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1. Introduction

For several decades, an increasing interest in obtaining sufficient conditions for oscil-
latory and nonoscillatory behavior of different classes of differential equations has been
observed; see, for instance, the monographs [1]-[5], the papers [6]-[20], and the references
cited therein.

Neutral differential equations are used in numerous applications in technology and
natural science. For instance, they are frequently used for the study of distributed net-
works containing lossless transmission lines; see Hale [22], and therefore their qualitative
properties are important.

In this paper, we are concerned with the oscillation of solutions of the fourth-order
neutral differential equation(

r (t)
(
(x (t) + p (t)x (τ (t)))′′′

)α)′
+ q (t)xβ (σ (t)) = 0, (1)

where t ≥ t0. In this work, we assume that α and β are quotients of odd positive integers,
r, p, q ∈ C[t0,∞), r (t) > 0, r′ (t) ≥ 0, q (t) > 0, 0 ≤ p (t) < p0 < ∞, τ, σ ∈ C[t0,∞),
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τ (t) ≤ t, limt→∞ τ (t) = limt→∞ σ (t) = ∞. Moreover, we study (1) under the condition
that ∫ ∞

t0

1

r1/α (s)
ds =∞, (2)

and we define the function

z (t) := x (t) + p (t)x (τ (t)) .

By a solution of (1) we mean a function x ∈ C3[tx,∞), tx ≥ t0, which has the property
r (t) (z′′′ (t))α ∈ C1[tx,∞), and satisfies (1) on [tx,∞). We consider only those solutions x
of (1) which satisfy sup{|x (t)| : t ≥ T} > 0, for all T ≥ tx.

Definition 1. A solution x of (1) is said to be non-oscillatory if it is positive or negative,
ultimately; otherwise, it is said to be oscillatory. The equation itself is termed oscillatory
if all its solutions oscillate.

Let us briefly comment on a number of related results which motivated our study. A
number of oscillation results for differential equation(

r (t)
(
x(n−1) (t)

)α)′
+ q (t) f (x (τ (t))) = 0,

have been established by Baculikova et al. [16] under the conditions (2) and∫ ∞
r−1/α (t) dt <∞.

Asymptotic behavior of higher-order quasilinear neutral differential equations of the form(
r (t)

(
z(n−1) (t)

)α)′
+ q (t)xβ (σ (t)) = 0

have been studied by Li and Rogovchenko [21]. Agarwal et al. [6] investigated the oscil-
latory behavior of a higher-order differential equation(

r (t)
(
x(n−1) (t)

)α)′
+ q (t)xβ (τ (t)) = 0,

under the condition (2).
The purpose of this article is to give sufficient conditions for the oscillatory behavior

of (1). under the condition that (2)
In order to discuss our main results, we need the following lemmas:

Lemma 1. [5]If the function x satisfies x(i) (t) > 0, i = 0, 1, ..., n, and x(n+1) (t) < 0, then

x (t)

tn/n!
≥ x′ (t)

tn−1/ (n− 1)!
.
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Lemma 2. [3, Lemma 2.2.3]Let x ∈ Cn ([t0,∞) , (0,∞)) . Assume that x(n) (t) is of
fixed sign and not identically zero on [t0,∞) and that there exists a t1 ≥ t0 such that
x(n−1) (t)x(n) (t) ≤ 0 for all t ≥ t1. If limt→∞ x (t) 6= 0, then for every µ ∈ (0, 1) there
exists tµ ≥ t1 such that

x (t) ≥ µ

(n− 1)!
tn−1

∣∣∣x(n−1) (t)
∣∣∣ for t ≥ tµ.

Lemma 3. [23]Let x (t) be a positive and n-times differentiable function on an interval
[T,∞) with its nth derivative x(n) (t) non-positive on [T,∞) and not identically zero on
any interval of the form [T ′,∞) , T ′ ≥ T and x(n−1) (t)x(n) (t) ≤ 0, t ≥ tx then there exist
constants θ, 0 < θ < 1 and N > 0 such that

x′ (θt) ≥ Ntn−2x(n−1) (t) ,

for all sufficient large t.

