} + uy_{11} + vy_{12} \equiv 0 \pmod{p}$$

Observe that y_{11} , y_{21} and y_{22} can each be expressed in terms of y_{12} . Thus y_{11} , y_{21} and y_{22} are determined by \widehat{A} and y_{12} .

Next we compute

$$pH = F + \widetilde{\widehat{AY^t}} + pYY^t$$

from (26), where $H = (h_{ij})$. The matrix $A_{42} = Z = (z_{ij})$, with entries from \mathcal{T}_{p^2} , satisfies (25). Hence Z satisfies $H + \widetilde{\widehat{AZ}^t} \equiv 0 \pmod{p}$, that is,

$$\begin{bmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{bmatrix} + \begin{bmatrix} s & t \\ u & v \end{bmatrix} \begin{bmatrix} z_{11} & z_{21} \\ z_{12} & z_{22} \end{bmatrix} + \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} s & u \\ t & v \end{bmatrix} \equiv 0 \pmod{p}.$$

Using a similar argument as earlier, we see that z_{11} , z_{21} and z_{22} are determined by \widehat{A} and z_{12} .

5.2. Self-dual codes over GR(27,2)

We consider GR(27,2) = $\mathbb{Z}_{27}[\omega]$, where $\omega^2 + 5\omega + 26 = 0$ and $\omega^8 = 1$, and $\mathbb{F}_9 = \mathbb{Z}_3[\bar{\omega}]$, where $\bar{\omega}^2 + 2\omega + 2 = 0$ and $\bar{\omega}^8 = 1$.

T. L. Vasquez, G. Petalcorin / Eur. J. Pure Appl. Math, 12 (4) (2019), 1701-1716

From [4], there exist two inequivalent self-dual codes of length 4 over \mathbb{F}_9 : $C_1^{[4]_3}$ and $C_2^{[4]_3}$ with generator matrices

$$[I_2 \ A_{3,1}] = \begin{bmatrix} 1 & 0 & \bar{\omega}^2 & 0 \\ 0 & 1 & 0 & \bar{\omega}^2 \end{bmatrix} \text{ and } [I_2 \ A_{3,2}] = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & \bar{\omega}^4 & 1 \end{bmatrix},$$

respectively. The matrices

$$G_{3,1,0} = \begin{bmatrix} 1 & 0 & 0 & \bar{\omega}^2 \\ 0 & 1 & \bar{\omega}^2 & 0 \end{bmatrix}, \ G_{3,1,1} = \begin{bmatrix} 1 & 1 & \bar{\omega}^2 & \bar{\omega}^2 \\ 0 & 1 & 0 & \bar{\omega}^2 \end{bmatrix} \text{ and } G_{3,1,\bar{\omega}} = \begin{bmatrix} 1 & \bar{\omega} & \bar{\omega}^2 & \bar{\omega}^3 \\ 0 & 1 & 0 & \bar{\omega}^2 \end{bmatrix}$$

generate codes which are equivalent to $\mathcal{C}_1^{[4]_3}$, while the matrices

$$G_{3,2,0} = \begin{bmatrix} I_2 & A_{3,2} \end{bmatrix} \text{ and } G_{3,2,\bar{\omega}} = \begin{bmatrix} 1 & \bar{\omega} & \bar{\omega}^3 & \bar{\omega}^2 \\ 0 & 1 & \bar{\omega}^4 & 1 \end{bmatrix}$$

generate codes which are equivalent to $C_2^{[4]_3}$.

Table 1: Self-dual Codes of Length 4 over $\mathsf{GR}(27,2)$.

