EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 2, No. 4, 2009, (578-603)
ISSN 1307-5543 — www.ejpam.com

Mixed Type Symmetric and Self-Duality for Multiob-
jective Variational Problems

I. Husain'* and Rumana G. Mattoo?

! Department of Mathematics, Jaypee Institute of Engineering and Technology, Guna, MP
India. (A constituent centre of Jaypee University of Information Technology, Waknaghat,
Solan, HP India)

2 Department of Statistics, University of Kashmir, Srinagar, Kashmir, India.

Abstract. In this paper, a new formulation of multiobjective symmetric dual pair, called
mixed type multiobjective symmetric dual pair, for multiobjective variational problems is pre-
sented. This mixed formulation unifies two existing Wolfe and Mond-Weir type symmetric
dual pairs of multiobjective variational problems. For this pair of mixed type multiobjec-
tive variational problems, various duality theorems are established under invexity-incavity
and pseudoinvexity-pseudoincavity of kernel functions appearing in the problems. Under ad-
ditional hypotheses, a self duality theorem is validated. It is also pointed that our duality
theorems can be viewed as dynamic generalization of the corresponding (static) symmetric
and self duality of multiobjective nonlinear programming already existing in the literature.
2000 Mathematics Subject Classifications: Primary 90C30, Secondary 90C11, 90C20, 90C26.
Key Words and Phrases: Efficiency; Mixed type multiobjective symmetric dual variational
problem; Mixed type symmetric duality; Mixed type self duality; Natural boundary values;

Multiobjective nonlinear programming.

*Corresponding author.

http://www.ejpam.com 578 (© 2009 EJPAM All rights reserved.



I. Husain and R. Mattoo / Eur. J. Pure Appl. Math, 2 (2009), (578-603) 579

1. Introduction

Following Dorn [ 7], symmetric duality results in mathematical programming have
been derived by a number of authors, notably, Dantzig et al [8], Mond [12], Bazaraa
and Goode [1]. In these researches, the authors have studied symmetric duality under
the hypothesis of convexity-concavity of the kernel function involved. Mond and
Cottle [13] presented self duality for the problems of [8] by assuming skew symmetric
of the kernel function. Later Mond-Weir [14] formulated a different pair of symmetric
dual nonlinear program with a view to generalize convexity-concavity of the kernel
function to pseudoconvexity-pseudoconcavity.

Symmetric duality for variational problems was first introduced by Mond and Han-
son [15] under the convexity-concavity conditions of a scalar functions like ¥ (t, x(t),
x(t), y(t), y(t)) with x(t) € R" and y(t) € R™. Bector, Chandra and Husain [3] pre-
sented a different pair of symmetric dual variational problems in order to relax the
requirement of convexity-concavity to that of pseudoconvexity-pseudoconcavity while
in [6] Chandra and Husain gave a fractional analogue.

Bector and Husain [4] probably were the first to study duality for multiobjective
variational problems under appropriate convexity assumptions. Subsequently, Gulati,
Husain and Ahmed [9] presented two distinct pairs of symmetric dual multiobjec-
tive variational problems and established various duality results under appropriate
invexity requirements. In this reference, self duality theorem is also given under skew
symmetric of the integrand of the objective functional. Husain and Jabeen [10] for-
mulated a pair of mixed type symmetric dual variational problem in order to unify the
Wolfe and Mond-Weir symmetric dual pairs of variational problems studied in [9].

The purpose of this research is to unify formulations of Wolfe and Mond-Weir type
symmetric dual pairs of multiobjective variational problems incorporated by Gulati,

Husain and Ahmed [9] and also present multiobjective version of the formulation
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of a pair of mixed type symmetric dual of Husain and Jabeen [10] and hence study
symmetric and self duality for a pair of mixed multiobjective variational problem. This
research is motivated by the work of Xu [18]. The problems, treated in this research
are quite hard to solve. So to expect any immediate application of these problems
would be far from reality. Unfortunately, there has not always been sufficient flow
between the researchers in the multiple criteria decision making and the researchers
applying it to their problems. Of course, one can find optimal control applications
in galore which reflect the utility of our model. Special cases are deduced and it
is also pointed out that our results can be considered as dynamic generalizations of
corresponding (static) symmetric duality results of multiobjective nonlinear nonlinear

treated by Bector et al. [3].

2. Notations and Preliminaries

The following notation will be used for vectors in R".

