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Abstract. In the present paper, we introduce and study ideal convergence of some fuzzy sequence
spaces via lacunary sequence, infinite matrix and Orlicz function. We study some topological and
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1. Introduction and preliminaries

The concept of ordinary convergence of a sequence of fuzzy numbers was introduced
by Matloka [18] and proved some basic theorems for sequences of fuzzy numbers. Later
on Nanda [28] introduced sequences of fuzzy numbers and studied that the set of all
convergent sequences of fuzzy numbers forms a complete metric space. Recently, Nuray
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and Savaş [30] studied statistical convergence and statistically Cauchy for sequence of
fuzzy numbers. They proved that a sequence of fuzzy numbers is statistically convergent
if and only if it is statistically Cauchy. Initially the idea of I-convergence was introduced
by Kostyrko et al. [15]. A lot of developments have been made in this area, one may refer
to the articles (see [1–4, 10, 11, 16, 19, 23, 37]).

Let X be a non empty set. Then a family of sets I ⊆ 2X (power set of X) is said to
be an ideal if I is additive i.e U1, U2 ∈ I ⇒ U1 ∪ U2 ∈ I and U1 ∈ I, U2 ⊆ U1 ⇒ U2 ∈ I.
A non empty family of sets G ⊆ 2X is said to be filter on X if and only if Φ /∈ G, for
U1, U2 ∈ G we have U1 ∩ U2 ∈ G and for each U1 ∈ G and U1 ⊆ U2 implies U2 ∈ G. An
ideal I ⊆ 2X is called non trivial if I 6= 2X . A non-trivial ideal I ⊆ 2X is called admissible
if {{x} : x ∈ X} ⊆ I. A non-trivial ideal is maximal if there cannot exist any non-trivial
ideal J 6= I containing I as a subset.

A fuzzy number u is a fuzzy set [42] on the real axis, i.e., a mapping u : R → [0, 1]
which satisfies the following conditions:

(i) u is normal, i.e., there exist an x0 ∈ R such that u(x0) = 1;

(ii) u is fuzzy convex, i.e., for x, y ∈ R and 0 ≤ λ ≤ 1, u(λx+(1−λ)y) ≥ min[u(x), u(y)];

(iii) u is upper semi-continuous;

(iv) the closure of the set supp(u) is compact, where supp(u) = {x ∈ R : u(x) > 0} and
it is denoted by [u]0.

Let L(R) denotes the set of all fuzzy numbers. The α-level set of a fuzzy real number u,
for 0 < α ≤ 1 denoted by uα is defined as [u]α = {x ∈ R : u(x) ≥ α}, for α = 0 it is the
closure of the strong 0 cut (i.e. closure of the set {t ∈ R : u(t) > 0}).
For each r ∈ R, r ∈ L(R) is defined by

r̄(t) =

{
1, if t = r;
0, if t 6= 0.

Define a map d : L(R)× L(R)→ R by

d(x, y) = sup
α∈[0,1]

{max{|uα1 − vα1 |, |uα2 − vα2 |}},

where uα = [uα1 , u
α
2 ] and vα = [vα1 , v

α
2 ]. In this case, (L(R), d) is a complete metric space.

The additive identity and multiplicative identity in L(R) are denoted by 0 and 1, respec-
tively.

An Orlicz function M : [0,∞) → [0,∞) is convex, continuous and non-decreasing
function which also satisfy M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞ as x → ∞. If
convexity of Orlicz function is replaced by M(x+ y) ≤ M(x) +M(y), then this function
is called the modulus function and characterized by Nakano [27] and followed by Ruckle
[33] and others. An Orlicz function M is said to satisfy ∆2-condition for all values of u,
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if there exists R > 0 such that M(2u) ≤ RM(u), u ≥ 0. Lindenstrauss and Tzafriri [17]
used the idea of Orlicz function to define the following sequence space

`M =
{
x ∈ w :

∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
which is called as an Orlicz sequence space. The space `M is a Banach space with the
norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

An increasing non-negative integer sequence θ = (ir) with i0 = 0 and hr = (ir−ir−1)→
∞ as r → ∞ is known as lacunary sequence. The intervals determined by θ are denoted
by Ir = (ir−1, ir] and the ratio ir/ir−1 will be denoted by qr. Freedman et al. [7] defined
the space Nθ in the following way:

Nθ =
{
x = (xk) : lim

r→∞

1

hr

∑
k∈Ir

|xk − L| = 0 for some L
}
.

