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Abstract. Jordan canonical forms of a rank-k perturbation of symplectic matrices and the fun-
damental solutions of Hamiltonian systems are presented on the basis of work done by C. Mehl et,
al.. Small rank-k perturbations of Mathieu systems are analyzed. More precisely, it is shown that
the rank-k perturbations of coupled or non-coupled double pendulums and the motion of an ion
through a quadrupole analyzer slightly perturb the behavior of their spectra and their stabilities.

2010 Mathematics Subject Classifications: 35E05, 39A30, 70H05, 70H09, 93C15

Key Words and Phrases: Symplectic matrices, Isotropic subspaces, Hamiltonian systems, Fun-
damental solutions, rang-k perturbation, Stability(strong), Mathieu systems

1. Introduction

Let J,W ∈ R2N×2N such that J is a skew-symmetric matrix. We say that the matrix
W is J-symplectic or J-orthogonal if and only if W TJW = J [4, 18]. These types of
matrices generally appear in control theory [3, 11, 15, 18], especially in optimal control
[11] and in parametric resonance theory [15]. The spectra of the symplectic matrices is
generally composed of three groups with respect to the unit circle (see e.g. [7, 8, 18]) :
N0 eigenvalues outside the unit circle, N0 = N∞ eigenvalues inside the unit circle and
2N1 = 2(N −N0) eigenvalues on the unit circle. A symplectic matrix W is stable if all its
powers are bounded. In other words, if the eigenvalues of W lie on the unit circle and are
semi-simple. Some classifications of eigenvalues of W are given by the following definitions
[4, 7, 10, 18]

Definition 1. Let λ be a semi-simple eigenvalue of W lying on the unit circle.

(i) Then λ is called an eigenvalue of the first (second) kind if the quadratic form (iJx, x)
is positive (negative) on the eigenspace associated with λ. When (Jx, x) = 0, then λ
is of mixed kind.
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(ii) Then λ is an eigenvalue of a red (green) color or in short r-eigenvalue (g-eigenvalue)
if (S(0)x, x) is positive (negative) on the eigenspace associated with λ where S(0) =
1

2

(
JW + (JW )T

)
.

This leads us to the characterization of the strong stability by the following theorem
(see [6, 7])

Theorem 1. A symplectic matrix W is strongly stable if all the eigenvalues are on the
unit circle and verifies one of the following assertion :

(i) the eigenvalues are either of the first or second kind and there is a sufficient gap
between the eigenvalues of first and second kind. In other words, the quantity

δKGL(W ) = min
{
|eiθk − eiθl | such that eiθk , eiθl are eigenvalues of W of different kinds

}
should not be close to zero.

(ii) the eigenvalues are either of red color or green color and there is a sufficient gap
between the eigenvalues of red and green color. In other words, the quantity

δS(W ) = min
{
|eiθk − eiθl | such that eiθk , eiθl are r- and g-eigenvalues of W

}
should not be close to zero.

These symplectic matrices are often obtained as solutions of Hamiltonian systems with
periodic coefficients i.e. the differential systems of the form

J
dx(t)

dt
= H(t)x(t), t ∈ R (1)

where H(t) ∈ R2N×2N is symmetric and P -periodic (i.e. H(t + P ) = H(t) = (H(t))T ).
We know that the fundamental solution X(t) of (1), in other words, the solution of the
system 

J
dX(t)

dt
= H(t)X(t), t ∈ R

X(0) = I

, (2)

satisfies the relationship X(t + nP ) = X(t)Xn(P )(6= Xn(P )X(t)), ∀ (t, n) ∈ R × N and
is J-symplectic [18, Vol. 1, chap. 2]. Regarding stability (strong stability), we have the
following definitions [6, 18]

Definition 2. (i) System (1) is stable if each of its solutions x(t) remains bounded for
t ∈ R.

(ii) System (1) is strongly stable if any Hamiltonian system with P -periodic coefficients
to sufficiently close to (1), is stable.



M. Dosso, T. G. Y. Arouna, J.-C. Koua Brou / Eur. J. Pure Appl. Math, 12 (4) (2019), 1744-1770 1746

Specifically, system (1) (or system (2)) is strongly stable if there exists ε > 0 such

that any Hamiltonian system with P -periodic coefficients of the form J
dx(t)

dt
= H̃(t)x(t)

and satisfying ‖H − H̃‖ =

∫ T

0
‖H(t)− H̃(t)‖dt < ε, is stable. We also have the following

theorem [18, p. 196]

Theorem 2. System 1 is strongly stable if and only if the J-symplectic matrix X(P ) is
strongly stable.

Since the strong stability analysis of the Hamiltonian systems with P -periodic coef-
ficients is related to the study of their perturbation, we will dwell on a type of the per-
turbation which we call rank-k perturbation. Thus, we present in section 2, preliminaries
necessary to the study of the isotropic subspaces, on the rank-k perturbation of a symplec-
tic matrix and rank-k perturbation of a Hamiltonian system with P-periodic coefficients.
In sections 3 and 4, we give respectively the Jordan canonical forms of a rank-k perturba-
tion of a symplectic matrix and of a rang-k perturbation of the fundamental solution of (1).
Finally in section 5, we present some applications for some systems of Mathieu: Namely
systems that describe the movement of a double pendulum with oscillating support and
those that describe the motion of an ion through a quadrupole analyzer.

2. Preliminaries

2.1. Isotropic subspaces

Definition 3. A subspace X ⊆ R2N is called isotropic if X ⊥ JX . A maximal isotropic
subspace is called Lagrangian.

The maximum isotropic subspaces containing X are of dimension N . Hence the fol-
lowing definition (see [9])

Definition 4. A subspace L of RN is called a Lagrangian subspace if it has the dimension
N and

xTJy = 0, ∀x, y ∈ L.