X<y & x;<y;, i=12,...,n.
xSy © x;2y, i=1,2,...,n.
x<y & x;Zy, i=12,...,n,butx#y

x £y, is the negation of x < y

Let I = [a,b] be the real interval, and ¢!(t,x(t),x(t),y(t),(t)) be a scalar
function and twice differentiable function for i = 1,2,...,p where x : I — R" and
y : I — R™ with derivatives x and y. In order to consider ¢'(t,x(t),x(t), y(t),y(t))

denote the first partial derivatives of ¢! with respect to t, x(t), x(t), y(t), y(t)
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respectively, by ¢7, ¢!, ¢L, ;, ¢;., that is,
. 0!
¢ = adi
[0t 3¢l 3¢l . [3¢' apt ¢
= {ax;axz’“"axn]’ ¢ = {axl’axz"“’axn]
. _[9¢" ¢ ¢’ . [9¢; 9¢ ¢’
¢y—|:8y1’8y2"“’8yni|’ ¢y_|:a}"1’a}"2’“.’a}"n:|.
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The twice partial derivatives of ¢* with respect to t, x(t), x(t), y(t) and y(t), respec-

tively are the matrices
) azd)i . 82¢i ) 52¢i
o= (5] =5 ) ot =(5)
ka,s nxn axkx_s nxn axky,s nxn
¢i — 52¢l (;bi —
xj,_ 3351&",5 nxn, xy B
. 02! .
0, = (o) b=
YiYs J nxn

fori=1,2,...,p.
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Noting that

d . . . . .
TP =B DT+ BT b+ K

and hence
3d¢i_d l. 3d¢i_d¢i Lo 8d¢i_¢i
dydt ™ de Y dydt’ Y dt I T dydery T

J d d . J d J d

. d . . . .
axac? T @ Grachy T @l e Gracty T P

In order to establish our main results, the following are needed.

Definition 1 (Partially Invex). If there exists a vector function n(t,x(t),y(t),u(t),

v(t)) € R} with n =0 at x(t) = u(t) or y(t) = v(t), such that for the scalar function

h(t,x(t),x(t),y(t), y(t)) the functional

H(x,x,y,y) = fh(t,X(t),X(t),}’(t),}"(t))dt

I
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satisfies
H(x,x,y,y)—H(u,i,v,v) > f [n"h, (£, x(t), x(t), y(£), y(1))
I
+ (D) he(t, x(t), x(t), y (), y(£))1dt

then H(x, x,y,y) is said to be partially invex in x and x on I with respect to m, for fixed
y. if H satisfies

H(x,x,y,y)—H(x,x,v,v) > J [nThy(t, x(t), x(t),v(t),v(t))
+(Dn)" hy (£, x(t), x(t), v(t), v(t)]dt,

then H(x, x,y, y) is said to be partially invex in y and y on I with respect to 1, for fixed
x. If —H is partially invex in x and x (or in y and y) on I with respect to m, for fixed
y (or for fixed x), then H is said to be partially incave in x and x (orin y and y) on I
with respect to m, for fixed y (or for fixed x).

Definition 2 (Partially Pseudoinvex). The functional H is said to be partially pseudoin-

vex in x and x with respect to 1, for fixed y if H satisfies
J [n"he(t,x,%,y, ) + (D) hy(t,x, %, y, y)1dt 2 0
1
implies
H(x,x,u,u) Z H(x,x,y,y)

and H is said to be partially pseudoinvex in y and y with respect to m, for fixed x If H

satisfies
J [n"hy(t,x,%,y,5) + (D) hy(t,x,%,y,7)]1dt 2 0
I
implies

H(X,x’ VJ 1)) ; H(X’x’ y’ y)'
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Definition 3 (Partially Quasi-invex). The functional H is said to be partially quasi-invex

in x and X with respect to m, for fixed y if H satisfies
H(x,x,u,u) S H(x,X,y,y)
implies
J [0 h(t,x,%,y, ) + (D) he(t, x, %, y, y)1dt =0
1

and H is said to be partially quasi-invex in y and y with respect to m, for fixed x if H

satisfies
H(x,x,v,v) S H(x,x,Yy,Y)
implies
J [n"h,(t,x,%,y,5)+ D) hy(t,x,%,y,y)]1dt Z0.
I

If h is independent of t, then the above definitions become the usual definitions
of invexity and generalized invexity, discussed by several authors, notably Ben-Israel

and Mond [5], Martin [11], and Rueda and Hanson [16].

Definition 4 (Skew Symmetry). The function h : I X R X R" X R" X R" — R is said to

be skew symmetric if for all x and y in the domain of h if

h(t, x(t), x(t), y(¢), y(£)) = —h(t, y (), y(¢), x(t), x(¢)), tel
where x and y are piecewise smooth on I.

Now consider the following multiobjective variational problem considered in [4]:

(VP,)  Minimize (J d(t,x,x)d t,J d3(t, x, x)dt,. ..,J ¢P(t,x,x)d t,)
1 I 1

Subject to
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x(@=a, x(b)=p

h(t,x,x) =0, tel,

where ¢! : I x R" X R*"XR"—R (i=1,2,...,p) and h : I X R® x R" X R® — R™. Let

the set of feasible solution of (V P,) be represented by K.