Fridy and Orhan [8] defined and studied the idea of lacunary statistical for sequence of real
number. Nuray [29] and Mursaleen and Mohiuddine [25] defined this notion, respectively,
for sequences of fuzzy numbers and in the setting of intuitionistic fuzzy normed space.
Most recently, Mohiuddine and Alamri [20] defined the notion of weighted lacunary equi-
statistical convergence and, as an application, proved some approximation theorems.

In [14] Kızmaz introduced the notion of difference sequence spaces and studied `∞(∆),
c(∆) and c0(∆) which has been recently used to define statistical convergence [12, 21].
Further this notion was generalized by Et and Çolak [6] by introducing the spaces `∞(∆m),
c(∆m) and c0(∆m). Later on, another type of generalization of the difference sequence
spaces is due to Tripathy and Esi [39] who studied the spaces `∞(∆ν), c(∆ν) and c0(∆ν).
Recently, Esi et al. [5] and Tripathy et al. [40] have introduced a new type of generalized
difference operators and unified those as follows: Let ν, m be non-negative integers, then
for Z a given sequence space, we have

Z(∆m
ν ) = {x = (xk) ∈ w : (∆m

ν xk) ∈ Z}

for Z = c, c0 and `∞ where ∆m
ν x = (∆m

ν xk) = (∆m−1
ν xk −∆m−1

ν xk+1) and ∆0
νxk = xk for

all k ∈ N, which is equivalent to the following binomial representation

∆m
ν xk =

m∑
i=0

(−1)i
(
m
i

)
xk+νi.

Taking ν = 1, we get the spaces `∞(∆m), c(∆m) and c0(∆m) studied by Et and Çolak [6].
Taking m = ν = 1, we get the spaces `∞(∆), c(∆) and c0(∆) introduced and studied by
Kızmaz [14]. For more details about sequence spaces (see [9, 31, 32, 34, 36, 38, 41]) and
references therein.
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Let λ and η be two sequence spaces and A = (ank) be an infinite matrix of real or
complex numbers ank, where n, k ∈ N. Then we say that A defines a matrix mapping
from λ into η if for every sequence x = (xk)

∞
k=0 ∈ λ, the sequence Ax = {An(x)}∞n=0, the

A-transform of x, is in η, where

An(x) =

∞∑
k=0

ankxk (n ∈ N). (1)

By (λ, η), we denote the class of all matrices A such that A : λ → η. Thus, A ∈ (λ, η) if
and only if the series on the right-hand side of (1.1) converges for each n ∈ N and every
x ∈ λ.

The matrix domain λA of an infinite matrix A in a sequence space λ is defined by

λA = {x = (xk) : Ax ∈ λ}. (2)

The approach constructing a new sequence space by means of the matrix domain of a
particular limitation method has recently been employed by several authors (see [35]).

Kumar and Kumar [16] defined the notion of ideal (or, I-) convergence for sequence
of fuzzy numbers and recently studied by Mursaleen and Mohiuddine [26] in probabilistic
normed spaces (see also [22]).

Definition 1. A sequence X = (Xk) of fuzzy numbers is said to be I-convergent to a fuzzy
number X0, if for every ε > 0 such that

{k ∈ N : d(Xk, X0) ≥ ε} ∈ I.

The fuzzy number X0 is called I-limit of the sequence (Xk) of fuzzy numbers and we write
I- limXk = X0.

Definition 2. A sequence X = (Xk) of fuzzy numbers is said to be I-bounded if there
exists M > 0 such that

{k ∈ N : d(Xk, 0) > M} ∈ I.

Definition 3. Let θ = (kr) be lacunary sequence. Then a sequence (Xk) of fuzzy numbers

is said to be lacunary I-convergent if for every ε > 0 such that
{
r ∈ N : 1

hr

∑
k∈Ir

d(Xk, X) ≥

ε
}
∈ I. We write Iθ- limXk = X.

