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Existence of Optimal Control for a nonlinear Partial
Differential Equation of Hyperbolic-type
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Abstract. In this paper, we prove the existence of an optimal control for a nonlinear hyperbolic
problem, examined in [3]. An estimation is used which makes it possible to extract from a minimiz-
able sequence of controls and from the sequence of corresponding solutions weakly convergent sub
sequences. To prove the passage to the limit in a true equality for every element of the minimizable
sequence, Lebesgue’s theorem on the passage to the limit under the integral sign and the theorem
of immersion have been used.
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1. Preliminaries notions

Before proceeding to the formulation of the problem, let us recall some fundamental
notions of [2].

1.1. Definition of Ck,λ,0(Ω̄) space: (see [4])

Let Ω be a domain of RN , k ∈ N0 and λ ∈]0, 1[. We call Ck,λ,0(Ω̄) any subset of the
functions u ∈ Ck,λ(Ω̄) for which the following condition is satisfied

∀ε > 0, ∃δ > 0 : (x, y ∈ Ω, 0 < |x− y| < δ, |α| = k) =⇒ |Dαu(x)−Dαu(y)| · |x− y|−λ < ε

where α = (α1, · · · , α2) is the multi-index.
The norm of the Ck,λ,0(Ω̄) space is deduced from Ck,λ(Ω̄), namely

‖u‖k,λ =
∑
|α|6k

sup
x∈Ω
|Dαu(x)|+

∑
|α|6k

sup
x 6=y
|Dαu(x)−Dαu(y)| · |x− y|−λ.
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Theorem 1 ([2], P.11). Let Ω be a bounded domain of Rn, 0 < λ < 1
F : R× Ω̄ −→ R, (u, x) 7−→ F (u, x) a continuous function defined on R× Ω̄, differen-

tiable with respect to u on R for all x ∈ Ω̄ and also F ′u : Ω̄×R −→ R a continuous function
on Ω̄× R satisfied

|F ′u(u, y)− F ′u(v, z)| 6 Q1|u− v|+Q2|y − z|λ

and
|F (u, y)− F (v, z)| 6 C1|u− v|+ C2(y, z)|y − z|λ

where Q1, Q2, C1 are the constants and C2 a bounded function which verifies the condition

∀ ε > 0,∃ δ > 0 : (|y − z| < δ) =⇒ C2(y, z) < ε.

Then the ϕ(x) 7−→ F (ϕ(x), x) mapping is defined from C0,λ,0(Ω̄) to C0,λ,0(Ω̄) and is weakly
sequentially continuous.

Theorem 2 ([2], P.13). Let Ω be a bounded domain of Rn, 0 < λ < 1
K : R×R, (x, y, u) 7−→ K(x, y, u) a continuous function on R× Ω̄2, differentiable with

respect to u on R for all (x, y) ∈ Ω̄2 and also K ′u : Ω̄2×R −→ R a continuous function on
Ω̄2 × R verifying

|K ′u(t, y, u)−K ′u(s, y, u)| 6 Qr|t− s|λ, |u| 6 r

and
|K(t, y, u)−K(s, y, u)| 6 ar(t, s, y), |u| 6 r

with ar a measurable function,∫
Ω
ar(t, s, y)dy 6 br(t, s) · |t− s|λ,

and br : Q̄2
T −→ R satisfied the following conditions:

br is bounded and ∀ε > 0, ∃δ > 0 : (|t− s| < δ) =⇒ br(t, s) < ε
Then the mapping

G : [u(x)] 7−→
∫

Ω
K(x, y, u(y))dy

is defined from C0,λ,0(Ω̄) to C0,λ,0(Ω̄) and weakly sequentially continuous.

2. Main operators

We shall consider the following problem

∂2u

∂t2
−∆u+ |u|ρu = f(x, t), ρ > 0, (1)

∂u

∂~n
(x, t)|∂Ω = 0, t ∈ (0, T ) (2)
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u(x, t)|t=0 = ϕ(x), x ∈ Ω,
∂u

∂t
(x, t)|t=0 = ψ(x), x ∈ Ω (3)

in the cylinder
QT = {x, t : x ∈ Ω ⊂ Rn, 0 < t 6 T <∞},

where Ω is a bounded domain of Rn with differentiable boundary ∂Ω, ~n designates the

outer normal to ∂Ω and ∆u =
n∑
i=1

∂2u

∂x2
i

.

Let

H1(Ω) = {v/v ∈ L2(Ω),
∂v

∂xi
∈ L2(Ω), i = 1, · · · , n}

with associated norm

‖v‖H1(Ω) =

(∫
Ω

[
|v|2 +

n∑
i=1

| ∂v
∂xi
|2
]
dx

) 1
2

.

Assume that the functions f(x, t), ϕ(x), ψ(x) are the control and then

f(x, t) ∈ Y ⊂ L2(QT ), ϕ(x) ∈ X ⊂ H1(Ω), ψ(x) ∈W ⊂ L2(Ω) (4)

where Y,X,W are respectively the convex sets, bounded and closed of L2(QT ), H1(Ω) and
L2(Ω).