Definition 5 (Efficiency). A point X € K is an efficient (Pareto optimal) solution of
(VP,) if for all x €K,

qui(t,x,)'c)dt £ J p'(t,x,x)dt, (i=1,2,...,p)
1 I

3. Statement of the Problems

For N ={1,2,...,n} and M = {1,2,...,m}, let J; C N,K; € M,J, = N \ J; and
K, = M\ K;. Let |J;| denote the number of elements in the subset J;. The other
symbol |J,|, |K;| and |K,| are similarly defined. Let x! : I — R"! and x2?: I — RV,
then any x : I — R" can be written as x = (x!,x?). Similarly for y! : I — Rl
and y?: I — R* ! can be written as y = (y!, y?) where x : [ = R", y : I — R™. Let
f : IxRVIxRKI — RP and g : I xRM2! xRzl — RP be twice continuously differentiable
functions.

We state the following pair of mixed type multiobjective symmetric dual varia-

tional problems involving vector functions f and g.

(Mix SP)  Minimize F(x',x? y!, y*) = J{f(t,xl,jcl,yl,yl) +g(t,x%, %%, y%, %)
—;’l(f)T(ATfyl(f,Xl,ffl,yl,yl)
—DA" fiu(t,x', %Yy, y))edde
Subject to
x'(@)=0=x'(b), y'(a)=0=y'(b), @))
x*(@)=0=x*b),  y*(a)=0=y*(b), (2)
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AT fae,xt, xhyh y ) = DA fu(e,xt, 3y, y' ) S0t €l (3)
ATg(t,x% %%, y%,5%) — DA  ga(t,x%, %%, y%,y*) 20, t €1, 4)
Jyz(t)T(kTgyz(t,xz,»‘cz,yz,y'z)

—IDATgy-z(t,xz,xz,yZ,yz)) 20, (5)
AL EAT. (6)

(Mix SD)  Maximize G(u',u? v!,v?) = J (e, ut,at, v v + g(e,u?, 0%, vE, v?)
1
—u' () AT fiu(t,ut, it v, vt

—DA" fiu(t,ut,ut, vl vt )eddt

Subject to
u'(a) =0=u'(b), vi(a) =0=v!(b), (7)
u*(a) =0 =1u?(b), vZ(a) = 0 =v*(b), 8)
AT fa(e,ut,at, v v — DAT fa (e, ut, at, v v =20, tel, 9)

Alge(t,u?,i?,v?,v?) = DA g (t,u?,i?,v?,v?) 20, tel,  (10)
J () (AT g (t,u?,u?,v?,v?)

I
—DA" gpo(t,u?,12,v2,v*)) Z 0, (11)

Ae AT (12)

where A" ={A €RP|A>0,ATe=1,e=(1,1,...,1)T €RP}.

4. Mixed Type Multiobjective Symmetric Duality

In this section, we present various duality results and the appropriate invexity and

generalized invexity assumptions.

Theorem 1 (Weak Duality). Let (x', x2, y!, y%, 1) be feasible for (Mix SP) and
(ul,u?,vt,v2 Q) be feasible for (Mix SD).
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Let
H, flf(t, o5 Y1), yI(t))dt be partially invex in x',x! on I for fixed y*', y! with re-
spect to 1,(t, x*,u') € RV,

flf(t,xl(t),xl(t),.,.)dt be partially incave in y',y! on I for fixed x',x' with

respect to n,(t, y*,v!) € RX,

H, fz ATg(t,.,.,y2(t), y*(t))dt be partially pseudoinvex in x2,x2 on I for fixed y?, y*
with respect 15(t,x?,u?) € R¥2! and fz ATg(t,x? x2,...)dt be partially pseudoin-

cave in y2,y? on I for fixed x2, x* with respect to n,(t,y?,v?) € R¥|,

Hj
n (6, xtu)+ul(t) =0, tel, (13)
n,(t, v,y +y(t) =0, tel, (14)
ns(t, x%u?)+u?(t) 20, tel, (15)
n(t, v,y +y* ()20, tel, (16)
then

F(x',x*y', y*) £ G, u?,v!,v?).

Proof. Because of the partial invexity-incavity of the function f, we have for each

i=1{1,2,...,p}.
in(t,xl,xl,vl,vl)dt—Jfi(t,ul,ul,vl,v‘l)dt
I I
= J {1 fL(eut,a', v o) + (D) (e ut, v, vh)de (17)
I
in(t,xl,fcl,vl,vl)dt - in(t,xl,fcl,yl,yl)dt
I I

= J g £t xh, x5 yh, y ) + (D) (e, xh, 20,y yDide - (18)
I
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Multiplying (17) by A’ > 0 and summing over i.