Definition 4. Let EF be denote the sequence space of fuzzy numbers. Then EF is said
to be solid (or normal) if (Yk) ∈ EF whenever (Xk) ∈ EF and d(Yk, 0) ≤ d(Xk, 0) for all
k ∈ N.

Example 1. (i) If we take I = IF = {A ⊆ N : A is a finite subset }. Then IF is a
nontrival admissible ideal of N and the corresponding convergence coincide with the usual
convergence.
(ii) If we take I = Iδ = {A ⊆ N : δ(A) = 0}. where δ(A) denote the asymptotic density of
the set A. Then Iδ is a non-trival admissible ideal of N and the corresponding convergence
coincide with the statistical convergence.
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Lemma 1. [24] If d is a translation invariant metric. Then
(i) d(X + Y, 0) ≤ d(X, 0) + d(Y, 0),
(ii) d(λX, 0) ≤ |λ|d(X, 0), |λ| > 1.

Lemma 2. A sequence space EF is normal implies EF is monotone. (For the crisp set
case, one may refer to Kamthan and Gupta [13]).

Lemma 3. [15] If I ⊂ 2N is a maximal ideal then for each A ∈ N, we have either A ∈ I
or N \A ∈ I.

2. Some fuzzy sequence spaces

Throughout the paper wF denote the class of all fuzzy real-valued sequences. By N
and R we denote the set of natural and real numbers respectively. Let I be an admissible
ideal of N and θ = (ir) be lacunary sequence. Suppose p = (pk) is a bounded sequence
of positive real numbers, u = (uk) be a sequence of nonzero, nonnegative real numbers,
A = (ank) an infinite matrix and M = (Mk) be a sequence of Orlicz functions. In this
paper, we define the following sequence spaces as follows:

w
I(F )
θ [A,M, p, u,∆m

v ]

=

{
(xk) ∈ wF : ∀ε > 0,

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk
≥ ε

}
∈ I,

for some ρ > 0, s ≥ 0 and X0 ∈ L(R)

}
,

w
I(F )
θ [A,M, p, u,∆m

v ]0

=

{
(xk) ∈ wF : ∀ε > 0,

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ

)]pk
≥ ε

}
∈ I,

for some ρ > 0 and s ≥ 0

}
,

wFθ [A,M, p, u,∆m
v ]∞

=

{
(xk) ∈ wF : sup

n,r

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ

)]pk
<∞, for some ρ > 0

and s ≥ 0

}
,
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and

w
I(F )
θ [A,M, p, u,∆m

v ]∞

=

{
(xk) ∈ wF : ∃ K > 0 such that

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk

≥ K

}
∈ I, for some ρ > 0 and s ≥ 0

}
.

Example 2. Let Xk(l) = 1 for k = 2q, q = 1, 2, 3.....

otherwise, Xk(l) =


k
3 (l − 2) + 1 for l ∈

[
2k−3

2 , 2
]
,

−k
3 (l − 2) + 1 for l ∈

[
2, 2k+3

2

]
.

For instance take m = v = 1, then the α−level sets of (Xk) and (∆Xk) are

[Xk]
α =

{
[1, 1] k = 2q,
[2− 3

k (1− α), 2 + 3
k (1− α)] otherwise.

and

[∆Xk]
α =


[−1− 3

k (1− α),−1 + 3
k (1− α)] k = 2q,

[1− 3
k (1− α), 1 + 3

k (1− α)] k + 1 = 2q.
[( 3
k + 3

k+1)(α− 1), ( 3
k + 3

k+1)(1− α)] otherwise.

Let A = (C, 1), the Cesàro matrix, M(x) = x, s = 0, u = (uk) = 1, p = (pk) = 1,
for all k ∈ N, ρ = 1 and θ = 2r, we have

sup
n

∑
k∈Ir

ank

[
Mk

(
d(uk∆

m
v Xk, 0)

ρ

)]pk
<∞

Thus, (Xk) ∈ wFθ [A,M, p, u,∆m
v ]∞ but (Xk) is not an Ideal convergent.