In other words, we say that a subspace L is Lagrangian if and only if every matrix L
whose columns span L satisfies rankL = N and LTJL = 0.
We list a set of properties on the isotropic subspaces in the following proposition

Proposition 1. (i) Let X be an isotropic subspace. Then the dimension of X is less
than or equal to N .

(ii) Every isotropic subspace is contained in a Lagrangian subspaces.

(iii) Let S = [S1 S2] ∈ R2N×2N be a symplectic matrix with Si ∈ R2N×N , i = 1, 2 ; then
the columns of S1 and S2 span isotropic subspaces.
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Recall the two lemmas below (see [13])

Lemma 1. Let XS ⊆ R2N be a subspace that is invariant under a Hamiltonian matrix S
which has all its eigenvalues associated with XS having their real part negative. Then XS
is isotropic.

Lemma 2. Let S ∈ R2N×2N be a skew-Hamiltonian matrix and X ∈ R2N×k(k ≤ N) with
orthogonal columns. Then the columns of X span an isotropic invariant subspace of S if
and only if there exists an orthogonal symplectic matrix U = [X,Z, JTX, JTZ] with some
Z ∈ R2N×(N−k) so that

UTSU =

k N − k k N − k

k
N − k
k

N − k


A11 A12 G11 G12

0 A22 −GT12 G22

0 0 AT11 0
0 H22 AT12 AT22


On the other hand, if we consider the Krylov subspace defined below

Km ≡ Km(A, v) = span
{
v,Av,A2v, . . . , Am−1v

}
,

where A ∈ Rn×m (with n > 1) and v ∈ Rm. Then we have the following proposition which
shows that we can construct isotropic invariant subspaces from Krylov process (see [17, p.
399])

Proposition 2. Let S ∈ R2N×2N be a skew-Hamiltonian matrix and u ∈ R2N be an
arbitrary nonzero vector. Then the Krylov subspace Kj(S, u) is isotropic for all j.

2.2. Rank-k perturbation of symplectic matrices

Let W ∈ R2N×2N and L be respectively a symplectic matrix and a J-Lagrangian
subspace. Consider k vectors u1, · · · , uk of L, where k ≤ N . Setting

U = [u1; . . . ;uk], and W̃ =
(
I + UUTJ

)
W,

we have the following proposition

Proposition 3. The matrix W̃ is J-symplectic.

Proof. For the proof, see [2].

Definition 5. We call rank-k perturbation of W, any matrix of the form

W̃ = (I + UUTJ)W, (3)

where U is a matrix of rank k whose columns belong to a J-Lagrangian subspace.
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The matrix W̃ can be put in the form

W̃ = (I +

k∑
j=1

uju
T
j J)W.

More specially, this shows that any rank-k perturbation of W is k rank-one perturbations
of the symplectic matrix W . We have k∏

j=1

(
I + uju

T
j J
)W =

I +

k∑
j=1

uju
T
j J

W.

Consider a symplectic matrix of function (X(t))t∈R ; we can consider for example the
solution of system (2) which is J-symplectic. We have the following definition

Definition 6. We call rank-k perturbation of X(t) any matrix function of the form

X̃(t) = (I + UUTJ)X(t), (4)

where rank(U) = k and the columns of U belong in a J-Lagrangian subspace.

Remark 1. Since the matrix function (X(t))t∈R is J-symplectic, its rank-k perturbation
will be J−symplectic.

2.3. Rank-k perturbation of Hamiltonian system with periodic coeffi-
cients

Let U ∈ R2N×k (with k ≤ N) be a constant matrix of rank k such that its columns
belong to a J-Lagrangian subspace and (X(t))t≥0 be the fundamental solution of (2). We
have the following proposition

Proposition 4. a Consider the following perturbed Hamiltonian system

J
dX̃(t)

dt
= [H(t) + E(t)] X̃(t), (5)

where
E(t) = (JUUTH(t))T + JUUTH(t) + (UUTJ)TH(t)(UUTJ).

(i) Then X̃(t) = (I + UUTJ)X(t) is a solution of system (5).

(ii) Equation (5) can be put in the form
J
dX̃(t)

dt
=

(
I − UUTJ

)T
H(t)

(
I − UUTJ

)
X̃(t), t ∈ R+,

X̃(0) = I + UUTJ

(6)
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(iii) Any solution (X̃(t))t≥0 of perturbed system (5) of system (2), is of the form

X̃(t) = (I + UUTJ)X(t),

where (X(t))t≥0 is the fundamental solution of system (2).

Proof. For the proof, see [2].

System (6) can be written as below
J
dX̃(t)

dt
=

(
I −

∑k
j=1 uju

T
j J
)T

H(t)
(
I −

∑k
j=1 uju

T
j J
)
X̃(t)

X̃(0) = (I +
∑k

j=1 uju
T
j J)

, (7)

where each vector (uj)1≤j≤k ⊂ R2N belongs to a same J-Lagrangian subspace. We can
immediately see that the rank-k perturbation of (2) can be interpreted as k rank-one
perturbations of (2). In fact, since

I − UUTJ = I −
k∑
j=1

uju
T
j J =

k∏
j=1

(
I − ujuTj J

)
,

we easily see that system (7) can be put in the following form
J
dX̃(t)

dt
=

(∏k
j=1

(
I − ujuTj J

))T
H(t)

(∏k
j=1

(
I − ujuTj J

))
X̃(t)

X̃(0) =
∏k
j=1

(
I + uju

T
j J
) (8)

which is the same as the bellow system, for all p ∈ {1, 2, ..., k − 1} :


J
dX̃(t)

dt
=

(∏k
j=p+1(I − ujuTj J)

)T
H(p)(t)

(∏k
j=p+1(I − ujuTj J)

)
X̃(t)

X̃(0) =
(∏k

j=p+1(I + u(k+p−j+1)u
T
(k+p−j+1)J)

)
X

(p)
(0)

, (9)

where

H(p)(t) =

 p∏
j=1

(I − ujuTj J)