I

J ATF(E, xh xt v vDde — J ATF (e, ut,ut, v vhde
I
Z J {n] A fa(t,ul,a',v!, v + (D) AT fa (e, ut, 0, vh, vh)}de
I
Integrating by parts, the above inequality becomes
f ATf(ext i vt — f AT (e ut ut vl vhde
I I
; f n{kaxl(t’ u1: ul’ Vl) Vl)dt + n{kaxl(t, u1: ul’ Vl) Vl)'izs
I

— J nIDAfol (t,ul, b, v, vhdt
I
Using the boundary conditions which at t = a,t = b gives n; =0, we have

f ATf(E x5,y vh) — J ATF (e ul, @ v, v)dt
I

I

- J 0y A fa(t,ut,dd, v, v))de — DA fu (et i, v, v))lde (19)
1
Multiplying (18) by A',i € {1,2,...,p} and summing over i, we get,

J ATF(ext X v vt - J ATf(e Xty yhde
I

I

= J {ny (A" fu(e,x', 3y, y )+ (Dn) AT (e, xh, %, vyt yDide
1

On integrating by parts the R.H.S of the above inequality and using the boundary

conditions which at t = a, t = b gives 1, = 0, we have

f ATF(E Xt vl vt - J ATf(e,xt xh yt yhdt
1

I

= J Ny (AT fa(e,x, x5y, 7)) = DA fin(t,x', Yy, y'))]de  (20)
I
Multiplying (20) by (-1) and adding to (19), we have

f ATF(e x5yt yde - J ATF(e,ul, it v, vde
I

I
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2 J 0y [T fa(t,ul,ut,v1,91) = DA fa(t,ut,al,vh, vi)]de
I
— J nZT [(leyl(t, ul, v o)) — D()(,Tfyl(t, ul, v v))de
I
Now from the inequality (9) along with (13), it follows
J nl (A" fa(t,ut,ut, v, v — DA fu (e, ut, it v, vh))de
I
= — J w(OT[AT fae,ut,at, v v — DA fa(e,ut, b, v vh)]de
I
Also from the inequality (3) together with (14) implies
- J Ny (AT fa(t,x, %0, ¥, 71 = DAY fia (e, x 58, yh, y1))de
I
Z J YIOTIAT fa(t, xh, xh, ¥y, 71 = DAT fia (e, x &8, vt y)]de
1
Using (22) and (23), in (21), we have
J ATf(extxhyt yhde =y ()T J AT fat,xt,xt yt yhde
I 1
= — J w (O[T fa(t,ut, at, v vD) = DA fa(t,ut, it vt vh))]de
I
+Jyl(t)T[(leyl(t,Xl,ffl,yl,yl))
—DI(/ITfy-l(t,Xl,ffl,yl,yl))]dt,

which implies

J{le(t,xl,fcl,yl,yl) -y (O A falt,xt, 3ty v
1
—DAT fiu(t,x', xY, y', ¥y )t
> J AT f (0,00, 91,91 = (T AT fa (6wl !, v, 9)
I

—D%Tfkl (t,ul, b, v, v))}dt

588

(21)

(22)

(23)

(24)

(25)
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Now from the inequality (10) along with (15), we have

J(ng(t, x?,%%,u?,0) +u ()" g (6, u?, 02, v?, %)
1

—DAT g (t,u?, 1%, v%,v?)) 2 0.
This implies
J ng(ATguz(t, u?, 1%, v, v?) — D(AT g (t,u?, 1%, v2, v?)))dt
1
> — J ()T [ AT g (t,u?, 1%, v, V) — D(AT g (t,u?, u?, v2, v?))]dt
I

Integrating by parts and using the boundary conditions which at t = a,t = b gives

15 = 0, we have

{ng (A" g2 (t,u?, 02, v*,v%) + (D) (AT gpe(t, 02, 0%, v2, v)))}dE 2 0

Because of the partial pseudo-invexity of f ; AT g, 2dt, this gives

J Alg(t,x?, %%, y%, y*)de 2 J ATg(t,u?, @2, v?, v?)dt (26)
1

I

Also from (4) together with (16), we have

J(nZ (6,v%, 9%, 5%, 72) + Y2 () (AT g,2(t, x%, %%, y2, ¥%)
1

—DA" gy (t,x?,x%, ¥, y*)dt 2 0
This implies,
J na (A" g,2(t, x5, y%, y*)) — D(A" g (t,x2, %%, ¥, y*))dt
I
< - f YA [A g2 (t,x%, 5%, y%, y*) — D(AT g42(t, X%, X2, y?, y*)]d¢t
I
This in view of (5) yields,

f ny (A g, (t,x%, %%, y%, y*) = D(AT g2 (t, x%, %%, y?, y*))}dt £ 0
1
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On integrating by parts and using the boundary conditions which at t = a, t = b gives