Let us consider a few special cases of the above sequence spaces:

(i) If Mk(x) = x for all k ∈ N, then we have

w
I(F )
θ [A,M, p, u,∆m

v ] = w
I(F )
θ [A, p, u,∆m

v ], w
I(F )
θ [A,M, p, u,∆m

v ]0 = w
I(F )
θ [A, p,

u,∆m
v ]0, w

F
θ [A,M, p, u,∆m

v ]∞ = wFθ [A, p, u,∆m
v ]∞ and w

I(F )
θ [A,M, p, u,∆m

v ]∞

= w
I(F )
θ [A, p, u,∆m

v ]∞.

(ii) If p = (pk) = 1, for all k, then we have

w
I(F )
θ [A,M, p, u,∆m

v ] = w
I(F )
θ [A,M, u,∆m

v ], w
I(F )
θ [A,M, p, u,∆m

v ]0 = w
I(F )
θ [A,

M, u,∆m
v ]0, w

F
θ [A,M, p, u,∆m

v ]∞ = wFθ [A,M, u,∆m
v ]∞ and w

I(F )
θ [A,M, p, u,∆m

v ]∞

= w
I(F )
θ [A,M, u,∆m

v ]∞.



K. Raj, S. A. Mohiuddine / Eur. J. Pure Appl. Math, 13 (5) (2020), 1131-1148 1137

(iii) If we take A = (C, 1), i.e., the Cesàro matrix, then the above classes of sequences

are denoted by w
I(F )
θ [w,M, p, u,∆m

v ], w
I(F )
θ [w,M, p, u,∆m

v ]0, w
F
θ [w,M, p, u,∆m

v ]∞
and
w
I(F )
θ [w,M, p, u,∆m

v ]∞ respectively.

(iv) If we take A = (ank) a de la Vallée-Poussin mean, i.e.,

ank =

{ 1
λn
, if k ∈ In = [n− λn + 1, n];

0, otherwise.

where (λn) is a non-decreasing sequence of positive numbers tending to ∞ and
λn+1 ≤ λn + 1, λ1 = 1, then the above classes of sequences are denoted by

w
I(F )
λ [M, p, u,∆m

v ],

w
I(F )
λ [M, p, u,∆m

v ]0, w
F
λ [M, p, u,∆m

v ]∞ and w
I(F )
λ [M, p, u,∆m

v ]∞ respectively.

(v) If I = IF then we obtain

wFθ [A,M, p, u,∆m
v ]

=

{
(xk) ∈ wF : lim

n,r→∞

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk
= 0, for some

ρ > 0 and s ≥ 0, X0 ∈ L(R)

}
,

wFθ [A,M, p, u,∆m
v ]0

=

{
(xk) ∈ wF : lim

n,r→∞

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk
= 0, for some

ρ > 0 and s ≥ 0

}
,

wFθ [A,M, p, u,∆m
v ]∞

=

{
(xk) ∈ wF : lim

n,r→∞

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ

)]pk
<∞, for some

ρ > 0 and s ≥ 0

}
.
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(vi) If I = Iδ is an admissible ideal of N, then

w
I(F )
θ [A,M, p, u,∆m

v ]

=

{
(xk) ∈ wF : ∀ε > 0,

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk
≥ ε

}

∈ Iδ, for some ρ > 0, s ≥ 0 and X0 ∈ L(R)

}
,

w
I(F )
θ [A,M, p, u,∆m

v ]0

=

{
(xk) ∈ wF : ∀ε > 0,

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ

)]pk
≥ ε

}

∈ Iδ, for some ρ > 0 and s ≥ 0

}
,

and

w
I(F )
θ [A,M, p, u,∆m

v ]∞

=

{
(xk) ∈ wF : ∃ K > 0 such that

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk

≥ K

}
∈ Iδ, for some ρ > 0 and s ≥ 0

}
.