T

H(t)

 p∏
j=1

(I − ujuTj J)

 and

X
(p)

(0) =

p∏
j=1

(
I + u(p−j+1)u

T
(p−j+1)J

)
.
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3. Jordan canonical form of rank-k perturbation of a symplectic matrix

Let W,J ∈ R2N×2N be two matrices and λ ∈ C such that J is skew-symmetric, W is
J-symplectic and λ an eigenvalue of W . We have the following theorem

Theorem 3. Suppose that W has the following Jordan canonical form : l1⊕
j=1

Jn1(λ)

⊕
 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J ,
where n1 > · · · > nm, m ∈ N∗ such that the algebraic multiplicity a of λ is of the form

a =
m∑
j=1

ljnj and J contains all the forms in Jordan blocks associated with eigenvalues of

W that are different from λ. Moreover let B = UUTJW where U ∈ R2N×k is such that
its columns generate an isotropic subspace.

(1) If λ 6∈ {−1, 1}, then generally with respect to the components of U , the matrix W+B
has the Jordan canonical form



l1−k⊕
j=1

Jn1(λ)

⊕
 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ , if k < l1

li−ki⊕
j=1

Jni(λ)

⊕
 li+1⊕
j=1

Jni+1(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ , if


k =

i−1∑
s=1

ls + ki,

with ki < li
and i > 1

where J̃ contains all the forms in Jordan blocks of W+B associated with eigenvalues
different from λ.

(2) If λ ∈ {−1, 1}, then

(2a) if k =
i−1∑
s=1

ls + ki where the n1, n2, . . . , ni are even and ki < li, then generally

with respect to the components of U , then matrix W +B has the Jordan canon-
ical formli−ki⊕

j=1

Jni(λ)

⊕
 li+1⊕
j=1

Jni+1(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ contains all the forms in Jordan blocks of W + B associated with
eigenvalues different from λ.
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(2b) if k =
i−1∑
s=1

ls + 2ki − 1 with 2ki ≤ li and ni is odd, then li is even and gener-

ally with respect to the components of U , then matrix W + B has the Jordan
canonical form

Jni+1(λ)⊕

li−2ki⊕
j=1

Jni(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ contains all the forms in Jordan blocks of W + B associated with
eigenvalues, different from λ.

Proof. We know that the rang-k perturbation W̃ = W +B of W can be written in the
form

W̃ =

 k∏
j=1

(
I + uk−j+1u

T
k−j+1J

)W,
where each vector uj is a column of U . Therefore

1) If λ /∈ {−1, 1}, then

• For k < l1;

– Set W̃1 =
(
I + u1u

T
1 J
)
W . According to 1) of Theorem 7.1 of [16], W̃1 has

the Jordan canonicall1−1⊕
j=1

Jn1(λ)

⊕
 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃1,
where J̃1 contains all the forms in blocks of Jordan of W̃1 associated with
eigenvalues different from λ.

– Set W̃2 =
(
I + u2u

T
2 J
)
W̃1. According to 1) of Theorem 7.1 of [16], W̃2 has

the Jordan canonical forml1−2⊕
j=1

Jn1(λ)

⊕
 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃2,
with J̃2 containing all the forms in Jordan blocks of W̃2 associated with
eigenvalues different from λ.

– On the other hand,

W̃k = W +B =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + u3u

T
3 J
)
W̃2,
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by applying (k − 2)-times 1) of Theorem 7.1 of [16] to the matrix W̃2, we

get that W̃k has the following Jordan canonical form :l1−k⊕
j=1

Jn1(λ)

⊕
 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ = J̃k contains all the forms in Jordan blocks of W +B associated
with eigenvalues different from λ.

• For k =
i−1∑
s=1

ls + ki, with ki < li :

– i = 2, we have k = l1 + k2 with k2 < l2.
We know that

W̃k =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + ul1+1u

T
l1+1J

)
×(

I + ul1u
T
l1J
) (
I + ul1−1u

T
l1−1J

)
× ...×

(
I + u1u

T
1 J
)
W︸ ︷︷ ︸

W̃l1

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + ul1+1u

T
l1+1J

)
W̃l1

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uk−k2+1u

T
k−k2+1J

)
W̃l1 ,

because l1 = k − k2. As W̃l1 has the following Jordan canonical form : l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃l1 ,
where J̃l1 contains all the forms in Jordan blocks of W̃l1 associated with

eigenvalues different from λ because W̃k is a rang-k2 perturbation of W̃l1 ,

then W̃k has the following Jordan canonical form :l2−k2⊕
j=1

Jn2(λ)

 l3⊕
j=1

Jn3(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃k2 ,
where J̃k2 contains all the forms in Jordan blocks of W̃k = W+B associated
with eigenvalues different from λ.

– i > 2, k =
i−1∑
s=1

ls + ki, with ki < li.

Set

γ(i) =

i∑
s=1

ls, ∀ i ≥ 1.
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We have

W̃k =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× · · · ×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
×
(
I + uγ(i−1)u

T
γ(i−1)J

)
× · · · ×

(
I + uγ(3)+1u

T
γ(3)+1J

)
(
I + uγ(3)u

T
γ(3)J

)
× · · · ×

(
I + uγ(2)+1u

T
γ(2)+1J

)
(
I + uγ(2)u

T
γ(2)J

)
× · · · ×

(
I + u1u

T
1 J
)
W︸ ︷︷ ︸

W̃γ(2)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× · · · ×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
×
(
I + uγ(i−1)u

T
γ(i−1)J

)
× · · · ×

(
I + uγ(3)+1u

T
γ(3)+1J

)
×
(
I + uγ(3)u

T
γ(3)J

)
× · · · ×

(
I + uγ(2)+1u

T
γ(2)+1J

)
W̃γ(2)︸ ︷︷ ︸

W̃γ(3)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× · · · ×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
×
(
I + uγ(i−1)u