1, = 0, we have,
J Ny AT g2 (t,x, X%, 2, y2) + (D) (AT gj2(t, x%, %2, y?, y*))}dt £ 0
I

Because of partial pseudo-incavity of f ; AT g,2dt, we have

J (A" g(t,x% x2,v?,v))dt < J (A" g(t,x%, %2, y%, y*))dt (27)
I I

From (26) and (27), we get,

J (AT g(t,x?, X%y, y*)dt 2 J (ATg(t,u?, i, v?, v?))dt (28)
1 1
Combining (25) and (28), we get

J AT, x5y gD =y (O AT fale, x5yt yh)

1

—DA" fiu(t,x', X1,y ¥y + AT g(t, x?, X2, y?, y*)}dt

1

—DAT fu(t,u,dd, vl v+ ATg(e, %%, 5%, ¥, y2)}dt
This implies,

XTJ {f (e, x' 5yt yh) + g(t,x%, 5%, y2, 3%)
—ylét)T(leyl(t, xL,xLyt, yD=DAT fu (e, xt, x1, yt, y1))eddt
> AT J {f(e,ut,at, v v + g (e, u? a2, v2 v?)
—lel(t)T(/lexl(t, ub, i, v v =DAT fa(t,ult, ut, v, v))eldt

This implies,

J{f(t, xLx, yLyh) +g(e,x?,x%, y2, 5%
1
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=y (O A fa(t,xt, 3y, yD)=DAT fiu(t,x1, X1, y', y1))eddt
s J {f (e, ut, 0t v o) + g (e, u?, 0, v, %)
I

—ur ()T AT falt,ut,at, v, v —DAT fa(t,ut, it vi, vh))eldt
This was to be proved.

Theorem 2 (Strong Duality). Let (X!, %2, 7, 72, 1) be an efficient solution of (Mix SP).
Let A= ) be fixed in (Mix SD) and

(Cl) J [{(¢1(t))T(kaylyl — DATfylyl) — Dd)l(t)T(—D)LTfylyl)

+D*¢ () (=7 fi1,1)} ' (£)1dt > 0,

and
J [{(p*(t))" (A" gy2y2 = DATg252) = DP*(t) (—DAT gj252)
1
+D*$%(1) (=17 gy252)}P%(1)]dt > 0,
(®) J (@ ()" (A" fyiyr = DAT fra) = D (£)" (=DAT f50)
+D*¢ () (AT fy)}(D]ldt =0t eI = ¢'(t)=0,t €1,
and
J [{(¢*(t) (A" g,2y2 = DAT g 252) = DP*(t)"(=DAT gj2y2)
+D?¢* (1) (A" gy252)}p*(D)]dt =0, €I = ¢ (t)=0,t €1.
and

(C3) g;Z — Dg;_2 =0,i=1,2,...,p are linearly independent.

Let f ! fdt and fz AT gdt satisfy the invexity and generalized invexity as stated in Theo-
rem 1, then (X', %2, 7, 7% A) and (@', @?, v, v, 1) are efficient solution of (Mix SP) and

(Mix SD) respectively.
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Proof. Since (X', %2, 7', 72, 1) is efficient, it is weak minimum. Hence there exists
T € RP,n € R?, v € R and piecewise smooth functions 6(t) : I — R¥! 92(t) : 1 —
R*l'and u : I — R™ such that the following Fritz-John optimality conditions, in view

of the analysis on [13, 9, 14], are satisfied

H = 7(f+g)+0' ()= (tTe)y (A" f,: — DA f1)
+(02(6) —yy* ()" ) (A gy2 —DATgg) + ' A

Satisfying
H,.—DH;+D?*Hpn =0, tel (29)
H.—DH, +D?*H;x=0, tel (30)
H,—DH;, +D’H;; =0, tel (31)
H,—DHy:+D’Hjp=0, tel (32)
(0'(t) = (t"e)y ()" (f,» = Dfp) +(6%(1) — yy*(t))'(g,2 —Dgy2) —n =0, tel
(33)
0'(t)(A"f,u —DATf1)=0, tel (34)
6%(t)(A'g,. —DATg2) =0, tel (35)
YJ YA () (ATg,. —DATg2) =0 (36)