The following inequality will be used throughout the paper. Let p = (pk) be a sequence
of positive real numbers with 0 < pk ≤ supk pk = H and let D = max

{
1, 2H−1

}
. Then,

for the factorable sequences (ak) and (bk) in the complex plane, we have

|ak + bk|pk ≤ D(|ak|pk + |bk|pk). (3)

Also |ak|pk ≤ max
{

1, |a|H
}

for all a ∈ C.
The main purpose of this paper is to introduced and study some lacunary I-convergent

sequence spaces of fuzzy numbers by using an infinite matrix and a sequence of Orlicz
functions in more general setting. We also make an effort to study some properties like
linearity, paranorm, solidity and some interesting inclusion relations between the spaces

w
I(F )
θ [A,M, p, u,∆m

v ], w
I(F )
θ [A,M, p, u,∆m

v ]0, wFθ [A,M, p, u,∆m
v ]∞ and w

I(F )
θ [A,M, p, u,

∆m
v ]∞.
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3. Main Results

In the current section we study some topological properties and some inclusion relations
between the sequence spaces which we have defined above.

Theorem 1. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded se-
quence of positive real numbers and u = (uk) be a sequence of strictly positive real numbers.

Then the spaces w
I(F )
θ [A,M, p, u,∆m

v ], w
I(F )
θ [A,M, p, u,∆m

v ]0 and w
I(F )
θ [A,M, p, u,∆m

v ]∞
are linear spaces over the complex field C.

Proof. We shall prove the result for the space w
I(F )
θ [A,M, p, u,∆m

n ]0 only and others
can be proved in the similar way. Let X = (Xk) and Y = (Yk) be two elements in

w
I(F )
θ [A,M, p, u,∆m

n ]0. Then there exists ρ1 > 0 and ρ2 > 0 such that

A ε
2

=

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ1

)]pk
≥ ε

2

}
∈ I

and

B ε
2

=

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Yk, 0)

ρ2

)]pk
≥ ε

2

}
∈ I.

Let α and β be two scalars. Then by using the inequality (3) and continuity of the function
M = (Mk), we have

1
hr

∑
k∈Ir

ank

[
k−sMk

(
d(αuk∆

m
v Xk + βuk∆

m
v Yk, 0)

|α|ρ1 + |β|ρ2

)]pk

≤ D
1

hr

∑
k∈Ir

ank

[
|α|

|α|ρ1 + |β|ρ2
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ1

)]pk

+ D
1

hr

∑
k∈Ir

ank

[
|β|

|α|ρ1 + |β|ρ2
k−sMk

(
d(uk∆

m
v Yk, 0)

ρ2

)]pk

≤ DK
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ1

)]pk

+ DK
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Yk, 0)

ρ2

)]pk
,

where K = max

{
1,

(
|α|

|α|ρ1+|β|ρ2

)H
,

(
|β|

|α|ρ1+|β|ρ2

)H}
.

From the above relation we obtain the following:



K. Raj, S. A. Mohiuddine / Eur. J. Pure Appl. Math, 13 (5) (2020), 1131-1148 1140{
n, r ∈ N : 1

hr

∑
k∈Ir ank

[
k−sMk

(
d(αuk∆m

v Xk+βuk∆m
v Yk,0)

|α|ρ1+|β|ρ2

)]pk
≥ ε

}

⊆

{
n, r ∈ N : DK

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ1

)]pk
≥ ε

2

}

∪

{
n, r ∈ N : DK

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Yk, 0)

ρ2

)]pk
≥ ε

2

}
∈ I.

This completes the proof.

Theorem 2. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded se-
quence of positive real numbers and u = (uk) be a sequence of strictly positive real numbers.

Then the spaces w
I(F )
θ [A,M, p, u,∆m

v ], w
I(F )
θ [A,M, p, u,∆m

v ]0 and w
I(F )
θ [A,M, p, u,∆m

v ]∞
are paranormed spaces with the paranorm g∆ defined by

g∆(X) = inf

{
(ρ)

pn
H :

(
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ

)]pk) 1
H

≤ 1, for some ρ > 0

and s ≥ 0 , n = 1, 2, .... r ∈ N

}
where H = max{1, sup

k
pk}.

Proof. Clearly, g∆(−X) = g∆(X) and g∆(θ) = 0. Let X = (Xk) and Y = (Yk) be two

elements in w
I(F )
θ [A,M, p, u,∆m

v ]0. Then for every ρ > 0 we write

A1 =

{
ρ > 0 :

(
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ

)]pk) 1
H

≤ 1

}

and

A2 =

{
ρ > 0 :

(
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Yk, 0)

ρ

)]pk) 1
H

≤ 1

}
.