Type	Generator Matrix	No. of Codes	$ \operatorname{Aut}(\mathcal{C}) $
$\{0, 2, 2\}$	$\mathfrak{m}_3(\widehat{A}_{3,1})$	1	32
	$\mathfrak{m}_3(\widehat{A}_{3,2})$	1	48
$\{1, 1, 1\}$	$\mathfrak{m}_3(\widehat{G}_{3,1,0},0)$	1	16
	$\mathfrak{m}_{3}(\widehat{G}_{3,1,1},0),\mathfrak{m}_{3}(\widehat{G}_{3,1,\bar{\omega}},0),\mathfrak{m}_{3}(\widehat{G}_{3,2,\bar{\omega}},0)$	3	8
	$\mathfrak{m}_{3}(\widehat{G}_{3,1,0}, x)$, where $x \in \{1, \omega\}$	11	4
	$\mathfrak{m}_3(\widehat{G}_{3,1,1}, x)$, where $x \in \{1, \omega, \omega^2, \omega^3\}$		
	$\mathfrak{m}_{3}(\widehat{G}_{3,2,0},0),$		
	$\mathfrak{m}_3(\widehat{G}_{3,2,\overline{\omega}}, x)$, where $x \in \{1, \omega^2, \omega^3, \omega^5\}$		
	$\mathfrak{m}_3(\widehat{G}_{3,1,\overline{\omega}}, x), \text{ where } x \in \{1, \omega\},$	3	2
	$\mathfrak{m}_{3}(\widehat{G}_{3,2,0},\omega)$		
$\{2, 0, 0\}$	$\mathfrak{m}_3(\widehat{A}_{3,1},0,0)$	1	32
	$\mathfrak{m}_3(\widehat{A}_{3,2},0,0)$	1	16
	$\mathfrak{m}_3(\widehat{A}_{3,1}, 0, z)$, where $z \in \{1, \omega\}$	33	8
	$\mathfrak{m}_{3}(\widehat{A}_{3,1}, 1, z)$, where $z \in \{0, 1, \omega, \dots, \omega^{7}\}$		
	$\mathfrak{m}_3(\widehat{A}_{3,1},\omega,z)$, where $z \in \{0,1,\omega,\ldots,\omega^7\}$		
	$\mathfrak{m}_3(\widehat{A}_{3,2},0,z), ext{ where } z \in \{1,\omega,\omega^2,\omega^3\}$		
	$\mid \mathfrak{m}_3(\widehat{A}_{3,2},\omega,z), \text{ where } z \in \{0,1,\omega,\ldots,\omega^7\}$		

In Table 1, we give the list of inequivalent self-dual codes over GR(27, 2) of length 4. Using the mass formula in Theorem 1, we make the following computations, confirming that Table 1 gives a complete classification.

$$N_{27,2}(4) = \sigma_9(4,2) \sum_{k=0}^{2} {\binom{2}{k}_9} 3^{2k} = 20 + 1800 + 1620 = \sum_{\mathcal{C}} \frac{2^4 \cdot 4!}{|\operatorname{Aut}(\mathcal{C})|}.$$

Hence there are 55 self-dual codes of length 4 over GR(27, 2).

5.3. Self-dual codes over GR(125, 2)

We consider GR(125,2) = $\mathbb{Z}_{125}[\omega]$, where $\omega^2 + 89\omega + 57 = 0$ and $\omega^{24} = 1$, and $\mathbb{F}_{25} = \mathbb{Z}_5[\bar{\omega}]$, where $\bar{\omega}^2 + 4\omega + 2 = 0$ and $\bar{\omega}^{24} = 1$.

From [4], there exist three inequivalent self-dual codes of length 4 over \mathbb{F}_{25} : $\mathcal{C}_1^{[4]_5}$, $\mathcal{C}_2^{[4]_5}$ and $\mathcal{C}_3^{[4]_5}$ with generator matrices $[I_2 \ A_{5,1}], [I_2 \ A_{5,2}]$ and $[I_2 \ A_{5,3}]$ respectively, where

$$A_{5,1} = \begin{bmatrix} \bar{\omega}^6 & 0\\ 0 & \bar{\omega}^6 \end{bmatrix}, \ A_{5,2} = \begin{bmatrix} \bar{\omega}^8 & \bar{\omega}^4\\ \bar{\omega}^{16} & \bar{\omega}^8 \end{bmatrix} \text{ and } A_{5,3} = \begin{bmatrix} 1 & \bar{\omega}^{21}\\ \bar{\omega}^9 & 1 \end{bmatrix},$$