Let consider the operator:

A : L2(QT )×H1(Ω)× L2(Ω) −→ C0,λ,0(Q̄T )

[A(f, ϕ, ψ)](x, t) =

∫
Ω
K1(x, t, x′, t′)f(x′, t′)dx′dt′+

∫
Ω
K2(x, x′)ϕ(x′)dx′+

∫
Ω
K3(x, x′)ψ(x)dx′

where K1,K2,K3 verify the condition of Hölder:
λ+ λ′, 0 < λ′ < λ, λ+ λ′ < 1 respectively in (x, t), x, x′ and

|K1(x, t, x′, t′)−K1(x̃, t̃, x′, t′)| 6 c3(x′, t′)|(x, t)− (x̃, t̃)|λ+λ′ ,

|K2(x, x′)−K2(x̃, x′)| 6 c4(x′)|x− x̃|λ+λ′ ,

|K3(x, x′)−K3(x̃, x′)| 6 c5(x′)|x− x̃|λ+λ′ ,

sup
(x,t)∈QT

∫
QT

K2
1 (x, t, x′, t′)dx′dt′ = c6 <∞,

sup
x∈Ω̄

∫
QT

K2
2 (x, x′)dx′ = c7 <∞,

sup
x∈Ω̄

∫
QT

K2
3 (x, x′)dx′ = c8 <∞.

with c3(x′, t′) ∈ L2(QT ), c4(x′), c5(x′) ∈ L2(Ω).
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Note that this operator is linear, continuous and therefore it is weakly sequentially
continuous (by Theorem 1).

Let consider then the operator

[B(f, ϕ, ψ)](x, t) =

∫
QT

K(x, t, x′, t′, [A(f, ϕ, ψ)](x′, t′)dx′dt′

where

• the function K : Q̄2
T × R −→ R, K : (x, t, x′, ξ) −→ K(x, t, x′, t′, ξ) is continuous on

Q̄2
T × R, differentiable with respect to ξ on R for all (x, t, x′, t′) ∈ Q̄2

T ;

• the derived function K ′ξ : Q̄2
T × R −→ R is also continuous on Q̄2

T × R, and

|K ′ξ(x, t, x′, t′, ξ)−K ′ξ(x̃, t̃, x′, t′, ξ)| 6 QT |(x, t)− (x̃, t̃)|λ+λ′ , |ξ| 6 r

|K ′ξ(x, t, x′, t′, ξ)−K(x̃, t̃, x′, t′, ξ)| 6 ar(x, t, x̃, t̃, x
′, t′), |ξ| 6 r

here ar is a measurable function verifying∫
QT

ar(x, t, x̃, t̃, x
′, t′)dx′dt′ 6 br(x, t, x̃, t̃) · |(x, t)− (x̃, t̃)|λ+λ′

and br : Q̄2
T −→ R satisfying the following conditions:

br is bounded and

∀ε > 0,∃δ > 0 : (|(x, t)− (x̃, t̃)| < δ) =⇒ br(x, t, x̃, t̃) < ε.

This operation is a mapping defined from L2(QT )×H1(Ω)× L2(Ω) to C0,λ,0(Q̄T ) and it
is weakly sequentially continuous (by Theorem 2).

Let E ∈ (C0,λ,0(Q̄T ))′.
Remember ([2],P.5) that there exists such Borelian measures (definite positive) µ1 and

µ2 with bounded variation on Q̄T and Q̄2
T respectively for which

〈E, u〉 =

∫
QT

u(x, t)dµ1(x, t) +

∫ 2

QT

(u(x, t)− u(x̃, t̃)) · |(x, t)− (x̃, t̃)|−λdµ2(x, t, x̃, t̃)

for u ∈ C0,λ,0(Q̄T ).
In this case, the functionals of the form

F i : L2(QT )×H1(Ω)× L2(Ω) −→ R

F i(f, ϕ, ψ) = 〈Ei, Bi(f, ϕ, ψ)〉, i = 0, s1 + s2,

are also weakly sequentially continuous.



D. Ampini, V. D. Mabonzo / Eur. J. Pure Appl. Math, 12 (4) (2019), 1595-1601 1599

3. Formulation of the problem

Consider the problem (1)-(3) with the propositions (4). Then consider the functional
of the form

Ji(f, ϕ, ψ) =

∫
Q̄T

vi(x, t, u(x, t))dxdt+ F i(f, ϕ, ψ), (5)

i = 0, s1 + s2 where the functions vi(x, t, ξ) verify the following conditions:

a) the functions vi(x, t, ξ) are measurable on QT × R,

b) almost for each (x, t) ∈ QT , the functions vi(x, t, ξ) are continuous at ξ on R and

|vi(x, t, ξ)| 6 c9 + c10|ξ|2. (6)

Note that the functions Ji(f, ϕ, ψ) are weakly sequentially continuous by virtue of the
immersion theorem H1(QT ) ⊂ L2(QT ), of inequality

‖u‖H1(QT ) 6 c(T )(‖f‖L2(QT ) + ‖ϕ‖H1(Ω) + ‖ψ‖L2(Ω))

[1], and the continuity of the functional u 7−→
∫
QT

vi(x, t, u(x, t))dxdt from L2(QT ) into
R.