Let ρ1 ∈ A1 and ρ2 ∈ A2. If ρ = ρ1 + ρ2, then we get the following(
1
hr

∑
k∈Ir ank

[
k−sMk

(
d(uk∆m

v (Xk+Yk),0))
ρ

)])

≤ ρ1

ρ1 + ρ2

(
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ1

)])



K. Raj, S. A. Mohiuddine / Eur. J. Pure Appl. Math, 13 (5) (2020), 1131-1148 1141

+
ρ2

ρ1 + ρ2

(
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Yk, 0)

ρ2

)])
.

Thus, we have

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v (Xk + Yk), 0)

ρ

)]pk
≤ 1

and

g∆(X + Y ) = inf{(ρ1 + ρ2)
pn
H : ρ1 ∈ A1, ρ2 ∈ A2}

≤ inf{(ρ1)
pn
H : ρ1 ∈ A1}+ inf{(ρ2)

pn
H : ρ2 ∈ A2}

= g∆(X) + g∆(Y ).

Let tmk → t, where tmk , t ∈ C, and let g∆(Xm
k − Xk) → 0 as m → ∞. To prove that

g∆(tmk X
m
k − tXk)→ 0 as m→∞. Let tk → t, where tk, t ∈ C, and g∆(Xm

k −Xk)→ 0 as
m→∞. We have

A3 =

{
ρk > 0 :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρk

)]pk
≤ 1

}

and

A4 =

{
ρ′k > 0 :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Yk, 0)

ρ′k

)]pk
≤ 1

}
.

If ρk ∈ A3 and ρ′k ∈ A4 then by inequality (3) and continuity of the function M = (Mk),
we have that

k−sMk

(
d(uk∆m

v (tmXm
k −tX,0))

|tm−t|ρk+|t|ρ′k

)

≤ k−sMk

(
d(uk∆

m
v (tmXm

k − tXk), 0)

|tm − t|ρk + |t|ρ′k

)
+ k−sMk

(
d(uk∆

m
v (tXk − tX, 0))

|tm − t|ρk + |t|ρ′k

)

≤ |tm − t|ρk
|tm − t|ρk + |t|ρ′k

k−sMk

(
d(uk∆

m
v X

m
k , 0)

ρk

)

+
|t|ρ′k

|tm − t|ρk + |t|ρ′k
k−sMk

(
d(uk∆

m
v (Xm

k −Xk), 0)

ρ′k

)
.

From the above inequality it follows that

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v (tmXm

k − tX), 0)

|tm − t|ρk + |t|ρ′k

)]pk
≤ 1
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and consequently,

g∆(tmk Xk + tX) = inf{(|tmk − t|ρk + |t|ρ′k})
pn
H : ρk ∈ A3, ρ

′
k ∈ A4}

≤ |tmk − t|ρ
pn
H
k inf{(ρk)

pn
H : ρk ∈ A3}+ |t|ρ′k inf{(ρ′k)

pn
H : ρ′k ∈ A4}

≤ max{|t|, |t|
pn
H }g∆(Xm

k −Xk).

Note that g∆(Xm
k ) ≤ g∆(Xm) + g∆(Xm

k −Xm), for all k ∈ N. Hence, by our assumption
the right hand tends to 0 as m→∞. This completes the proof.

Theorem 3. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded
sequence of positive real numbers,

(i) Let 0 < inf pk ≤ pk ≤ 1. Then

w
I(F )
θ [A,M, p, u,∆m

v ] ⊆ wI(F )
θ [A,M, u,∆m

v ], w
I(F )
θ [A,M, p, u,∆m

v ]0 ⊆ wI(F )
θ [A,M,

u,∆m
v ]0.

(ii) Let 1 ≤ pk ≤ sup pk <∞. Then

w
I(F )
θ [A,M, u,∆m

v ] ⊆ wI(F )
θ [A,M, p, u,∆m

v ], w
I(F )
θ [A,M, u,∆m

v ]0 ⊆ wI(F )
θ [A,M, p,

u,∆m
v ]0.