1

nTA=0 (37)
(7,0'(6),0%(t),m,y)20, tel (38)
(7,0'(t),0%(t),n, ) #0, tel (39)

hold throughout I (except at the corners of (x!(t),x2(t), y'(t), ¥*(t)) where (29)-
(32) are valid for unique right and left hand limits). Here 6! and 6?2 are continuous

except possibly at corner of (x1(t),x2(t), y1(t), ¥(t)).
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The relations (29)-(32) are all deducible from the classical Euler-Lagrange and
Clebsch necessary optimality conditions. Particularly, the equations (29)-(32) are the
famous Euler-Lagrange differential equation when second order derivatives appear in
H. Using the analogies of the observation of D¢y from the notational section, the

equations (29)-(32) become,

T(fa —Dfa) = (0'() — (" ()" (A" fy10 = DA fi,0)
—D(0'(t) — (z"e)7' (D" (AT fy10 = DA fia = AT fin,0)
+D*((0' () — (z" )y ()" (A" f12)) =0 (40)
T(8x2 — Dgs2) + (0%(t) — vy (1)) (A g2, — DA gj2,2)
—D(0*() — Y7 ()" (A" gy252 — DAT gj250 — AT gj22)

+D?((0%(t) — yy* () (AT gy242)) =0 (41)

(t = (t7eA) (fyr = Dfy) + (81 () = (z"e)y ' (¢))"
X(A' fyryr = DA fnyn)
—D(0'(t) = (z"e)y' ()" (=DA" fy11)
+D*((0'() = (z"e)y (N (=AT f1,1)) =0 (42)
(t—rA)'(g,2 — Dgy2) + (0%(t) —y7*(£)) (A" g 2,2 — DA gy2 2)
—D(6%(t) — y7*(t)) (=DA" gy2;2)
+D*(0%(t) — y7* () (= A" gy2y2) =0 (43)

Since A > 0, (37) implies 1 = 0. Consequently, (33) reduces to
(0'(t)— (TTe)yl(t))T(fyl —Dfjp)+ (02%(t) — yyZ(t))T(gyz —Dgyp)=0,tel (44)

Postmultiplying (42) by (61(t) — (t7e)y!(t)), (43) by (6%(t) — yy*(t)) and then

adding, we have

{7 = (2T (1 = Dfyn) +(8'(6) = (77 () (AT 1, — DA fyn0)
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—D[(6'(t) = (7 e)7 ()" (=DA fy1;1)]
+D?[(01(1) = (t7e)7 (1)) (= AT f31;013(0 (1) — (t7e) 7' (£))
+H{(r —rA) (g2 — Dgy2) +(02(t) =y (1) (AT )22 — DAT g2y2)
—D[(6*(t) = y7*(£))" (=DA" g242)]
+D?[(0%(1) — v 72 () (= AT g5252)]}(02(t) —y¥* (1)) =0

Now multiplying (44) by A and then using (35) and (36) we have
J O'(t) = (z"e)7 ()" (A" f,s = DAT f;1)dt =0
I
that is
J (B'(t) = (z"e)y ()" (A" f,n = DAT fiu) (v e)dt =0
I
Multiplying (44) by 7, we have
J[(Ql(t) —(t"e)y' () (tfyr =D f}n)
+(0%(t) = yy*())'(rg,2 — D1g;2)ldt =0
Subtracting (46) and (47) and using (35) and (36), we have
J [0 ()= (z"e)y ()" (fr = Dfy )7 — (x7e)A)
+(0*() —ry* (1)) (tg,2 — D7g;2)(t —yA)ldt =0
From (45) and (48), we obtain
f ({0 (t) = (z"e)y (D" (AT fr1,0 = DA fL050)
—D[(0'(t) = (z"e)7'(t))" (—DA" fj1;1)]
+D*[(0'(t) = (z"e)y () (AT f;151)13.(01(t) = (v"e)y ' (£))]dt

+J [{(0%(6) —yy* ()" (AT gy2y2 — DAT G 252)
I

594

(45)

(46)

(47)

(48)
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—D[(6%(t) — y7*())"(—=DA" gy22)]
+D?[(0%(t) = yy?(£)) (= A" gy252)13(0%(t) — yy*(t))]dt =0

In view of the hypothesis (C;), we have
J [{(6' () = (z7e)7 ()T (A" fy1)0 = DAT fy150)
1

—D[(8'(t) — (z"e)y ()" (=DAT fy151)]
+D*[(07(t) — (" )7 (N (=2 f;1;)13.(0(6) — (v7e)y' (¢))]dt = 0

and
J [{(6%(6) = y7*(t) (A" gy2,2 — DAT g 252)

—D[(8%(t) — y¥*(t))" (—DA" gy2y2)]
+D*[(0%(t) — yF () (A" gy252)1}(0%(8) — yy*())1de = 0

This in view of the hypothesis (C,) yields,

P'()=0'(t)—(t"e)y'(t)=0, tel (49)

¢*(t)=0*(t) —yy*(t)=0, tel (50)
From (50) and (43), we have
(t—yA)'(gy: —Dg;2) =0

that is

p
D (e = y2) (g, — Dg;2) =0

i=1

This in view of the (C;) yields

ti=yALi=1,2,...,p (51)
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Let if possible, y = 0. Then from (51), we have 7 = 0 and therefore, from (49) and

(50), we have

$1(t)=0,0%(t)=0,tel

Hence (7,0'(t),0%(t),n,y) = 0, contradicting Fritz-John conditions (39). Hence

y > 0 and consequently T > 0.

