Generalized Nörlund and Nörlund-type Means of Sequences of Fuzzy Numbers

Pradosh Kumar Pattanaik1, Susanta Kumar Paikray2, Bidu Bhusan Jena2,*

1 Gandhi Institute of Engineering and Technology University, Gunupur 765022, Odisha, India
2 Department of Mathematics, Veer Surendra Sai University of Technology, Burla 768018, Odisha, India

Abstract. In this article we study some properties of generalized Nörlund and Nörlund-type means of sequences of fuzzy real numbers. We establish necessary and sufficient conditions for our purposed methods to transform convergent sequences of fuzzy real numbers into convergent sequences of fuzzy real numbers which also preserve the limit. Finally, we establish some results showing the connection between the generalized Nörlund and Nörlund-type limits and the usual limits under slow oscillation of sequences of fuzzy real numbers.

2020 Mathematics Subject Classifications: 40A05, 40G05, 03E72

Key Words and Phrases: Generalized Nörlund mean, Generalized Riesz mean, Fuzzy real numbers, Slow oscillation

1. Introduction

Let D be the set of all closed and bounded intervals on the real line \mathbb{R}. For $X, Y \in D$, we define

$$d(X, Y) = \max(|a_1 - b_1|, |a_2 - b_2|),$$

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v13i5.3680

Email addresses: pradoshmunna@gmail.com (P. K. Pattanaik), skpaikray_math@vssut.ac.in (S. K. Paikray), bidumath.05@gmail.com (B. B. Jena)
where \(X = [a_1, a_2], \ Y = [b_1, b_2]. \) It is known that \((D, d)\) is a metric space which is also complete.

A fuzzy real number \(X \) is a fuzzy set on \(\mathbb{R} \), and is a mapping \(X : \mathbb{R} \to I \) (\(= [0, 1] \)) associating each real number \(r \) with its grade of membership \(\mu_X(r) \).

Recalling some basic terminologies, a fuzzy real number \(X \) is called convex if, \(\mu_X(r) \geq \min(\mu_X(s), \mu_X(t)) \), where \(s < r < t \). A fuzzy real number \(X \) is called normal if, there exists \(r_0 \in \mathbb{R} \) such that \(\mu_X(r_0) = 1 \). Further, if for every \(\epsilon > 0 \), \(X^{-1}([0, a + \epsilon]) \), for all \(a \in I \) (is open in the usual topology of \(\mathbb{R} \)) then \(X \) is called upper semi-continuous.

Let \(\mathbb{R}(I) \) denotes the set of all convex, upper semi continuous and normal fuzzy numbers, and let \(X^\alpha \) (0 < \(\alpha \) ≤ 1) be the \(\alpha \) level set of \(X \), which is defined by \(X^\alpha = \{ r \in R : \mu_X(r) \geq \alpha \} \). Also, for \(\alpha = 0 \), it is closure of the strong 0-cut.

Note that, the set of all numbers \(\mathbb{R} \) can be embedded in \(\mathbb{R}(I) \). For each \(t \in \mathbb{R}, \overline{t} \in \mathbb{R}(I) \) is defined by
\[
\overline{t}(r) = \begin{cases}
1, & \text{if } r = t, \\
0, & \text{if } r \neq t.
\end{cases}
\]

Let \(\overline{d} : \mathbb{R}(I) \times \mathbb{R}(I) \to \mathbb{R} \) be defined by
\[
\overline{d}(X, Y) = \sup_{0 \leq \alpha \leq 1} d(X^\alpha, Y^\alpha).
\]

Also, \(\overline{d} \) defines a metric on \(\mathbb{R}(I) \). It is trivial that \((\mathbb{R}(I), \overline{d}) \) is a metric space, and is complete. Here, \(\overline{0} \) and \(\overline{1} \) are the additive identity and multiplicative identity respectively.

The preliminary idea of fuzzy set theory was introduced and studied by Zadeh [18] in the year 1965. Gradually this theory has entered into many diversified areas of science and technology. In particular, mathematicians and researchers working on sequence spaces preferred to use fuzzy sequences because of its wide applications. The scope of such theory has been studied in the different areas of (for instance) fuzzy logic, fuzzy graph theory, fuzzy topological spaces, fuzzy differential equations, fuzzy mathematical programming, and so on. In this article we study the characterization of generalized Nörlund and Nörlund-type (Riesz) means of sequences of fuzzy real numbers.