In this section we will find one condition to ensure the oscillation of solutions of (1) in
the case p0 < 1.

2. One-condition theorems

Lemma 4. Assume that x is an eventually positive solution of (1). Then(
r (t)

(
z′′′ (t)

)α)′ ≤ −q (t) (1− p0)β zβ (σ (t)) . (3)

Proof. Assume that x is an eventually positive solution of (1). Then, there exists a
t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and x (σ (t)) > 0 for t ≥ t1. Since r′ (t) > 0, we
have

z (t) > 0, z′ (t) > 0, z′′′ (t) > 0, z(4) (t) < 0 and
(
r (t)

(
z′′′ (t)

)α)′ ≤ 0, (4)

for t ≥ t1. From definition of z, we get

x (t) ≥ z (t)− p0x (τ (t)) ≥ z (t)− p0z (τ (t))

≥ (1− p0) z (t) ,

which with (1) gives (
r (t)

(
z′′′ (t)

)α)′
+ q (t) (1− p0)β zβ (σ (t)) ≤ 0.

The proof is complete.

Theorem 1. Assume that

lim inf
t→∞

1

Ψ̃1 (t)

∫ ∞
t

Ψ2 (s) Ψ̃
α+1
α

1 (s) ds >
α

(α+ 1)
α+1
α

, (5)
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where

Ψ1 (t) = q (t) (1− p0)βMβ−α (σ (t)) , Ψ2 (t) = αε
σ2 (t) ζσ′ (t)

r1/α (t)

and

Ψ̃1 (t) =

∫ ∞
t

Ψ1 (s) ds.

Then, (1) is oscillatory.

Proof. Assume that x is an eventually positive solution of (1). Then, there exists a
t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and x (σ (t)) > 0 for t ≥ t1. Using Lemma 4, we
obtain that (3) holds.
Define ω as follows

ω (t) :=
r (t) (z′′′ (t))α

zα (ζσ (t))
. (6)

By differentiating and using (3), we obtain

ω′ (t) ≤ −q (t) (1− p0)β zβ (σ (t)) .

zα (ζσ (t))
− αr (t) (z′′′ (t))α z′ (ζσ (t)) ζσ′ (t)

zα+1 (ζσ (t))
.

From Lemma 3, we have

ω′ (t) ≤ −q (t) (1− p0)β zβ−α (σ (t))− αr (t) (z′′′ (t))α εσ2 (t) z′′′ (σ (t)) ζσ′ (t)

zα+1 (ζσ (t))
,

which is

ω′ (t) ≤ −q (t) (1− p0)β zβ−α (σ (t))− αεr (t)σ2 (t) ζσ′ (t) (z′′′ (t))α+1

zα+1 (ζσ (t))
,

by using (6) we have

ω′ (t) ≤ −q (t) (1− p0)β zβ−α (σ (t))− αεσ
2 (t) ζσ′ (t)

r1/α (t)
ω(α+1)/α (t) , (7)

Since z′ (t) > 0, there exist a t2 ≥ t1 and a constant M > 0 such that

z (t) > M.

Then, (7), turn to

ω′ (t) ≤ −q (t) (1− p0)βMβ−α (σ (t))− αεσ
2 (t) ζσ′ (t)

r1/α (t)
ω(α+1)/α (t) ,

that is,
ω′ (t) + Ψ1 (t) + Ψ2 (t)ω(α+1)/α (t) ≤ 0.
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Integrating the above inequality from t to l , we get

ω (l)− ω (t) +

∫ l

t
Ψ1 (s) ds+

∫ l

t
Ψ2 (s)ω

α+1
α (s) ds ≤ 0.