T
γ(i−1)J

)
× · · · ×

(
I + uγ(3)+1u

T
γ(3)+1J

)
W̃γ(3)︸ ︷︷ ︸

W̃γ(i−1)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× · · · ×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
W̃γ(i−1)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× · · · ×

(
I + uk−ki+1u

T
k−ki+1J

)
W̃γ(i−1),

where W̃γ(i−1) is γ(i− 1) rank-one perturbations of the symplectic matrix

W . Then W̃γ(i−1) has the following Jordan canonical form : li⊕
j=1

Jni(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃γ(i−1),
where J̃γ(i−1) contains all the forms in Jordan blocks of W̃γ(i−1) associated

with eigenvalues different from λ. Finally, using the fact that W̃k is ki rank
one perturbation of W̃γ(i−1), according to 1) of Theorem 7.1 of [16] and it

follows that the Jordan canonical form of W̃ = W̃k is given byli−ki⊕
j=1

Jni(λ)

 li+1⊕
j=1

Jni+1(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ = J̃k contains all the form in Jordan blocks of W̃k associated with
eigenvalues different from λ.
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2) If λ ∈ {−1, 1}, then :

2a) if k =

i−1∑
s=1

ls + ki, where the n1, n2, . . . , ni are even and ki < li, then

– i = 1, we have k = k1 and n1 is even.

W̃k =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + u2u

T
2 J
) (
I + u1u

T
1 J
)
W︸ ︷︷ ︸

=W̃1

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + u2u

T
2 J
)
W̃1︸ ︷︷ ︸

=W̃2

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + u3u

T
3 J
)
W̃2.

As W̃1 is a rank-one perturbation of W , according to 2a) of Theorem 7.1
of [16], it has the following Jordan canonical form :l1−1⊕

j=1

Jn1(λ)

⊕
 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃1,
where J̃1 contains all the forms in Jordan blocks of W̃1 associated with
eigenvalues different from λ. Using the fact that W̃2 is a rank-one pertur-
bation of W̃1, 2a) of Theorem 7.1 of [16] implies that the Jordan canonical

form of W̃2 is given byl1−2⊕
j=1

Jn1(λ)

⊕
 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃2,
where J̃2 contains all the forms in Jordan blocks of W̃2 associated with
eigenvalues different from λ. Hence, applying (k1−2)-times 2a) of Theorem

7.1 of [16] to the matrix W̃2, we have the following Jordan canonical form

of W̃k1l1−k1⊕
j=1

Jn1(λ)

⊕
 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃k1 ,
where J̃k1 contains all the forms in Jordan blocks of W̃k1 associated with
eigenvalues different from λ.

– For i > 1, we have k =
i−1∑
s=1

ls + ki, with ki < li and n1, n2, ..., ni are even.
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With γ(i) =
i∑

s=1

ls, ∀ i > 1, we have :

W̃k =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
×
(
I + uγ(i−1)u

T
γ(i−1)J

)
× ...×

(
I + uγ(3)+1u

T
γ(3)+1J

)(
I + uγ(3)u

T
γ(3)J

)
×...×

(
I + uγ(2)+1u

T
γ(2)+1J

)(
I + uγ(2)u

T
γ(2)J

)
× ...×

(
I + u1u

T
1 J
)
W︸ ︷︷ ︸

W̃γ(2)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
×
(
I + uγ(i−1)u

T
γ(i−1)J

)
× ...×

(
I + uγ(3)+1u

T
γ(3)+1J

)
×
(
I + uγ(3)u

T
γ(3)J

)
× ...×

(
I + uγ(2)+1u

T
γ(2)+1J

)
W̃γ(2)︸ ︷︷ ︸

W̃γ(3)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
×
(
I + uγ(i−1)u

T
γ(i−1)J

)
× ...×

(
I + uγ(3)+1u

T
γ(3)+1J

)
W̃γ(3)︸ ︷︷ ︸

W̃γ(i−1)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
W̃γ(i−1)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uk−ki+1u

T
k−ki+1J

)
W̃γ(i−1).

Knowing that W̃γ(i−1) is γ(i− 1) rank-one perturbations of the symplectic

matrixW , according to 2a) of Theorem 7.1 of [16], W̃γ(i−1) has the following
Jordan canonical form li⊕

j=1

Jni(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃γ(i−1),
where J̃γ(i−1) contains all the forms in Jordan blocks of W̃γ(i−1) associated

with eigenvalues different from λ. Finally, as W̃k is ki rank-one pertur-
bations of W̃γ(i−1), according to 2a) of Theorem 7.1 of [16] the Jordan

canonical form of W̃k is given by :li−ki⊕
j=1

Jni(λ)

 li+1⊕
j=1

Jni+1(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ = J̃k contains all the form in Jordan blocks from W̃k associated
with eigenvalues different from λ.
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2b) if k =
i−1∑
s=1

ls + 2ki − 1, with 2ki ≤ li and ni is even.

– For i = 1, we have k = 2k1 − 1 with 2k1 ≤ l1 and n1 is odd.
According to the property 2b) of Theorem 10 of [5], l1 is even and we have

W̃k =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + u3u

T
3 J
) (
I + u2u

T
2 J
)

×
(
I + u1u

T
1 J
)
W︸ ︷︷ ︸

W̃1

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + u3u

T
3 J
) (
I + u2u

T
2 J
)
W̃1︸ ︷︷ ︸

W̃2

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + u4u

T
4 J
) (
I + u3u

T
3 J
)
W̃2︸ ︷︷ ︸

W̃3

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + u4u

T
4 J
)
W̃3.