2. Preliminaries and Definitions

Let \((p_n) \) and \((q_n) \) be two sequences of non-negative real numbers which are not all zero, that is, \(P_n = \sum_{u=1}^{n} p_u, \ n \in \mathbb{N} \).
and
\[Q_n = \sum_{u=0}^{n} q_u, \quad n \in \mathbb{N}. \]

Let us consider
\[R_n = \sum_{u=0}^{n} p_u q_u \quad \text{and} \quad R'_n = \sum_{u=0}^{n} p_{n-u} q_u. \]

Definition 1. A sequence \((X_n)\) of fuzzy real numbers is generalized Nörlund \((N, p_n, q_n)\) summable to \(l\) if,
\[d\left(\frac{1}{R'_n} \sum_{u=0}^{n} p_{n-u} q_u X_u, l \right) \to 0 \quad \text{as} \quad n \to \infty. \]

Definition 2. A sequence \((X_n)\) of real numbers is generalized Nörlund-type \((N, p_n, q_n)\) summable or generalized Riesz \((R, p_n, q_n)\) summable to \(l\) if,
\[d\left(\frac{1}{R_n} \sum_{u=1}^{n} p_u q_u X_u, l \right) \to 0 \quad \text{as} \quad n \to \infty. \]

Definition 3. A sequence \((X_n)\) of fuzzy real numbers is slowly oscillating if,
\[d(X_n, X_m) \to 0 \quad \text{as} \quad n, m \to \infty \quad \text{with} \quad 1 \leq \frac{n}{m} \to 1. \]

Equivalently, we can say that; a sequence of fuzzy real numbers \((X_n)\) is oscillating slowly iff for every \(\epsilon > 0\), there exists \(\delta = \delta(\epsilon) > 0\) and \(n_0(\epsilon) \in \mathbb{N}\) such that \(d(X_n, X_m) < \epsilon\) whenever \(1 \leq \left(\frac{n}{m} \right) < 1 + \delta\) and \(m, n \geq n_0(\epsilon)\).

Several summability methods have been defined for different fuzzy numbers valued sequences. The Cesàro summability of order one for sequences of fuzzy real numbers was studied by Altın et al. [1] in the year 2010. In the year 2017, Yavuz [17] defined a Euler summability method of sequences of fuzzy numbers and a proved Tauberian theorem. Dealing with statistical summability of sequences of fuzzy numbers, in 2016, Talo and Bal [13] studied some results based on Nörlund-type means. Recently, some works on Nörlund and Riesz means have been studied by Srivastava et al. [9], [10], [11], and [12] based on statistical convergence. Very recently, Jena et al. [6] studied the Cesàro summability of double sequences of fuzzy real numbers and proved Tauberian theorems on that basis. Also, Das et al. [2] used statistical \((C,1)(E,\mu)\) product summability mean for sequences of fuzzy numbers to prove a fuzzy Korovkin-type approximation theorem. For more studies in this direction one may refer to [3], [4], [5], [7], [8], [14], [15] and [16]. Motivated essentially by the above mentioned works, we investigate here the characterization of generalized Nörlund and Nörlund-type (Riesz) means of sequences of fuzzy real numbers. We establish necessary and sufficient conditions for our purposed methods to transform convergent sequences of fuzzy real numbers into convergent sequences of fuzzy real numbers which also preserve the limit. Moreover, we establish some results demonstrating the connection between the generalized Nörlund and Nörlund-type limit and the usual limit under slow oscillation of sequences of fuzzy real numbers.
3. Main Theorem

The objective of this paper to prove the following theorem.

Theorem 1. The method \((N, p_n, q_n)\) is regular if and only if \(\frac{p_n-kq_n}{R_n} \to 0\) as \(n \to \infty\).

Proof. Let \((X_n)\) be any sequence of fuzzy real numbers which is convergent to \(L\). That is, \(\lim_{n\to\infty} X_n = L\); then for given \(\epsilon > 0\) there exists a positive integer \(n_0\) for which \(|d(X_n, L) - \epsilon| < \epsilon\) for \(n \geq n_0\) and \(d(X_n, L) < \epsilon\), for all \(n \in \mathbb{N}\). Let \(\frac{p_n-q_n}{R_n} \to 0\) as \(n \to \infty\), then for \(\epsilon > 0\) there exists \(n_1 \in \mathbb{N}\) such that \(\frac{p_n-kq_n}{R_n} < \left(\frac{\epsilon}{\max(n_0, n_1)}\right)\) for \(n > n_1\). Let \(n_2 = \max(n_0, n_1)\). Then for all \(n \geq n_2\), we have