Letting l→∞ and using ω > 0 and ω′ < 0, we have

ω (t) ≥ Ψ̃1 (t) +

∫ ∞
t

Ψ2 (s)ω
α+1
α (s) ds.

This implies

ω (t)

Ψ̃1 (t)
≥ 1 +

1

Ψ̃1 (t)

∫ ∞
t

Ψ2 (s) Ψ̃
α+1
α

1 (s)

(
ω (s)

Ψ̃1 (s)

)α+1
α

ds. (8)

Let λ = inft≥T ω (t) /Ψ̃1 (t) . Then obviously λ ≥ 1. Thus, from (5) and (8) we see that

λ ≥ 1 + α

(
λ

α+ 1

)(α+1)/α

or
λ

α+ 1
≥ 1

α+ 1
+

α

α+ 1

(
λ

α+ 1

)(α+1)/α

,

which contradicts the admissible value of λ ≥ 1 and α > 0.
Therefore, the proof is complete.

In this section we will find two independent conditions to ensure the oscillation of
solutions of (1) in the case p0 < 1

3. Two independent conditions theorems

Here, we introduce Riccati substitutions

ω (t) :=
r (t) (z′′′ (t))α

zα (t)
and w (t) :=

z′ (t)

z (t)
. (9)

Also, for convenience, we denote that:

R1 (t) : = αµ
t2

2r1/α (t)
,

Q1 (t) : = q (t) (1− p0)βMβ−α
1

(
σ (t)

t

)3β

and

Q2 (t) := (1− p0)β/αMβ/α−1
2

∫ ∞
t

(
1

r (u)

∫ ∞
u

q (s)
σβ (s)

sβ
ds

)1/α

du,
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for some µ ∈ (0, 1) and every M1,M2 are positive constants.
All functional inequalities are assumed to hold eventually, that is, they are assumed

to be satisfied for all t sufficiently large. The proof of the next lemma is immediate from
[23] and hence is omitted.

Lemma 5. Assume that (2) holds and x is an eventually positive solution of (1). Then,
(r (t) (z′′′ (t))α)

′
< 0 and there are the following two possible cases eventually:

(C1) z (t) > 0, z′ (t) > 0, z′′ (t) > 0, z′′′ (t) > 0, z(4) (t) < 0,

(C2) z (t) > 0, z′ (t) > 0, z′′ (t) < 0, z′′′ (t) > 0.

Lemma 6. Let x be an eventually positive solution of (1) and the functions ω and w are
defined as in (9).
(I1) If x satisfies (C1), then

ω′ (t) +Q1 (t) +R1 (t)ω
α+1
α (t) ≤ 0; (10)

(I2) If x satisfies (C2), then

w′ (t) +Q2 (t) + w2 (t) ≤ 0. (11)

Proof. Assume that x is an eventually positive solution of (1). Then, there exists a
t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and x (σ (t)) > 0 for t ≥ t1. Using Lemma 4, we
obtain that (3) holds.
In the case (C1), by differentiating ω and using (3), we obtain

ω′ (t) ≤ −q (t) (1− p0)β
zβ (σ (t))

zα (t)
− αr (t) (z′′′ (t))α

zα+1 (t)
z′ (t) . (12)

From Lemma 1, we have that

z (t) ≥ t

3
z′ (t) and hence

z (σ (t))

z (t)
≥ σ3 (t)

t3
. (13)

It follows from Lemma 2 that
z′ (t) ≥ µ1

2
t2z′′′ (t) , (14)

for all µ1 ∈ (0, 1) and every sufficiently large t. Since z′ (t) > 0, there exist a t2 ≥ t1 and
a constant M > 0 such that

z (t) > M, (15)

for t ≥ t2. Thus, by (12), (13), (14) and (15), we get

ω′ (t) +Q1 (t) +R1 (t)ω
α+1
α (t) ≤ 0.