We know that W̃1 is a rank-one perturbation of W and its Jordan canonical
form in block of Jordan is given by (see [16, Theorem 7.1,2b)])

Jn1+1(λ)⊕

l1−2⊕
j=1

Jn1(λ)

 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃1,
where J̃1 contains all the form in Jordan blocks of W̃1 associated with
eigenvalues different from λ. So W̃2 has the following Jordan canonical
form (see [16, 2b) Theorem 7.1]) :l1−2⊕

j=1

Jn1(λ)

 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃2,
where J̃2 contains all the forms in Jordan blocks of W̃2 associated with
eigenvalues different from λ, because it is a rank-one perturbation of W̃1.
Similarly the Jordan canonical form of W̃3 [16, part 2b) du theorem 7.1] is
given by

Jn1+1(λ)⊕

l1−2×2⊕
j=1

Jn1(λ)

 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃3,
where J̃3 contains all the forms in Jordan blocks of W̃3 associated with
eigenvalues different from λ. Hence, applying (2k1 − 4)-times this process
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to matrix W̃3, we obtain the canonical form of Jordan below

Jn1+1(λ)⊕

l1−2k1⊕
j=1

Jn1(λ)

 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ = J̃k contains all the forms in Jordan blocks of W +B associated
with eigenvalues different from λ.

– For i = 2, we have k = l1 + 2k2 − 1 with 2k2 ≤ l2 and n2 is odd.

W̃k =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + ul1+1u

T
l1+1J

)
×

(
I + ul1u

T
l1J
)
× ...×

(
I + u1u

T
1 J
)
W︸ ︷︷ ︸

W̃l1

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + ul1+1u

T
l1+1J

)
W̃l1

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uk−2k2+2u

T
k−2k2+2J

)
W̃l1 ,

knowing that l1 = k − 2k2 + 1.

i) If n1 is even, according to the property 2a) of Theorem 7.1 of [16], W̃l1

has the Jordan canonical form bellow l2⊕
j=1

Jn2(λ)

⊕ ...⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃l1 ,
where J̃l1 contains all the forms in Jordan blocks of W̃l1 associated with

the eigenvalues different from λ. Finally, as W̃k is (2k2 − 1) rank-one

perturbations of W̃l1 and n2 is odd, according to 2b) of Theorem 7.1 of

[16], l2 is even and the Jordan canonical form of W̃k is given by :

Jn2+1(λ)⊕

l2−2k2⊕
j=1

Jn2(λ)

⊕
 l3⊕
j=1

Jn3(λ)

⊕...⊕
 lm⊕
j=1

Jnm(λ)

⊕J̃k,
where J̃k contains all the forms in Jordan blocks of W̃k associated to
eigenvalues different from λ.

ii) If n1 is odd, in this case l1 is even [16, Theorem 7.1,2b]. Applying l1-
times the 2b) of Theorem 7.1 of [16] to W , we have the Jordan canonical

form of W̃l1  l2⊕
j=1

Jn2(λ)

⊕ ...⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃l1 , (10)
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where J̃l1 contains all the forms in Jordan blocks of W̃l1 associated with

the eigenvalues different from λ. Since n2 is odd and W̃k is (2k2 − 1)

rank-one perturbations of the symplectic matrix W̃l1 , according the

property 2b) of Theorem 7.1 of [16], l2 is even and W̃k has the following
Jordan canonical form :

Jn2+1(λ)⊕

l2−2k2⊕
j=1

Jn2(λ)

⊕ ...⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃k,
where J̃k contains all the forms in Jordan blocks of W̃k associated with
eigenvalues different from λ.

• For i > 2, we have k =

i−1∑
s=1

ls + 2ki − 1, with 2ki ≤ li and ni is odd.

Set

γ(i) =
i∑

s=1

ls, ∀ i > 2.

W̃k =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
×
(
I + uγ(i−1)u

T
γ(i−1)J

)
× ...×

(
I + u1u

T
1 J
)
W︸ ︷︷ ︸

W̃γ(i−1)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
×W̃γ(i−1).

from 2a) and 2b) of Theorem 7.1 of [16],we deduce that W̃γ(i−1) has the
following Jordan canonical form : li⊕

j=1

Jni(λ)

⊕
 li+1⊕
j=1

Jni+1(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃γ(i−1),
where J̃γ(i−1) contains all the forms in Jordan blocks of W̃γ(i−1) associated

with the eigenvalues different from λ. Thus W̃k has the following Jordan
canonical form :

Jni+1(λ)⊕

li−2ki⊕
j=1

Jni(λ)

⊕
 li+1⊕
j=1

Jni+1(λ)

⊕ · · ·⊕
 lm⊕
j=1

Jnm(λ)

⊕J̃ ,
where J̃ = J̃k contains all the forms in Jordan blocks of W̃k associated with
eigenvalues different from λ because W̃k is (2ki− 1) rank-one perturbation

of W̃γ(i−1).
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Remark 2. In the property (2) of Theorem 3, if k =
i−1∑
j=1

ls + 2ki, with 2ki < li and the ni

is odd, then the li are even and generally with respect to the components of U , the rank-k
perturbation W̃ = W +B of W has the following Jordan canonical form :li−2ki⊕

j=1

Jni(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃k,
where J̃ = J̃k contains all the forms in Jordan blocks of W̃ associated with the eigenvalues
different from λ.

Using (2a) and (2b) of Theorem 3, we have the following corollary :

Corollary 1. Suppose that λ ∈ {−1, 1}. If k =
i−1∑
s=1

ls + ki, with ki < li and only ni

is even, then generally with respect to the components of U , the W + B has the Jordan
canonical formli−ki⊕

j=1

Jni(λ)

⊕
 li+1⊕
j=1

Jni+1(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ contains all the forms in Jordan blocks of W + B associated with the eigen-

values different from λ.

Proof.

• If i = 1, then k = k1 and n1 is even. According to (2a) of Theorem 3, W̃k has the
following Jordan canonical forml1−k1⊕

j=1

Jn1(λ)

⊕
 l2⊕
j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ = J̃k1 contains all the forms in Jordan blocks of W̃k1 associated with
eigenvalues different from λ.