Proof. (i) Let X = (Xk) be an element in w
I(F )
θ [A,M, p, u,∆m

v ]. Since 0 < inf pk ≤
pk ≤ 1 we have

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]
≤ 1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk
.

Therefore,{
n, r ∈ N : 1

hr

∑
k∈Ir ank

[
k−sMk

(
d(uk∆m

v Xk,X0)
ρ

)]
≥ ε

}

⊆

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk
≥ ε

}
∈ I.

The other part can be proved in the same way.

(ii) Let X = (Xk) be an element in w
I(F )
θ [A,M, u,∆m

v ]. Since 1 ≤ pk ≤ sup pk <∞. Then
for each 0 < ε < 1 there exists a positive integer n0 such that

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]
≤ ε < 1 for all n ≥ n0.

This implies that

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk
≤ 1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]
.
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Therefore, we have{
n, r ∈ N : 1

hr

∑
k∈Ir ank

[
k−sMk

(
d(uk∆m

v Xk,X0)
ρ

)]pk
≥ ε

}

⊆

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]
≥ ε

}
∈ I.

The other part can be proved in the similar way. This completes the proof.

Theorem 4. Let X = (Xk) be a sequence of Fuzzy numbers, M = (Mk) be a sequence of
Orlicz functions, p = (pk) be a bounded sequence of positive real numbers and u = (uk) be
a sequence of strictly positive real numbers. Then

w
I(F )
θ [A,M, p, u,∆m

v ]0 ⊂ wI(F )
θ [A,M, p, u,∆m

v ] ⊂ wFθ [A,M, p, u,∆m
v ]∞.

Proof. The inclusion w
I(F )
θ [A,M, p, u,∆m

v ]0 ⊂ w
I(F )
θ [A,M, p, u,∆m

v ] is obvious. Let

X = (Xk) ∈ w
I(F )
θ [A,M, p, u,∆m

v ]. Then there is some fuzzy number X0, such that

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk
≥ ε.

Now, by inequality (3), we have

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ

)]pk
≤ D 1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk

+ D
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(X0, 0)

ρ

)]pk
.

This implies that X = (Xk) ∈ wFθ [A,M, p, u,∆m
v ]∞. This completes the proof.

Theorem 5. Let M = (Mk) and S = (Sk) be a sequence of Orlicz functions. Then

w
I(F )
θ [A,M, p, u,∆m

v ] ∩ wI(F )
θ [A,S, p, u,∆m

v ] ⊂ wI(F )
θ [A,M+ S, p, u,∆m

v ].

Proof. Let X = (Xk) ∈ w
I(F )
θ [A,M, p, u,∆m

v ]∩wI(F )
θ [A,S, p, u,∆m

v ] using the inequal-
ity (3), we have

1
hr

∑
k∈Ir ank

[
k−s(Mk + Sk)

(
d(uk∆m

v Xk,X0)
ρ

)]pk

=
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)
+ k−sSk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk
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≤ D

{
1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk

+
1

hr

∞∑
k∈Ir

ank

[
k−sSk

(
d(uk∆

m
v Xk, X0)

ρ

)]pk}
.

Thus, X = (Xk) ∈ w
I(F )
θ [A,M+ S, p, u,∆m

v ]. This completes the proof.

Theorem 6. The sequence spaces w
I(F )
θ [A,M, p, u,∆m

v ]0 and w
I(F )
θ [A,M, p, u,∆m

v ]∞ are
normal as well as monotone.

Proof. We give the proof of the theorem for w
I(F )
θ [A,M, p, u,∆m

v ]0 only. Let X =

(Xk) ∈ w
I(F )
θ [A,M, p, u,∆m

v ]0 and Y = (Yk) be such that d(Yk, 0) ≤ d(Xk, 0) for all
k ∈ N. Then for given ε > 0 we have

B =

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Xk, 0)

ρ

)]pk
≥ ε

}
∈ I,

again the set

B1 =

{
n, r ∈ N :

1

hr

∑
k∈Ir

ank

[
k−sMk

(
d(uk∆

m
v Yk, 0)

ρ

)]pk
≥ ε

}
⊆ B.