In the case (C2), integrating (3) from t to u, we obtain

r (u)
(
z′′′ (u)

)α − r (t)
(
z′′′ (t)

)α ≤ −∫ u

t
q (s) (1− p0)β zβ (σ (s)) ds. (16)
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From Lemma 1, we get that

z (t) ≥ tz′ (t) and hence z (σ (t)) ≥ σ (t)

t
z (t) . (17)

For (16), letting u→∞ and using (17), we see that

r (t)
(
z′′′ (t)

)α ≥ (1− p0)β zβ (t)

∫ ∞
t

q (s)
σβ (s)

sβ
ds.

Integrating this inequality again from t to ∞, we get

z′′ (t) ≤ − (1− p0)β/α zβ/α (t)

∫ ∞
t

(
1

r (u)

∫ ∞
u

q (s)
σβ (s)

sβ
ds

)1/α

du, (18)

for all µ2 ∈ (0, 1). By differentiating w and using (15) and (18), we find

w′ (t) =
z′′ (t)

z (t)
−
(
z′ (t)

z (t)

)2

≤ −w2 (t)− (1− p0)β/αM (β/α)−1
∫ ∞
t

(
1

r (u)

∫ ∞
u

q (s)
σβ (s)

sβ
ds

)1/α

du,

(19)

hence
w′ (t) +Q2 (t) + w2 (t) ≤ 0.

The proof is complete.

Theorem 2. Assume that

lim inf
t→∞

1

Q̃1 (t)

∫ ∞
t

R1 (s) Q̃
α+1
α

1 (s) ds >
α

(α+ 1)
α+1
α

(20)

and

lim inf
t→∞

1

Q̃2 (t)

∫ ∞
t0

Q̃2
2 (s) ds >

1

4
, (21)

where

Q̃1 (t) =

∫ ∞
t

Q1 (s) ds and Q̃2 (t) =

∫ ∞
t

Q2 (s) ds. (22)

Then, (1) is oscillatory.

Proof. Assume to the contrary that (1) has a nonoscillatory solution in [t0,∞). With-
out loss of generality, we let x be an eventually positive solution of (1). Then, there exists
a t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and x (σ (t)) > 0 for t ≥ t1. From Lemma 5
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there is two cases.
For case (C1). Using Lemma 6, we obtain (10) holds. Integrating (10) from t to l , we get

ω (l)− ω (t) +

∫ l

t
Q1 (s) ds+

∫ l

t
R1 (s)ω

α+1
α (s) ds ≤ 0.

Letting l→∞ and using ω > 0 and ω′ < 0, we have

ω (t) ≥ Q̃1 (t) +

∫ ∞
t

R1 (s)ω
α+1
α (s) ds. (23)

This implies

ω (t)

Q̃1 (t)
≥ 1 +

1

Q̃1 (t)

∫ ∞
t

R1 (s) Q̃
α+1
α

1 (s)

(
ω (s)

Q̃1 (s)

)α+1
α

ds. (24)

Let λ = inft≥T ω (t) /Q̃1 (t) . Then obviously λ ≥ 1. Thus, from (20) and (24) we see that

λ ≥ 1 + α

(
λ

α+ 1

)(α+1)/α

or
λ

α+ 1
≥ 1

α+ 1
+

α

α+ 1

(
λ

α+ 1

)(α+1)/α

,

which contradicts the admissible value of λ ≥ 1 and α > 0.
The proof of the case where (C2) holds is the same as that of case (C1). Therefore, the
proof is complete.

Define a sequence of functions {un (t)}∞n=0 and {vn (t)}∞n=0 as

u0 (t) = Q̃1 (t) , and v0 (t) = Q̃2 (t) ,

un (t) = u0 (t) +
∫∞
t R1 (t)u

(α+1)/α
n−1 (s) ds, n > 1,

vn (t) = v0 (t) +
∫∞
t v

(α+1)/α
n−1 (s) ds, n > 1,

(25)

where Q̃1 and Q̃2 defined as in (22). We see by induction that un (t) ≤ un+1 (t) and
vn (t) ≤ vn+1 (t) for t ≥ t0, n > 1.