• If i = 2, then k = l1 + k2, with (k2 < l2) and n2 is even. We know that

W̃k =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + ul1+1u

T
l1+1J

)
×
(
I + ul1u

T
l1J
)
× ...×

(
I + u1u

T
1 J
)
W︸ ︷︷ ︸

W̃l1

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + ul1+1u

T
l1+1J

)
W̃l1 .

So
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(a) if n1 is even, according to the property 2a) of Theorem 3, W̃l1 has the following
Jordan canonical form l2⊕

j=1

Jn2(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃l1 , (11)

where J̃ = J̃l1 contains all the forms in Jordan blocks of W̃l1 associated with

all eigenvalues different from λ. W̃k being k2 rank-one perturbations of W̃l1 ,

according to 2a) of Theorem 3, the Jordan canonical form of W̃k is given byl2−k2⊕
j=1

Jn2(λ)

⊕
 l3⊕
j=1

Jn3(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ = J̃k contains all the forms in Jordan blocks of W̃k associated with
eigenvalues different from λ.

(b) If n1 is odd, according to 2b) of Theorem 3, The Jordan canonical form of W̃l1

is given by (11). Knowing that n2 is even and W̃k is k2 rank-one perturbations

of W̃l1 , we obtain from 2a) of Theorem 3 that W̃k has the following Jordan
canonical forml2−k2⊕

j=1

Jn2(λ)

⊕
 l3⊕
j=1

Jn3(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ = J̃k contains all the forms in Jordan blocks of W̃k associated with
eigenvalues different from λ.

• For i > 2, we have k =
i−1∑
s=1

ls + ki, with ki < li and ni is even.

Let’s put γ(i) =
∑i

s=1 ls. we know that

W̃k =
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
×
(
I + uγ(i−1)u

T
γ(i−1)J

)
× ...×

(
I + u1u

T
1 J
)
W︸ ︷︷ ︸

=W̃γ(i−1)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uγ(i−1)+1u

T
γ(i−1)+1J

)
W̃γ(i−1)

=
(
I + uku

T
k J
) (
I + uk−1u

T
k−1J

)
× ...×

(
I + uk−ki+1u

T
k−ki+1J

)
W̃γ(i−1),

because γ(i− 1) = k − ki. So W̃γ(i−1) has the following Jordan canonical form li⊕
j=1

Jni(λ)

⊕
 li+1⊕
j=1

Jni+1(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃γ(i−1),
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where J̃γ(i−1) contains all the forms in Jordan blocks of W̃γ(i−1) associated with
eigenvalues different from λ. Applying thereafter ki times 2a) of Theorem 3 to the

matrix W̃γ(i−1), we obtain the Jordan canonical form of W̃kli−ki⊕
j=1

Jni(λ)

⊕
 li+1⊕
j=1

Jni+1(λ)

⊕ · · · ⊕
 lm⊕
j=1

Jnm(λ)

⊕ J̃ ,
where J̃ = J̃k contains all the forms in Jordan blocks of W + B associated with
eigenvalues different from λ.

4. Jordan canonical form of (X̃(t))t>0

Theorem 4. Let t > 0, J ∈ R2N×2N be a skew-symmtric and invertible matrix, (X(t))t>0

be the fundamental solution of the system (2) and λ(t) ∈ C be an eigenvalue of (X(t))t>0.
Suppose that X(t) has the following Jordan canonical form l1⊕

j=1

Jn1(λ(t))

⊕
 l2⊕
j=1

Jn2(λ(t))

⊕ · · · ⊕
lm(t)⊕

j=1

Jnm(t)
(λ(t))

⊕ J (t),

where n1 > · · · > nm(t) et m : R −→ N∗ is a index function such that the algebraic

multiplicity a(t) of λ(t) is of the form a(t) =

m(t)∑
j=1

ljnj and J (t) contains all the forms

in Jordan blocks associated with eigenvalues of X(t) different from λ(t). Moreover, Set
B(t) = UUTJX(t) where U ∈ R2N×k is such that its columns generate an isotropic
subspace.

(1) If λ(t) 6∈ {−1, 1}, then generally with respect to the components of U , X(t) + B(t)
has the following Jordan canonical form



l1−k⊕
j=1

Jn1(λ(t))

⊕
 l2⊕
j=1

Jn2(λ(t))

⊕ · · · ⊕
lm(t)⊕

j=1

Jnm(t)
(λ(t))

⊕ J̃ (t), if k < l1

li−ki⊕
j=1

Jni(λ(t))

⊕
 li+1⊕
j=1

Jni+1(λ(t))

⊕ · · · ⊕
lm(t)⊕

j=1

Jnm(t)
(λ(t))

⊕ J̃ (t),

if


k =

i−1∑
s=1

ls + ki,

with ki < li
et i > 1
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where J̃ (t) contains all the form in Jordan blocks of X(t) + B(t) associated with
eigenvalues different from λ(t).

(2) if ∃ t0 > 0 such that λ(t0) ∈ {−1, 1}, then

(2a) if k =
i−1∑
s=1

ls + ki where the n1, n2, . . . , ni are even and ki < li, then generally

with respect to the components of U , X(t) + B(t) has the following Jordan
canonical formli−ki⊕

j=1

Jni(λ(t0))

⊕
 li+1⊕
j=1

Jni+1(λ(t0))

⊕· · ·⊕
lm(t0)⊕

j=1

Jnm(t0)
(λ(t0))

⊕J̃ (t0),

where J̃ (t0) contains all the form in Jordan blocks of X(t0) +B(t0) associated
with eigenvalues different from λ(t0).

(2b) If k =

i−1∑
s=1

ls + 2ki − 1 with 2ki ≤ li and ni is odd, then li is even and generally

with respect to the components of U , X(t0) + B(t0) has the following Jordan
canonical form

Jni+1(λ(t0))⊕

li−2ki⊕
j=1

Jni(λ(t0))

⊕ · · · ⊕
lm(t0)⊕

j=1

Jnm(t0)
(λ(t0))

⊕ J̃ (t0),

where J̃ (t0) contains all the form in Jordan blocks of X(t0) +B(t0) associated
with eigenvalues different from λ(t0).