\[
d\left(\frac{1}{R_n} \sum_{i=1}^{n} p_{n-i+1}q_iX_i, L\right) \leq d\left(\frac{1}{R_n} \sum_{i=1}^{n_2} p_{n-i+1}q_iX_i, L\right) + d\left(\frac{1}{R_n} \sum_{i=n_2+1}^{n} p_{n-i+1}q_iX_i, L\right)
\]

\[
= d\left(\frac{1}{R_n} \left(p_0q_0X_0 + p_{n-1}q_1X_1 + \ldots + p_{n-n_2+1}q_{n_2-1}X_{n_2-1}\right), L\right)
\]

\[+ d\left(\frac{1}{R_n} \left(p_{n-n_2}q_nX_n + \ldots + p_0q_nX_n\right), L\right)
\]

\[
\leq \frac{p_0q_0}{R_n}d(X_0, L) + \frac{p_{n-1}q_1}{R_n}d(X_1, L) + \ldots + \frac{p_{n-n_2+1}q_{n_2-1}}{R_n}d(X_{n_2-1}, L)
\]

\[+ \frac{p_{n-n_2}q_n}{R_n}d(X_n, L) + \ldots + \frac{p_0q_n}{R_n}d(X_n, L)
\]

\[
\leq \frac{\epsilon}{2Hn_2} + \frac{\epsilon}{2Hn_2} + \ldots + \frac{\epsilon}{2Hn_2} + \frac{p_{n-n_2}q_n}{R_n} \epsilon
\]

\[+ \ldots + \frac{p_0q_n}{R_n} \epsilon
\]

\[
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

Conversely, let \((N, p_n, q_n)\) be a regular method. Consider the sequence

\[
\bar{e}_k = (\overline{0}, \overline{0}, \ldots, \overline{1}, \overline{0}, \overline{0}, \ldots) = X_n
\]

where \(\overline{1}\) appears at the \(k^{th}\) place. Also, we have \(X_n \to \overline{0}\) as \(n \to \infty\). Thus,

\[
d\left(\sum_{k=1}^{n} \frac{p_{n-k+1}q_k}{R_n}e_k, \overline{0}\right) = \frac{p_{n-k}q_n}{R_n} \to 0 \quad (n \to \infty).
\]

Theorem 2. The method \((R, p_n, q_n)\) is regular if and only if \(\frac{p_nq_n}{R_n} \to 0\) as \(n \to \infty\).
Proof. Let \((X_n)\) be any sequence of fuzzy real numbers which is convergent to \(L\). That is, lim\(_{n \to \infty} X_n = L\); then for given \(\epsilon > 0\) there exists a positive integer \(n_0\) for which \(d(X_n, L) < \epsilon\), for all \(n \geq n_0\) and \(d(X_n, L) < H\) for all \(n \in \mathbb{N}\). Let \(\frac{p_{\text{max}}}{R_n} \to 0\) as \(n \to \infty\), then there exists \(n_1 \in \mathbb{N}\) such that \(\frac{p_{\text{max}}}{R_n} < \frac{\epsilon}{2H}\) for all \(n > n_1\). Let \(n_2 = \max(n_0, n_1)\). Then for all \(n \geq n_2\), we have

\[
\overline{d}\left(\frac{1}{R_n} \sum_{i=0}^{n} p_i q_i X_i, L\right) \leq \overline{d}\left(\frac{1}{R_n} \sum_{i=0}^{n_2} p_i q_i X_i, L\right) + \overline{d}\left(\frac{1}{R_n} \sum_{n_2+1}^{n} p_i q_i X_i, L\right)
\]

\[
\leq \overline{d}\left(\frac{1}{R_n} (p_0 q_0 X_0 + p_1 q_1 X_1 + \ldots + p_{n_2} q_{n_2} X_{n_2}), L\right)
\]

\[
+ \overline{d}\left(\frac{1}{R_n} (p_{n_2+1} q_{n_2+1} X_{n_2+1} + \ldots + p_{n_0} q_{n_0} X_{n_0}), L\right)
\]

\[
\leq \frac{p_{0} q_0}{R_n} \overline{d}(X_0, L) + \frac{p_{1} q_1}{R_n} \overline{d}(X_1, L) + \ldots + \frac{p_{n_2} q_{n_2}}{R_n} \overline{d}(X_{n_2}, L)
\]