We thus pose the following problem:
To find out such measurable functions f0(x, t) ∈ Y, ϕ0(x) ∈ X, ψ0(x) ∈ W in such

a way that, for the solution u0(x, t) of the problem (1)-(3) corresponding to (f0, ϕ0, ψ0),
inequality-type constraints are verified,

Ji(f, ϕ, ψ) 6 0, i = 1, s1, (7)

equality-type constraints,

Ji(f, ϕ, ψ) = 0, i = s1 + 1, s1 + s2 (8)

and with that
J0(f0, ϕ0, ψ0) = inf

Y×X×W
J0(f, ϕ, ψ) (9)

4. Existence of an optimal control

Theorem 3. We suppose there is a control of the above indicated class and inf
Y×X×W

Ji(f, ϕ, ψ) >

−∞.
Then there exists an optimal control f̂0(x, t), ϕ̂0(x), ψ̂0(x).

Proof. white.
Let {fm(x, t)}m>1, {ϕm(x)}m>1, {ψm(x)}m>1 be minimizable sequences of controls and

{um(x, t)}m>1 their corresponding sequence of solution of the problem (1)-(3).
From the inequality

‖um(x, t)‖H1(QT ) + ‖um(x, t)‖Lp(QT ) 6 const
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[3], where p = ρ + 2, it follows that the {um(x, t)}m>1 sequence is uniformly bounded
into H1(QT ); which allows to subtract a sub-sequence of solutions {umk

(x, t)}∞k=1 that
converge weakly to u(x, t) into H1(QT ) and fmk

(x, t), ϕmk
(x), ψmk

(x) converge weakly in
the spaces L2(QT ), H1(Ω), L2(Ω) to f0(x, t) ∈ Y, ϕ0(x) ∈ X,ψ0(x) ∈W .

From the weak converge in H1(QT ) of the sequence umk
(x, t) to u(x, t) and by virtue of

the complete continuity of the operator H1(QT ) into L2(QT ), result the weak convergence
into L2(QT ) of the sequence umk

(x, t) to u(x, t).

H1(QT ) ⊂ L2(QT ) ∀{um(x, t)} ⊂ H1(QT ) : ‖um(x, t)‖H1(QT ) 6 c11

∃ {umk
(x, t)} ⊂ {um(x, t)} which is fundamental in L2(QT ).

As L2(QT ) is complete then ∃ x∗(x, t) ∈ L2(QT ) : umk
(x, t) −→ u∗ converge strongly

into L2(QT ).
By virtue of the separation of L2(QT ), we have u = u∗.
We can consider that ([5],p.162)

|umk
(x, t)| 6 z(x, t) ∈ L2(QT ).

Then from the inequality (6), we obtain

|vi(x, t, umk
)| 6 c9 + c10z

2(x, t) ∈ L1(QT ).

By using the formula of the functional Ji(f, ϕ, ψ) for umk
(x, t), we have

Ji(fmk
, ϕmk

, ψmk
) =

∫
QT

vi(x, t, umk
)dxdt+ F i(fmk

, ϕmk
, ψmk

)

i = 0, s1 + s2

According to the Lebesgue theorem, we obtain

Ji(f̂
0, ϕ̂0, ψ̂0) =

∫
QT

vi(x, t, u(x, t))dxdt+ F i(f̂0, ϕ̂0, ψ̂0) (10)

i = 0, s1 + s2

As the functions fm(x, t), ϕm(x), ψm(x) are the minimizable sequences, then

J0(fm, ϕm, ψm) −→ inf
X×Y×W

J0(f, ϕ, ψ) := J∗ (11)

Under the weak sequential continuity, we have

J∗ = lim
m→∞

J0(fm, ϕm, ψm) = J0(f̂0, ϕ̂0, ψ̂0) (12)

By the same way, we have

lim
m→∞

Ji(fm, ϕm, ψm) = Ji(f̂
0, ϕ̂0, ψ̂0), (13)
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i = 1, s1 + s2

In addition, from (7) and (8), it follows that :

Ji(fm, ϕm, ψm) 6 0, i = 1, s1

Ji(fm, ϕm, ψm) = 0, i = s1 + 1, s1 + s2

and from this, it follows that :

Ji(f̂
0, ϕ̂0, ψ̂0) 6 0, i = 1, s1 (14)

Ji(f̂
0, ϕ̂0, ψ̂0) = 0, i = s1 + 1, s1 + s2. (15)

From (12), (14), (15), it follows that f̂0, ϕ̂0, ψ̂0 is an optimal control.
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