Proof. It suffices to adapt the proof of Theorem 3 to the solution (X(t))t≥0 of (2) and

to its rank-k perturbation
(
X̃(t)

)
t≥0

(which is the fundamental solution of (6)).

5. Application to some Mathieu systems

5.1. Double pendulum with oscillating supports

Consider two identical simple pendulums attached to the same support. When the
support of each pendulum is subjected to an oscillatory movement f(t) of amplitude α
and of a pulsation Ω, defined by f(t) = α cos(Ωt) [14], we present two cases:
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Figure 1: Model of the uncoupled double pendulum with oscillating supports.

5.1.1. Uncoupled double pendulums with oscillating supports

According to [14], the differential equation of the movement of the two pendulums will be
the same. Thus, the equation of motion is given by:

d2xi
dt2

+
cg

k20

(
1− 1

g

d2f

dt2

)
xi = 0, i = 1, 2, (12)

where k0 is the radius of gyration of the pendulum around its point of suspension, and c
is the distance between the point of suspension and the center of the pendulum.

Since f(t) = α cos(Ωt), then system (12) becomes:

d2xi
dt2

+
cg

k20

(
1 +

αΩ2

g
cos(Ωt)

)
xi = 0, i = 1, 2, (13)

and by the change of variable τ = Ωt [14], equation (13) becomes:

d2xi
dτ2

+ (δ + ε cos(τ))xi = 0, i = 1, 2, (14)

where
ε =

cα

k20
and δ =

cg

k20Ω2
.

Finally, using the following change of variables

X(τ) =

[
x(τ)
dx

dτ
(τ)

]
, J =

[
02 −I2
I2 02

]
and H(τ, δ, ε) =

[
P (τ, δ, ε) 02

02 I2

]
, (15)

with x(τ) =

[
x1(τ)
x2(τ)

]
and P (τ, δ, ε) = (δ + ε cos(τ))I2, we obtain equation (1).

Now, consider the rank-2 perturbation of the fundamental solution X(τ, δ, ε) of its
corresponding Hamiltonian system by the following matrix of rank 2

Ea(τ, δ, ε) = UaU
T
a JX(τ, δ, ε), (16)

where

Ua = a


1 0
0 1
0 0
0 0

 and a ∈ [0, 1[. (17)

According to [2, 5], its rank-2 perturbation

X̃a(τ, δ, ε) =
(
I + UaU

T
a J
)
X(τ, δ, ε). (18)
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is the solution of the following rank-k perturbation Hamiltonian system
J
dX̃a(τ, δ, ε)

dτ
= (I − UaUTa J)TH(τ, δ, ε)(I − UaUTa J)︸ ︷︷ ︸

H̃(τ,δ, ε,a)

X̃a(τ, δ, ε),

X̃a(0, δ, ε) = I + UaU
T
a J

(19)

Figure 2 represents the movement of eigenvalues of X̃a(τ, δ, ε) for (δ, ε) ∈ {(1, 0.8) ,
(1.93, 1.93)} and a ∈ {0, 0.35}, with τ ∈ [0, 2π]. These figures show that small rank-k
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Figure 2: spectral portrait of X̃a(τ, δ, ε) for τ ∈ [0, 2π] and (δ, ε) ∈ {(1, 0.8) , (1.93, 1.93)} with a ∈ {0, 0.35}.

perturbations on the movement of pendulums do not change the nature of the spectral
portrait of X̃a(τ, δ, ε).

For all (δ, ε) ∈ [0, 1.98] × [0, 2], Figure 3 shows the stability region of X̃a(2π, δ, ε).
The first figure (left) shows areas of stability in blue and of instability in red when our
system is subject to a rank-2 perturbation (with a = 0.35). The second figure (right) also
shows the zone of stability in blue and of instability in red of the unperturbed system (i.e.
a = 0). Thus we notice a slight difference between the two figures due to the small rank-k
perturbation of the system described by our two uncoupled pendulums.

5.1.2. Coupled double pendulums with oscillating supports

In this part, the two simple pendulums are coupled by a spring of constant stiffness k
(see Figure 4). According to [14], the motion of the system is governed by the following
differential system :

d2x

dt2
+

(
B0 −

c

k20

d2f

dt2
I2

)
x = 0, (20)

where

x =

∣∣∣∣ x1x2
]

and B0 =


cg
k20

+ kb2

mk20
− kb2

mk20

− kb2

mk20

cg
k20

+ kb2

mk20

 ,
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Figure 3: Stability zone of matrix X̃a(2π, δ, ε), ∀ (δ, ε) ∈ [0, 1.98]× [0, 2] and a ∈ {0, 0.35}.

Figure 4: Model of the coupled double pendulum with oscillating supports.

with m is the mass of each pendulum and b is the distance between the point of suspension
and the point of attachment of the coupling spring.

Replacing f(t) by its expression in (20), equation (20) becomes:

d2x

dt2
+

(
B0 +

cαΩ2

k20
cos(Ωt)I2

)
x = 0. (21)

Using successively the change of variables

z =

(
z1
z2

)
=

(
x1 + x2
x1 − x2

)
and τ = Ωt,

the equation of motion of the system can be reduced as (see [14])

d2zi
dτ2

+ (δi + εi cos(τ)) zi = 0, i = 1, 2 (22)

where

δ1 = δ =
cg

k20Ω2
, ε1 = ε =

cα

k20
and ε2 = ε+ 2e, with e =

kb2

mk20Ω2
.
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Finally, using the change of variables given in (15) with N = 2, it is easy to see that the
equation of motion of the coupled system can be reduce to form (1) with

H(τ, δ, ε, e) =

(
P (τ, δ, ε, e) 02

02 I2

)
and

P (τ, δ, ε, e) =

 δ + ε cos(τ) 0

0 δ + 2e+ ε cos(τ)

 .