\[
+ \frac{p_{n_2+1} q_{n_2+1}}{R_n} \overline{d}(X_{n_2+1}, L) + \ldots + \frac{p_{n_0} q_{n_0}}{R_n} \overline{d}(X_{n_0}, L)
\]

\[
\leq \frac{\epsilon}{2H} \overline{d}(X_0, L) + \frac{\epsilon}{2H} \overline{d}(X_1, L) + \ldots + \frac{\epsilon}{2H} \overline{d}(X_{n_2}, L)
\]

\[
+ \frac{p_{n_2} q_{n_2}}{R_n} \overline{d}(X_{n_2}, L) + \ldots + \frac{p_{n_0} q_{n_0}}{R_n} \overline{d}(X_{n_0}, L)
\]

\[
\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

Conversely, let \((R, p_n, q_n)\) be regular. Consider the sequence \(\tau = (\overline{0}, \overline{0}, \ldots, \overline{I}, \overline{0}, \ldots) = X_n\), where \(\overline{I}\) appears at the \(k^{th}\) place. Also, we have \(X_n \to \overline{0}\) as \(n \to \infty\). Thus,

\[
\overline{d}\left(\sum_{k=1}^{n} \frac{p_k q_k}{R_n} \epsilon_k, 0\right) = \frac{p_k q_k}{R_n} \to 0 \text{ as } n \to \infty.
\]

Theorem 3. If \((X_n)\) is \((N, p_n, q_n)\) summable to \(L\) in \(\mathbb{R}(I)\) and slowly oscillating then it is convergent to \(L\) in \(\mathbb{R}(I)\).

Proof. Without loss of generality we may assume that \(L = 0\). Suppose that lim\(_{n \to \infty} \overline{d}(X_n, \overline{0}) > 0\). Then there exists \(\alpha > 0\) and a subsequence \(X_{n_i}\) of \((X_n)\) such that

\[
\overline{d}(X_{n_i}, \overline{0}) \geq \alpha \text{ for all } i \in \mathbb{N}.
\]

Since \((X_n)\) is slowly oscillating, so \((X_{n_i})\) as a subsequence of \((X_n)\) is also slowly oscillating. Then for a given \(\delta > 0\), there exists \(g_0 \in \mathbb{N}\) such that \(g_0 \leq n \leq m < (1 + \delta)n\) and

\[
\overline{d}(X_n, X_m) < \frac{\alpha}{2}.
\]
Moreover, \((X_n)\) being \((N, p_n, q_n)\) - summable to \(\bar{0}\), that means, \((\sigma_n)\) is convergent to \(\bar{0}\) in \((\mathbb{R}(I), \bar{d})\) with

\[
\sigma_n = \frac{1}{R_n} \sum_{k=1}^{n} p_{n-k}q_k X_k;
\]

thus for all \(m_i \geq n_i\),

\[
\sigma_{m_i} - \frac{R'_{m_i}}{R'_{m_i}} \sigma_{n_i} = \frac{1}{R'_{m_i}} \sum_{k=n_i+1}^{m_i} p_{m_i-k}q_k X_k - \frac{R'_{n_i}}{R'_{m_i}} \sum_{k=1}^{n_i} p_{n_i-k}q_k X_k
\]

\[
= \frac{1}{R'_{m_i}} \sum_{k=n_i+1}^{m_i} p_{m_i-k}q_k X_k.
\]

Clearly, \(n_i \geq g_1\) and \(n_i \leq m \leq m_i = [(1 + \delta)n_i]\), where \([x]\) denote the integral part of \(x\), we have

\[
\bar{d}(\overline{0}, X_m) \geq \bar{d}(\overline{0}, X_{n_i}) - \bar{d}(X_{n_i}, X_m) \geq \alpha - \frac{\alpha}{2}.
\]