respectively. $C_1^{[4]_5}$ is equivalent to codes with generator matrices

$$\begin{aligned} G_{5,1,0} &= \begin{bmatrix} 1 & 0 & 0 & \bar{\omega}^6 \\ 0 & 1 & \bar{\omega}^6 & 1 \end{bmatrix}, \ G_{5,1,1} = \begin{bmatrix} 1 & 1 & \bar{\omega}^6 & \bar{\omega}^6 \\ 0 & 1 & 0 & \bar{\omega}^6 \end{bmatrix}, \ G_{5,1,\bar{\omega}} = \begin{bmatrix} 1 & \bar{\omega} & \bar{\omega}^6 & \bar{\omega}^7 \\ 0 & 1 & 0 & \bar{\omega}^6 \end{bmatrix}, \\ G_{5,1,\bar{\omega}^2} &= \begin{bmatrix} 1 & \bar{\omega}^2 & \bar{\omega}^6 & \bar{\omega}^8 \\ 0 & 1 & 0 & \bar{\omega}^6 \end{bmatrix} \text{ and } G_{5,1,\bar{\omega}^3} = \begin{bmatrix} 1 & \bar{\omega}^3 & \bar{\omega}^6 & \bar{\omega}^9 \\ 0 & 1 & 0 & \bar{\omega}^6 \end{bmatrix}, \end{aligned}$$

 $\mathcal{C}_2^{[4]_5}$ is equivalent to codes with generator matrices

$$G_{5,2,0} = \begin{bmatrix} I_2 & A_{5,2} \end{bmatrix}, \ G_{5,2,1} = \begin{bmatrix} 1 & 1 & \bar{\omega}^{12} & \bar{\omega}^3 \\ 0 & 1 & \bar{\omega}^{16} & \bar{\omega}^8 \end{bmatrix},$$
$$G_{5,2,\bar{\omega}} = \begin{bmatrix} 1 & \bar{\omega} & \bar{\omega}^{19} & \bar{\omega}^{18} \\ 0 & 1 & \bar{\omega}^{16} & \bar{\omega}^8 \end{bmatrix} \text{ and } G_{5,2,\bar{\omega}^2} = \begin{bmatrix} 1 & \bar{\omega}^2 & \bar{\omega}^{21} & \bar{\omega}^{22} \\ 0 & 1 & \bar{\omega}^{16} & \bar{\omega}^8 \end{bmatrix},$$

while $\mathcal{C}_3^{[4]_5}$ is equivalent to codes with generator matrices

$$\begin{aligned} G_{5,3,0} &= [I_2 \ A_{5,3}], \ G_{5,3,1} = \begin{bmatrix} 1 & 1 & \bar{\omega}^{11} & \bar{\omega}^7 \\ 0 & 1 & \bar{\omega}^9 & 1 \end{bmatrix}, \ G_{5,3,\bar{\omega}^2} = \begin{bmatrix} 1 & \bar{\omega}^2 & \bar{\omega}^{16} & \bar{\omega}^{11} \\ 0 & 1 & \bar{\omega}^9 & 1 \end{bmatrix}, \\ G_{5,3,\bar{\omega}^6} &= \begin{bmatrix} 1 & \bar{\omega}^6 & \bar{\omega}^2 & \bar{\omega}^8 \\ 0 & 1 & \bar{\omega}^9 & 1 \end{bmatrix} \text{ and } G_{5,3,\bar{\omega}^{15}} = \begin{bmatrix} 1 & \bar{\omega}^{15} & \bar{\omega}^6 & \bar{\omega}^9 \\ 0 & 1 & \bar{\omega}^9 & 1 \end{bmatrix}. \end{aligned}$$

Let J_1 and J_2 be subsets of \mathcal{T}_{25} , with

$$\begin{aligned} J_1 &= \{0, 1, \omega, \omega^2, \omega^4, \omega^5, \omega^7, \omega^9, \omega^{10}, \omega^{11}, \omega^{13}, \omega^{17}\} \\ J_2 &= \{0, 1, \omega, \omega^2, \omega^4, \omega^5, \omega^6, \omega^7, \omega^{10}, \omega^{11}, \omega^{15}, \omega^{16}\}. \end{aligned}$$

Table 2 gives the list of inequivalent self-dual codes over GR(125, 2) of length 4.

Using the mass formula in Theorem 1, we make the following computations, confirming that Table 2 gives a complete classification.

$$N_{125,2}(4) = \sigma_{25}(4,2) \sum_{k=0}^{2} {\binom{2}{k}}_{25} 5^{2k} = 52 + 33800 + 32500 = \sum_{\mathcal{C}} \frac{2^4 \cdot 4!}{|\operatorname{Aut}(\mathcal{C})|}.$$

Hence there are 904 self-dual codes of length 4 over GR(125, 2).