Consider the rank-2 perturbation of the fundamental solution X̃a(τ, δ, ε, e) of its cor-
responding Hamiltonian system

Ea(τ, δ, ε, e) = UaU
T
a JX(τ, δ, ε, e), (23)

where Ua is defined in (17). In this case, it is easy to see that the equation of motion is of
the form (19) [1, 2, 5].

Figure 5 represents the spectral portrait of the matrix X̃a(τ, δ, ε, e), ∀ (δ, ε, e) ∈ {(1, 0.8, 0.5) ,
(1.93, 1.93, 0.5)} and a ∈ {0, 0.35}, ∀τ ∈ [0, 2π]. The figures also show that the small
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Figure 5: spectral portrait of X̃a(τ, δ, ε, e), ∀τ ∈ [0, 2π] and (δ, ε, e) ∈ {(1, 0.8, 0.5) , (1.93, 1.93, 0.5)}, with
a ∈ {0, 0.35}.

perturbation of rank-2 on the movement of pendulums do not change the nature of the
spectral portrait of the fundamental solution X̃(τ, δ, ε, e).
For all (δ, ε) ∈ [0, 1.98]×[0, 2], Figure 6 shows the stability(strong) region of X̃a(2π, δ, ε, e).
The first figure (left) shows the zone of strong stability in white and instability in red when
our system is subject to a rank-2 perturbation with a = 0.35. The second figure (right)
also shows the zone of strong stability in white and instability in red of the unperturbed
system (a = 0). However, we observe some points of stability in blue. Thus we notice
a slight difference between the two figures due to the small rank-2 perturbations of the
system described by our two coupled pendulums.
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Figure 6: Stability(strong) of the matrix X̃a(2π, δ, ε, e), ∀ (δ, ε) ∈ [0, 1.98]× [0, 2], a ∈ {0, 0.35} and e = 0.5.

5.2. Motion of an ion through a quadrupole analyser

Consider an ion of mass m and of electric charge |Ze| which moves with a velocity v
through a quadrupole analyzer of potential Φ0 = U −V cos(ωt). Within the analyzer, the
ion experiences a force f(x, y, t) = −Ze∇V(x, y, t), where Z is the number of protons
and e is the charge of a proton. We assume that the component of the electric field along
the axis Oz is zero, and the component z of the velocity remains constant.

Figure 7: Model of a quadrupole analyzer.

According to [12], the motion of the ion through the analyzer is governed by the
following equation 

d2x

dξ2
+ (α− 2q cos(2ξ))x = 0

d2y

dξ2
− (α− 2q cos(2ξ)) y = 0

(24)

where

α =
8ZeU

r20mω
2
, q =

4ZeV

r20mω
2

and ξ =
ωt

2
.
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This equation was proposed in 1866 by physicist Mathieu to describe the propagation
of waves in membranes. We apply the rank-k perturbation to this system in view of
comparing the spectral portraits and the stability zones of the perturbed and unperturbed
systems.

Using the change of variable given in (15) with N = 2, we obtain Hamiltonian system
(1) with

H(ξ) =

(
P (ξ) 02
02 I2

)
and P (ξ) =

 α− 2q cos(2ξ) 0

0 −α+ 2q cos(2ξ)

 .

Considering that the motion of the ion is subjected to a perturbation of the type (16), the
equation of the motion of the ion then becomes [2, 5]

J
dX̃a(ξ, α, q)

dξ
= (I − UUTJ)TH(ξ, α, q)(I − UUTJ)︸ ︷︷ ︸

H̃(ξ, α, q)

X̃a(ξ, α, q),

X̃a(0, α, q) = I + UUTJ

(25)

where U = a


1 0
0 1
0 0
0 0

 and a ∈ [0, 1[.

Figure 8 represents the spectral portrait of the matrix X̃a(α, q, ξ), ∀ (α, q) ∈ {(0, 0.025) ,
(0.1, 0.7)}, and a = 0, 0.3003, ∀ξ ∈ [0, π]. Once again, these figures show that the small
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Figure 8: Spectral porttait of the matrix X̃a(ξ, α, q), ∀ξ ∈ [0, π] and (α, q) ∈ {(0, 0.025) , (0.1, 0.7)}
with a ∈ {0, 0.3003}.

rang-2 perturbation on the movement of an ion through a quadrupole analyzer do not
change the nature of the spectral portrait of X̃a(ξ, α, q).
∀ (α, q) ∈ [0, 0.2] × [0, 0.9], Figure 9 shows the stability(strong) zone of the matrix
X̃a(π, α, q). The first figure (to the left) shows the zone of strong stability in white color
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and the zone of instability in red color when our system is subject to a rank-2 perturbation
with a = 0.35. The second figure (to the right) also shows the zone of strong stability in
white color and instability in red color of the unperturbed system (a = 0). However, we
also see points of stability visible in blue on the first figure compared to the second. Thus
we notice a slight difference between the two figures due to the small rank-2 perturbation
of the system described by the movement of an ion through a quadrupole analyzer.
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Figure 9: Stability(strong) zone of the matrix X̃a(π, α, q), ∀ (α, q) ∈ [0, 0.2]× [0, 0.9] and a ∈ {0, 0.3003}.

6. Concluding remarks

From works by C. Mehl, et al.[16] on the perturbation theory of structured matrices,
we presented Jordan canonical forms of rank-k perturbations of symplectic matrices and
fundamental solutions of Hamiltonian system with periodic coefficients. These results show
the effect of a k-rank perturbation on spectra of periodic Hamiltonian systems. Examples
of applications on Mathieu systems have been proposed to check the small change of
spectrum under small perturbations. Numerical simulations on the differential equations
of the motion of two uncoupled or coupled pendulums and the movement of an ion through
a quadrupole analyzer show a slight change in their spectra (thus in their stability zones).
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