From (40) and (4.29) along with (51), we obtain

()_Lfol - Dinxl) =0, tel

(ATg2—DATg2)=0, tel
which implies
J x2(t)'(ATg..—DATg.)dt =0
I
From (52)-(54) together with (49), we have
Y (OTA"f i =DATfi)=0,t €1
From the primal objective with (55)

J {f(e,xt, %t yhyD +glt, x5, y2, 7%
1
1
— YNOT(ATFi—DAT fy)}dr
= J{f(t,xl,fcl,yl,y'l)+g(t,x2,x2,yz,y2)}dt
1
From the dual objective in view of (52), we have
1

(O (AT fa—DAT fo)}dt

= J{f(t,xl,fcl,yl,yl)+g(t,x2,5cz,y2,y2)}dt
1

(52)

(53)

(54)

(55)

(56)

(57)
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From (55) and (57), the equality of objective values is evident. Consequently, in view

of the hypothesis of Theorem 1, the efficiency of (%!, %2, ', 72, 1) follows.

We now state converse duality whose proof follows by symmetry.

Theorem 3 (Converse Duality). Let (', X2, 7', 72, A) be an efficient solution of (Mix SP).
Let A= ) be fixed in (Mix SD) and

(A1) J (O (A" fea = DAT fra0) = DY () (=DA" fiazn)
I

+D*Y () (=27 fra)hp'(0)]dE >0,

and
J [{?(6) (AT g2z — DAT g 242) — DY?(t)" (=DAT g242)
+D*P?(6) (= A" graz2)}p?(1)]dt > 0,
(Az) J [{ ()" (A fr0 = DA fraz0) = DY ()" (=DA” fraz)
I
+D* YU (AT fa ) ()]dt =0,t €I = (t)=0,t €1,
and
J [{?(t) (AT g2p2 = DAT g 242) — DY?()" (—DA g242)
I
+D%Y2 ()T (~ATg22)}p2()]dt =0,t €I = p%(t) =0, t €1
and

(A;) g, —Dgl,=0,i=1,2,...,p are linearly independent.

Let fz fdt and fz AT gdt satisfy the invexity and generalized invexity as stated in
Theorem 1, then (%!, %2, 7, y% A) and (@',a?, v, 7%, A) are efficient solution of (Mix

SP) and (Mix SD) respectively.
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5. Self Duality

A problem is said to be self-dual if it is formally identical with its dual, in general,
the problems (Mix SP) and (Mix SD) are not formally in the absence of an additional
restrictions of the function f and g. Hence skew symmetric of f and g is assumed in

order to validate the following self-duality theorem.

Theorem 4 (Self Duality). Let f' and g',i = 1,2,...,p, be skew symmetric. Then the
problem (Mix SP) is self dual. If the problems (Mix SP) and (Mix SD) are dual problems
and (x'(t), x2(t), y(t), ¥*(t), A) is a joint optimal solution of (Mix SP) and (Mix SD),

then so is (y(t), y2(t), x'(t), x%(t), 1), and the common functional value is zero, i.e.
Minimum(Mix SP) = f {f Ot it yhyD) +g(x%, %%, 2, y*)}dt =0
I
Proof. By skew symmetric of f! and g, we have

fat,x'(0), 210, y'(0), Y () = — £, (&, ¥ (£), 3 (), x " (£), x (1))
8,(6,x7(6), x*(6), y (6), y*(£)) = =g} (&, y*(£), y*(£), x*(£), X*(¢))
Fr(e,x (0,5 (0), y (0, ¥ () = = £ (6, ¥ (£), 3 (£, x(6), x'(6))
g,.(t,x%(6), x*(0), y(6), y*(£)) = =g (£, y*(8), ¥*(£), x*(£), 3*(1))
fat,x'(0), 210, y'(0), Y () = — £ (&, y ' (£), 3 (), x " (£), x'(1))
82 (£,x%(6),%%(), ¥ (8), y*(£)) = =g (£, y*(£), (1), x*(£), ¥*(1))
Fru(e,x (), 3 (0), y (0, ¥ () = = £ (6, y 1 (£), 31 (£, x'(£), % '(£))

g,2(t,3%(6), x*(0), y (6), y*(£)) = =g (£, y*(£), y*(£), x*(£), 3*(t))