Theorem 3. Let un (t) and vn (t) be defined as in (25). If

lim sup
t→∞

(
µ1t

3

6r1/α (t)

)α
un (t) > 1 (26)

and
lim sup
t→∞

λtvn (t) > 1, (27)

for some n, then (1)is oscillatory.
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Proof. Assume to the contrary that (1) has a nonoscillatory solution in [t0,∞). With-
out loss of generality, we let x be an eventually positive solution of (1). Then, there exists
a t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and x (σ (t)) > 0 for t ≥ t1. From Lemma 5
there is two cases.
In the case (C1), proceeding as in the proof of Lemma 6, we get that (14) holds. It follows
from Lemma 2 that

z (t) ≥ µ1
6
t3z′′′ (t) . (28)

From definition of ω (t) and (28), we have

1

ω (t)
=

1

r (t)

(
z (t)

z′′′ (t)

)α
≥ 1

r (t)

(µ1
6
t3
)α

.

Thus,

ω (t)

(
µ1t

3

6r1/α (t)

)α
≤ 1.

Therefore,

lim sup
t→∞

ω (t)

(
µ1t

3

6r1/α (t)

)α
≤ 1,

which contradicts (26).
The proof of the case where (C2) holds is the same as that of case (C1). Therefore, the
proof is complete.

Corollary 1. Let un (t) and vn (t) be defined as in (25). If∫ ∞
t0

Q1 (t) exp

(∫ t

t0

R1 (s)u1/αn (s) ds

)
dt =∞ (29)

and ∫ ∞
t0

Q2 (t) exp

(∫ t

t0

v1/αn (s) ds

)
dt =∞, (30)

for some n, then (1) is oscillatory.

Proof. Assume to the contrary that (1) has a nonoscillatory solution in [t0,∞). With-
out loss of generality, we let x be an eventually positive solution of (1). Then, there exists
a t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and x (σ (t)) > 0 for t ≥ t1. From Lemma 5
there is two cases.
In the case (C1), proceeding as in the proof of Theorem 2, we get that (23) holds. It follows
from (23) that ω (t) ≥ u0 (t). Moreover, by induction we can also see that ω (t) ≥ un (t) for
t ≥ t0, n > 1. Since the sequence {un (t)}∞n=0 monotone increasing and bounded above, it
converges to u (t). Thus, by using Lebesgue’s monotone convergence theorem, we see that

u (t) = lim
n→∞

un (t) =

∫ ∞
t

R1 (t)u(α+1)/α (s) ds+ u0 (t)
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and
u′ (t) = −R1 (t)u(α+1)/α (t)−Q1 (t) . (31)

Since un (t) ≤ u (t), it follows from (31) that

u′ (t) ≤ −R1 (t)u1/αn (t)u (t)−Q1 (t) .

Hence, we get

u (t) ≤ exp

(
−
∫ t

T
R1 (s)u1/αn (s) ds

)(
u (T )−

∫ t

T
Q1 (s) exp

(∫ s

T
R1 (u)u1/αn (u) du

)
ds

)
.

This implies ∫ t

T
Q1 (s) exp

(∫ s

T
R1 (u)u1/αn (u) du

)
ds ≤ u (T ) <∞,

which contradicts (29). The proof of the case where (C2) holds is the same as that of case
(C1). Therefore, the proof is complete.