Again,

\[
\bar{d}(\sigma_{m_i}, \sigma_{n_i}) + \bar{d} \left(\sigma_{n_i}, \frac{R'_{m_i}}{R'_{m_i}} \sigma_{n_i} \right) \geq \bar{d} \left(\sigma_{m_i}, \frac{R'_{n_i}}{R'_{m_i}} \sigma_{n_i} \right)
\]

\[
\geq \bar{d} \left(\frac{1}{R'_{m_i}} \sum_{k=n_i+1}^{m_i} p_{m_i-k}q_k X_k, \overline{0} \right)
\]

\[
\geq \bar{d} \left(\frac{p_{m_i-k}q_{m_i} - p_{n_i-k}q_{n_i}}{R'_{m_i}} X_{n_i}, \overline{0} \right)
\]

\[
- \bar{d} \left(\sum_{k=n_i+1}^{m_i} p_{m_i-k}q_k X_k - p_{n_i-k}q_{n_i} X_{n_i}, \overline{0} \right)
\]

\[
= \frac{p_{m_i-k}q_{m_i} - p_{n_i-k}q_{n_i}}{R'_{m_i}} \bar{d}(X_{n_i}, \overline{0})
\]

\[
- \sum_{k=n_i+1}^{m_i} \bar{d} \left(p_{m_i-k}q_k X_k - p_{n_i-k}q_{n_i} X_{n_i}, \overline{0} \right)
\]

\[
= \frac{p_{m_i-k}q_{m_i} - p_{n_i-k}q_{n_i}}{R'_{m_i}} \bar{d}(X_{n_i}, \overline{0})
\]

\[
- \sum_{k=n_i+1}^{m_i} \frac{1}{R'_{m_i}} \bar{d}(p_{m_i-k}q_k X_k, p_{n_i-k}q_{n_i} X_{n_i})
\]

\[
\geq \frac{p_{m_i-k}q_{m_i} - p_{n_i-k}q_{n_i}}{R'_{m_i}} \bar{d}(X_{n_i}, \overline{0})
\]

\[
- \frac{p_{m_i-k}q_{m_i} - p_{n_i-k}q_{n_i}}{R'_{m_i}} \bar{d}(X_k, X_{n_i})
\]

\[
\geq \frac{p_{m_i-k}q_{m_i} - p_{n_i-k}q_{n_i}}{R'_{m_i}} \bar{d}(X_{n_i}, \overline{0})
\]

\[
- \frac{p_{m_i-k}q_{m_i} - p_{n_i-k}q_{n_i}}{R'_{m_i}} \bar{d}(X_k, X_{n_i})
\]
\[
\geq \frac{p_{m_i-kq_{m_i}} - p_{n_i-kq_{n_i}}}{R'_{m_i}} \alpha - \frac{p_{m_i-kq_{m_i}} - p_{n_i-kq_{n_i}}}{R'_{m_i}} \frac{\alpha}{2} \\
= \frac{p_{m_i-kq_{m_i}} - p_{n_i-kq_{n_i}}}{R'_{m_i}} \left(\alpha - \frac{\alpha}{2} \right) \\
\geq \frac{p_{m_i-kq_{m_i}} - p_{n_i-kq_{n_i}}}{R'_{m_i}} \left(\frac{\delta}{1+\delta} \right) \geq 0.
\]

Thus, for all \(m_i \geq n_i \geq g_i \),
\[
\bar{d}(\sigma_{m_i}, \sigma_{n_i}) + \bar{d} \left(\sigma_{n_i}, \frac{R'_{n_i}}{R'_{m_i}} \sigma_{n_i} \right) \geq \bar{d} \left(\sigma_{m_i}, \frac{R'_{m_i}}{R'_{m_i}} \sigma_{n_i} \right) \frac{\alpha}{2} \left(\frac{\delta}{1+\delta} \right).
\]

Consequently,
\[
0 = \lim \bar{d} \left(\sigma_{m_i}, \frac{R'_{m_i}}{R'_{m_i}} \sigma_{n_i} \right) \geq \frac{\alpha}{2} \left(\frac{\delta}{1+\delta} \right) > 0
\]

which contradicts that \((X_n)\) converges in \(\mathbb{R}(I) \). Therefore, \((X_n)\) is convergent to \(L\) in \(\mathbb{R}(I) \). This completes the proof of the theorem.

Theorem 4. If \((X_n)\) is \((\tilde{N}, \bar{p}_n, \bar{q}_n)\) summable to \(L\) in \(\mathbb{R}(I) \) and slowly oscillating then it is convergent to \(L\) in \(\mathbb{R}(I) \).

Proof. The proof can be followed in the similar lines from the proof of Theorem 3.

Acknowledgements

The authors would like to keep the record of the 80th birthday of Prof. H. M. Srivastava for his tremendous contribution to many significant developments in Mathematical research. Also, the authors express their heartfelt thanks to the editors and anonymous referees for their most valuable comments and constructive suggestions which leads to the improvement of the earlier version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

REFERENCES