Recasting the dual problem (Mix SD) as a minimization problem and using the above

relations, we have

(Mix SD1)  Minimize — J e,y vyt xt x) + g(e, y2, v, x%, x2)
1
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MO A fa(e,yh 3t xt, &)
—DAT fa(t,yt, vyt xt, x1))e}dt
Subject to
x'(a)=0=x'(b),y'(@)=0=y'(b)
x*(a) = 0= x*(b),y*(a) = 0= y*(b)
AT fa(t,yh vyt x, x) = DAT fu(t, yt, yt,xt,x1) S 0,t el
Al ga(t, ¥, y2,x%, x*) = DA  go(t, ¥y, %, x%,%*) S0, t €1
J XA (A g (t, 2, 72, %%, %%)
—IDngxl(t,yz,y'z, x%,x%))dt 2 0
AeA”
This shows that the problem (Mix SD,) is just the primal problem (Mix SP). There-
fore, (x(t),x2(t),7'(t), 7*(t),A) is an optimal solution of (Mix SD) implies that
(F1(t), 72(t), x'(t), x*(t), A) is an optimal solution for (Mix SP), and by symmetric
duality also for (Mix SD).
Now from (55)

Minimum (Mix SP) = J e, xt, xbyhyh) + g(t, x4, x%, vy, y*)ide
I
Correspondingly with the solution (7(t), y2(t), x'(t), x%(t), 1), we have
Minimum (Mix SP) = J e, yLythxtxh)+gle, y?, y%, x%, 3}t
I
By the skew symmetric of f! and g', we have
Minimum (Mix SP) = J {Fle,xt,xtyh vy + g(e, x?, x2, y2, y*)}dt
I

= f{f(t,yl,yl,xl,icl)+g(t,y2,y2,x2,x2)}dt
1

= —J {f (e, xt it yhyhD + g(t, x, %%, y?, y*)}dt
1
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this yields,

Minimum (Mix SP) = J e, xhxt ythy) + g, x3 %%, y*, y)}dt =0
1

This accomplishes the proof of the theorem.

6. Natural Boundary Conditions

The pair of mixed symmetric multiobjective variational problem with natural bound-

ary values rather than fixed points may be formulated as,

Primal problem (Mix SP,)
MinimizeJ {f(t,xt, vt ) + g(t, x4, %%, ¥, 32).
I—yl(f)T(ATfyl(Xl,551,}’1,}"1)
—DA" fin(xh, %t yh, y')eldt
Subject to
AT fat,xt, 5ty y') = DAY fia(t,x', x4 yLy') =0
ATg,a(t,x% %%, y%, y2) = DA  gpa(t,x%, %%, y%, y*) £ 0
J YA (AT g2 (t,x%, %%, y2, y?)
—ID?tTgyz(t, x%,%%,y%,5%)) 2 0
AT faeut, i v D] =0, AT fu(t,ut,ut, v v =0
AL gy (t, 52,52, y2, 3 imq = 0, ATgya(t,x%, %%, y%, )]y = 0
LeA”
Dual problem (Mix SD,)
Maximize J {F@t,at, v vh + g(uw? u?, v2, v?)
1

_ul(t)T(A'Tful(ulﬁul’ Vl, vl)
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—DAT fa(ut,ut, v, vh))eldt
Subject to
AT fa(t,ut,at, v, vh) — DAY fu(t,ut,ad, v, v) =20
Al g o (t,u?, 1%, v, v?) — DA g (t,u%, 12, v2,v*) 2 0
J ()T (AT go(t,u?, u?, v, v?)
I
—DAT go(t,u?, 1%, v?,v*))dt £ 0,
Al fa(t,ut, 0, v 9] e = 0, AT fu(t,ut, ', v, vY)]—y =0
AT gt x?, %%, 2,y i=q = 0, AT gsa(t, x*, %%, y%, ¥ =y = 0
AeA”

For these problems, Theorem 1-3 will remain true except that some slight modifica-

tions in the arguments for these theorems are to be indicated.

7. Mathematical Programming

If the time dependency of (Mix SP) and (Mix SD) is removed and b —a = 1, we

obtain following pair of static mixed type multiobjective dual problems studied by

Bector, Chandra and Abha [2].

Primal (Mix SP;) ~ Minimize f(x',y") + g(x?, y*) = (YD (A" fu(x*, ¥
Subject to
A falet, yh) 20,
ATga(x*y) 20,
YA (A gy (x%,yM) 2 0,
Ae At

Dual (Mix SD1)  Maximize f(u',v') + g(u?,v?) —u*(t)" (AT fa(u?,vh))
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Subject to
Al fa(t,vh) 20,
ATgp(?,v?) 20,
@) (A" gpW?,v?). 20,

AEAT.
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