4. Further results

Lemma 7. Assume that x is an eventually positive solution of (1) and

p
(
τ−1

(
τ−1 (t)

))
≥

(
τ−1

(
τ−1 (t)

)
τ−1 (t)

)3

. (32)

Then (
r (t)

(
z′′′ (t)

)α)′
+ q (t) p̃β (σ (t)) zβ

(
τ−1 (σ (t))

)
≤ 0, (33)

where

p̃ (t) :=


1

p(τ−1(t))

(
1− (τ−1(τ−1(t)))

3

(τ−1(t))3p(τ−1(τ−1(t)))

)
for case (C1) ;

1
p(τ−1(t))

(
1− (τ−1(τ−1(t)))

(τ−1(t))p(τ−1(τ−1(t)))

)
for case (C2) .

(34)

Proof. Proceeding as in the proof of Lemma 4, we get that (4) holds. It follows from
Lemma 5 that there exist two possible cases (C1) and (C2). From the definition of z (t),
we see that

x (t) =
1

p (τ−1 (t))

(
z
(
τ−1 (t)

)
− x

(
τ−1 (t)

))
.

By repeating the same process, we find that

x (t) =
z
(
τ−1 (t)

)
p (τ−1 (t))

− 1

p (τ−1 (t))

(
z
(
τ−1

(
τ−1 (t)

))
p (τ−1 (τ−1 (t)))

−
x
(
τ−1

(
τ−1 (t)

))
p (τ−1 (τ−1 (t)))

)
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≥
z
(
τ−1 (t)

)
p (τ−1 (t))

− 1

p (τ−1 (t))

z
(
τ−1

(
τ−1 (t)

))
p (τ−1 (τ−1 (t)))

. (35)

Assume that Case (C1) holds. Proceeding as in the proof of Lemma 6, we get that (13)
holds, which with the fact that τ (t) ≤ t gives

z
(
τ−1

(
τ−1 (t)

))
≤

(
τ−1

(
τ−1 (t)

)
τ−1 (t)

)3

z
(
τ−1 (t)

)
. (36)

From (35) and (36), we find that

x (t) ≥ 1

p (τ−1 (t))

(
1−

(
τ−1

(
τ−1 (t)

))3
(τ−1 (t))3 p (τ−1 (τ−1 (t)))

)
z
(
τ−1 (t)

)
. (37)

Assume that Case (C2) holds. Proceeding as in the proof of (C2) in Lemma 6, we get
that (17) holds. Since τ−1 (t) ≤ τ−1

(
τ−1 (t)

)
, we obtain

τ−1 (t) z
(
τ−1

(
τ−1 (t)

))
≤ τ−1

(
τ−1 (t)

)
z
(
τ−1 (t)

)
. (38)

From (35) and (38), we find

x (t) ≥ 1

p (τ−1 (t))

(
1−

(
τ−1

(
τ−1 (t)

))
(τ−1 (t)) p (τ−1 (τ−1 (t)))

)
z
(
τ−1 (t)

)
. (39)

Next, from (37) and (39), we get that

x (t) ≥ p̃ (t) z
(
τ−1 (t)

)
,

which with (1) yields (33). Therefore, the proof is complete.

Lemma 8. Assume that σ (t) ≤ τ (t) , x is an eventually positive solution of (1) and the
functions ω and w are defined as in (9).
(I3) If x satisfies (C1), then

ω′ (t) +Q3 (t) +R1 (t)ω
α+1
α (t) ≤ 0;

(I4) If x satisfies (C2), then

w′ (t) +Q4 (t) + w2 (t) ≤ 0,

where

Q3 (t) = q (t) p̃β (σ (t))Mβ−α
3

(
τ−1 (σ (t))

t

)3α

and

Q4 (t) = p̃β/α (σ (s))M
(β/α)−1
4

∫ ∞
t

(
1

r (u)

∫ ∞
u

q (s)

(
τ−1 (σ (s))

s

)β
ds

)1/α

du.
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Proof. Assume that x is an eventually positive solution of (1). Then, there exists a
t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and x (σ (t)) > 0 for t ≥ t1. Using Lemma 7, we
obtain that (33) holds.
In the case (C1), by differentiating ω and using (33), we obtain