Hence, B1 ∈ I and so Y = (Yk) ∈ w
I(F )
θ [A,M, p, u,∆m

v ]0. Thus, the space w
I(F )
θ [A,M,

p, u,∆m
v ]0 is normal. Also, from the Lemma 2, it follows that w

I(F )
θ [A,M, p, u,∆m

v ]0 is
monotone. This completes the proof.

Theorem 7. If I is not maximal ideal then the space w
I(F )
θ [A,M, p, u,∆m

v ] is neither
normal nor monotone.

Example 3. Let us consider a sequence of fuzzy numbers

Xk(l) =



1+l
2 − 1 ≤ l ≤ 1,

3−l
2 1 ≤ l ≤ 3,

0 otherwise.

If m = 0, then ∆m
v Xk = 1. Let A = (C, 1), the Cesàro matrix, M(x) = x, u =

(uk) = 1, s = 0, p = (pk) = 1, for all k ∈ N, ρ = 1 and θ = 2r then we have

(Xk) ∈ w
I(F )
θ [A,M, p, u,∆m

v ]. Since I is not maximal by Lemma 3, their exist a subset K
of N such that K /∈ I and N−K /∈ I. Let us define sequence Y = (Yk) by

Yk =

{
Xk k ∈ K
0 otherwise.
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Then, (Yk) belongs to the canonical pre image of the k-step spaces of w
I(F )
θ [A,M, p, u,∆m

v ].

But Yk /∈ wI(F )
θ [A,M, p, u,∆m

v ]. Hence, w
I(F )
θ [A,M, p, u,∆m

v ] is not monotone. There-

fore, by Lemma 2, w
I(F )
θ [A,M, p, u,∆m

v ] is not normal.

Theorem 8. If I is neither maximal nor I = IF then the spaces w
I(F )
θ [A,M, p, u,∆m

v ]

and w
I(F )
θ [A,M, p, u,∆m

v ]0 are not symmetric.

Example 4. Let us consider a sequence of fuzzy numbers

Xk(l) =


l − 2k + 1 l ∈ [2k − 1, 2k],
−l + 2k + 1 l ∈ [2k, 2k + 1],
0 otherwise.

If m = 1, v = 1, then ∆m
v Xk = ∆Xk. Let A = (C, 1), the Cesàro matrix, M(x) = x2,

u = (uk) = 1, s = 0, I = Iδ, p = (pk) = 1, for all k ∈ N and θ = 2r. Thus, we have
(Xk) ∈ wI(F )[A,M, p, u,∆m

v ]. But the rearrangement Y = (Yk) of the sequence space (Xk)
is defined as

Yk = {X1, X4, X2, X9, X3, X16, X5, X25, X6, ...}

This implies that (Yk) ∈ w
I(F )
θ [A,M, p, u,∆m

v ]. Hence, w
I(F )
θ [A,M, p, u,∆m

v ] is not sym-

metric. Similarly, w
I(F )
θ [A,M, p, u,∆m

v ]0 is not symmetric.

Theorem 9. The spaces w
I(F )
θ [A,M, p, u,∆m

v ] and w
I(F )
θ [A,M, p, u,∆m

v ]0 are not con-
vergent free in general.

Example 5. Let us consider a sequence of fuzzy numbers

Xk(l) =



1+l
2 − 1 ≤ l ≤ 1,

3−l
2 1 ≤ l ≤ 3,

0 otherwise.

If m = 0, then ∆m
v Xk = 1. Let A = (C, 1), the Cesàro matrix, M(x) = x, u =

(uk) = 1, s = 0, p = (pk) = 1, for all k ∈ N and ρ = 1 then we have (Xk) ∈
wI(F )[A,M, p, u,∆m

v ]. Let Yk(l) = 1
k for all k ∈ N. Then (Yk) ∈ w

I(F )
θ [A,M, p, u,∆m

v ].

But Xk = 0 does not imply Yk = 0. Hence, w
I(F )
θ [A,M, p, u,∆m

v ] is not convergent free.

Similarly, w
I(F )
θ [A,M, p, u,∆m

v ]0 is not convergent free.

Acknowledgements

The authors would like to thank the referees for their invaluable comments and cor-
rections which led to the improvement of the manuscript.



REFERENCES 1146

References
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