1713

Type	Generator Matrix	No. of Codes	$ \operatorname{Aut}(\mathcal{C}) $
{0,2,2}	$\mathfrak{m}_5(\widehat{A}_{5,1})$	1	32
	$\mathfrak{m}_5(\widehat{A}_{5,2})$	1	24
	$\mathfrak{m}_5(\widehat{A}_{5,3})$	1	16
$\{1,1,1\}$	$\mathfrak{m}_5(\widehat{G}_{5,1,0},0)$	1	16
	$\mathfrak{m}_5(\widehat{G}_{5,1,1},0),\mathfrak{m}_5(\widehat{G}_{5,1,\bar{\omega}^3},0),\mathfrak{m}_5(\widehat{G}_{5,3,\bar{\omega}^{15}},0)$	3	8
	$\mathfrak{m}_5(\widehat{G}_{5,2,0},0),\mathfrak{m}_5(\widehat{G}_{5,2,1},0)$	2	6
	$\mathfrak{m}_{5}(\widehat{G}_{5,1,\bar{\omega}},0),\mathfrak{m}_{5}(\widehat{G}_{5,1,\bar{\omega}^{2}},0),\mathfrak{m}_{5}(\widehat{G}_{5,3,0},0),$	83	4
	$\mathfrak{m}_5(\widehat{G}_{5,1,0}, x), \text{ where } x \in \{1, \omega, \dots, \omega^5\},$		
	$\mathfrak{m}_5(\widehat{G}_{5,1,1}, x), \text{ where } x \in \{1, \omega, \dots, \omega^{11}\},\$		
	$\mathfrak{m}_5(\widehat{G}_{5,2,\bar{\omega}}, x)$, where $x \in \{0, 1, \omega, \dots, \omega^{23}\}$,		
	$\mathfrak{m}_5(\widehat{G}_{5,3,\overline{\omega}^6}, x), \text{ where } x \in \{0, 1, \omega, \dots, \omega^{23}\},\$		
	$\mathfrak{m}_5(\hat{G}_{5,3,\bar{\omega}^{15}}, x), \text{ where } x \in \{1, \omega, \dots, \omega^{11}\}$		
	$\mathfrak{m}_5(\widehat{G}_{5,1,\overline{\omega}}, x), \text{ where } x \in \{1, \omega, \dots, \omega^{11}\}$	133	2
	$\mathfrak{m}_5(\widehat{G}_{5,1,\overline{\omega}^2}, x)$, where $x \in \{1, \omega, \dots, \omega^{11}\}$		
	$\mathfrak{m}_5(\widehat{G}_{5,1,\overline{\omega}^3}, x)$, where $x \in \{1, \omega, \dots, \omega^5\}$		
	$\mathfrak{m}_5(\widehat{G}_{5,2,0}, x)$, where $x \in \{1, \omega, \dots, \omega^7\}$		
	$\mathfrak{m}_5(G_{5,2,1}, x)$, where $x \in \{1, \omega, \dots, \omega^7\}$		
	$\mathfrak{m}_{5}(G_{5,2,\bar{\omega}^{2}}, x), \text{ where } x \in \{0, 1, \omega, \dots, \omega^{23}\}$		
	$\mathfrak{m}_{5}(G_{5,3,0}, x)$, where $x \in \{1, \omega, \dots, \omega^{11}\}$		
	$\mathfrak{m}_5(G_{5,3,1}, x)$, where $x \in \{0, 1, \omega, \dots, \omega^{23}\}$		
	$\mathfrak{m}_5(G_{5,3,\bar{\omega}^2}, x)$, where $x \in \{0, 1, \omega, \dots, \omega^{23}\}$		
$\{2,0,0\}$	$\mathfrak{m}_5(\widehat{A}_{5,1},0,0)$	1	32
	$\mathfrak{m}_5(\widehat{A}_{5,2},0,0)$	1	24
	$\mathfrak{m}_5(\widetilde{A}_{5,3},\omega^{21},\omega^3)$	1	16
	$\mathfrak{m}_{5}(\widehat{A}_{5,1}, 0, z)$, where $z \in \{1, \omega, \dots, \omega^{5}\}$	676	8
	$\mathfrak{m}_5(A_{5,1}, y, z)$, where $y \in \{1, \omega, \dots, \omega^5\}, z \in \mathcal{T}_{25}$		
	$\mathfrak{m}_{5}(\widehat{A}_{5,2}, 0, z)$, where $z \in \{1, \omega, \dots, \omega^{7}\}$		
	$\mathfrak{m}_5(A_{5,2}, y, z)$, where $y \in \{1, \omega, \dots, \omega^7\}, z \in \mathcal{T}_{25}$		
	$\mathfrak{m}_5(A_{5,3}, y, z)$, where $y \in J_1, z \in \mathcal{T}_{25}$,		
	$\mathfrak{m}_5(A_{5,3},\omega^{21},z)$, where $z \in J_2$		

Table 2: Self-dual Codes of Length 4 over GR(125, 2).