ω′ (t) ≤ −
q (t) p̃β (σ (t)) zβ

(
τ−1 (σ (t))

)
zα (t)

− αr (t) (z′′′ (t))α

zα+1 (t)
z′ (t) . (40)

From Lemma 1, we have that

z (t) ≥ t

3
z′ (t) and hence

z
(
τ−1 (σ (t))

)
z (t)

≥
(
τ−1 (σ (t))

)3
t3

. (41)

It follows from Lemma 2 that
z′ (t) ≥ µ1

2
t2z′′′ (t) , (42)

for all µ1 ∈ (0, 1) and every sufficiently large t. Since z′ (t) > 0, there exist a t2 ≥ t1 and
a constant M > 0 such that

z (t) > M, (43)

for t ≥ t2. Thus, by (40), (41), (42) and (43), we get

ω′ (t) +Q3 (t) +R1 (t)ω
α+1
α (t) ≤ 0.

In the case (C2), integrating (33) from t to u, we obtain

r (u)
(
z′′′ (u)

)α − r (t)
(
z′′′ (t)

)α ≤ −∫ u

t
q (s) p̃β (σ (s)) zβ

(
τ−1 (σ (s))

)
ds ≤ 0. (44)

From Lemma 1, we get that

z (t) ≥ tz′ (t) and hence z
(
τ−1 (σ (t))

)
≥ τ−1 (σ (t))

t
z (t) . (45)

For (44), letting u→∞ and using (45), we see that

r (t)
(
z′′′ (t)

)α ≥ p̃β (σ (s)) zβ (t)

∫ ∞
t

q (s)

(
τ−1 (σ (s))

s

)β
ds.

Integrating this inequality again from t to ∞, we get

z′′ (t) ≤ −p̃β/α (σ (s)) zβ/α (t)

∫ ∞
t

(
1

r (u)

∫ ∞
u

q (s)

(
τ−1 (σ (s))

s

)β
ds

)1/α

du, (46)

for all µ2 ∈ (0, 1). By differentiating w and using (15) and (46), we find

w′ (t) =
z′′ (t)

z (t)
−
(
z′ (t)

z (t)

)2
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≤ −w2 (t)− p̃β/α (σ (s))M (β/α)−1
∫ ∞
t

(
1

r (u)

∫ ∞
u

q (s)

(
τ−1 (σ (s))

s

)β
ds

)1/α

du,

(47)

hence
w′ (t) +Q4 (t) + w2 (t) ≤ 0.

The proof is complete.

Theorem 4. Assume that

lim inf
t→∞

1

Q̃3 (t)

∫ ∞
t

R1 (s) Q̃
α+1
α

3 (s) ds >
α

(α+ 1)
α+1
α

(48)

and

lim inf
t→∞

1

Q̃4 (t)

∫ ∞
t

Q̃2
4 (s) ds >

1

4
, (49)

where

Q̃3 (t) =

∫ ∞
t

Q3 (s) ds and Q̃4 (t) =

∫ ∞
t

Q4 (s) ds.

Then, (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2,

Example 1. Consider the differential equation(
x (t) + 16x

(
t

2

))(4)

+
q0
t4
x

(
t

6

)
= 0. (50)

We note that α = β = 1, r (t) = 1, p (t) = 16, τ (t) = t/2, σ (t) = t/6 and q (t) = q0/t
4.

Hence, it is easy to see that

Q̃3 (t) =
q0

34 (32) t3

and

Q̃4 (t) =
7q0

32 (256) t
.

Using conditions (48) and (49), we see that equation (50) is oscillatory if q0 > 3888.

5. Conclusion

In this work, we offer some new sufficient conditions which ensure that any solution of
(1) oscillates under the condition

∫∞
t0

1
r1/α(s)

ds =∞. And we can try to get some oscillation

criteria of (1) under the condition
∫∞
t0

1
r1/α(s)

ds <∞, in the future work.
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