6. Conclusion

We discussed a method to construct self-dual codes over $\operatorname{GR}(p^3, r)$ from a self-dual code over \mathbb{F}_{p^r} , where p is an odd prime and r is a positive integer. This construction method led to a mass formula and classification of self-dual codes of length 4 over $\operatorname{GR}(p^3, 2)$ for p = 3, 5.

In this study, we only dealt with the case when p is an odd prime. Letting p = 2 in

REFERENCES

(24), we obtain

$$f_{ij} + \widetilde{A_{30}A_{31}^t} + \widetilde{A_{40}A_{41}^t} \equiv 0 \pmod{2}.$$

Since the diagonal entries of \widetilde{X} are all 0, then we must have $f_{ii} \equiv 0 \pmod{2}$ for each *i*. Hence, from (20), the diagonal entries of $I_k + A_2 A_2^t + A_{30} A_{30}^t + A_{40} A_{40}^t = 2(f_{ij})$ must be doubly even.

Thus, in the case of p = 2, the construction algorithm becomes more complicated because we need an additional property for the self-dual codes over \mathbb{F}_{2^r} . We are still investigating the mass formula for self-dual codes over $\mathrm{GR}(8, r)$.

Acknowledgements

This research is funded by the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP).

References

- JM Balmaceda, RA Betty, and F Nemenzo. Mass formula for self-dual codes over Z_p². Discrete Math., 308:2984−3002, 2008.
- [2] W Bosma, J Cannon, and C Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
- [3] W-H Choi. Mass formula for self-dual codes over Galois rings GR(p², 2). Korean J. Math., 24 (4):751–764, 2016.
- [4] W-H Choi. The classification of self-dual codes over Galois rings of length 4. Bulletin of the Korean Mathematical Society, 55:1371–1387, 2018.
- [5] P Gaborit. Mass formulas for self-dual codes over Z₄ and F_q+uF_q rings. IEEE Trans. Inform. Theory, 42:1222–1228, 1996.
- [6] AR Hammons, PV Kumar, AR Calderbank, NJA Sloane, and P Solé. The Z₄-linearity of Kerdock, Preparata, Goethals, and related codes. *IEEE Trans. Inform. Theory*, 40 (2):301–319, 1994.
- [7] WC Huffman and V Pless. Fundamentals of Error-Correcting Codes. Cambridge University Press, United Kingdom, 2004.
- [8] BR McDonald. Finite Rings with Identity. Marcel Dekker, Inc., New York, 1974.
- [9] K Nagata, F Nemenzo, and H Wada. Constructive algorithm of self-dual errorcorrecting codes. In 11th International Workshop on Algebraic and Combinatorial Coding Theory, pages 215–220, 2008.

- [10] K Nagata, F Nemenzo, and H Wada. The number of self-dual codes over \mathbb{Z}_{p^3} . Des. Codes Cryptogr., 50:291–303, 2009.
- [11] K Nagata, F Nemenzo, and H Wada. Mass formula and structure of self-dual codes over Z_{2^s}. Des. Codes Cryptogr., 67:293–316, 2013.
- [12] GH Norton and A Sălăgean. On the structure of linear and cyclic codes over a finite chain ring. AAECC, 10(3):489–506, 2000.
- [13] YH Park. The classification of self-dual modular codes. Finite Fields and Their Applications, 17:442–460, 2011.
- [14] V Pless. The number of isotropic subspaces in a finite geometry. Atti. Accad. Naz. Lincei Rendic, 39:418–421, 1965.
- [15] JH van Lint and RM Wilson. A Course in Combinatorics. Cambridge University Press, United Kingdom, 1993.
- [16] Z-X Wan. Finite Fields and Galois Rings. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.