EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 5, 2020, 1097-1109
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Special Issue Dedicated to Professor Hari M. Srivastava On the Occasion of his 80th Birthday

 On Tosha-degree of an edge in a graph

 On Tosha-degree of an edge in a graph}

R. Rajendra ${ }^{1}$, P. Siva Kota Reddy ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Mangalore University, Mangalagangothri, Karnataka, India
${ }^{2}$ Department of Mathematics, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka, India

Abstract

In an earlier paper, we have introduced the Tosha-degree of an edge in a graph without multiple edges and studied some properties. In this paper, we extend the definition of Tosha-degree of an edge in a graph in which multiple edges are allowed. Also, we introduce the concepts - zero edges in a graph, T-line graph of a multigraph, Tosha-adjacency matrix, Tosha-energy, edgeadjacency matrix and edge energy of a graph G and obtain some results.

2020 Mathematics Subject Classifications: 05Cxx, 05C07, 05C50.
Key Words and Phrases: Adjacency matrix, degree of a vertex, energy, line graph, Tosha-degree of an edge

1. Introduction

For standard terminology and notion in graphs and matrices, we refer the reader to the text-books of Harary [2] and Bapat [1]. The non-standard will be given in this paper as and when required.

Throughout this paper, $G=(V, E)$ denotes a graph (finite and undirected) and $V=V(G)$ and $E=E(G)$ denote vertex set and edge set of G, respectively. The degree of a vertex $v \in V(G)$, denoted by $d(v)$ or $d_{G}(v)$, is the number of edges incident on v, with self-loops counted twice. A vertex of degree one is a pendant vertex and an edge incident onto a pendant vertex is a pendant edge. A graph G is r-regular if every vertex

[^0]Email addresses: rrajendrar@gmail.com (R. Rajendra), pskreddy@jssstuniv.in (P. S. K. Reddy)
https://www.ejpam.com 1097 © 2020 EJPAM All rights reserved.
of G has degree r. The minimum degree $\delta(G)$ of a graph G is the minimum degree among all the vertices of G and the maximum degree $\Delta(G)$ of G is the maximum degree among all the vertices of G.

Two non-distinct edges in a graph are adjacent if they are incident on a common vertex. We consider that an edge in a graph is not adjacent to itself. The letters k, l, m, n, and r denote positive integers or zero.

The line graph $L(G)$ of a simple graph with at least one edge is the graph (W, F), where there is a one-to-one correspondence ϕ from E to W such that there is an edge between $\phi(\alpha)$ and $\phi(\beta)$ if and only if the edges α and β are adjacent. We identify the set W by E.

The adjacency matrix of a graph G with n vertices is denoted by $A(G)$. If $A(G)$ is an $n \times n$ matrix and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of $A(G)$, the energy of G is defined as

$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

In our earlier paper [4], we have introduced the Tosha-degree of an edge in a graph without multiple edges, Rajendra-Reddy index of a graph and Tosha-degree equivalence graph of a graph, and studied some properties. In this paper, we define Tosha-degree of an edge in a graph in which multiple edges are allowed. The aim of this paper is to introduce the concepts: zero edges in a graph, T-line graph of a multigraph, Tosha-adjacency matrix, Tosha-energy, edge-adjacency matrix and edge energy of a graph G and obtain some results.

A signed graph is an ordered pair $\Sigma=(G, \sigma)$, where $G=(V, E)$ is a graph called the underlying graph of Σ and $\sigma: E \rightarrow\{+,-\}$ is a function. A marking of Σ is a function $\mu: V(G) \rightarrow\{+,-\}$.

In [4], we have also defined the Tosha-degree equivalence graph of a graph which is motivated us to extend this notion to signed graphs as follows: The Tosha-degree equivalence signed graph (See [3]) of a signed graph $\Sigma=(G, \sigma)$ as a signed graph $T(\Sigma)=\left(T(G), \sigma^{\prime}\right)$, where $T(G)$ is the underlying graph of $T(\Sigma)$ is the Tosha-degree equivalence graph of G, where for any edge $e_{1} e_{2}$ in $T(\Sigma), \sigma^{\prime}\left(e_{1} e_{2}\right)=\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)$. Hence, we shall call a given signed graph Σ as Tosha-degree equivalence signed graph if it is isomorphic to the Tosha-degree equivalence signed graph $T\left(\Sigma^{\prime}\right)$ of some sigraph Σ^{\prime} (See [3]). In [3], we offered a switching equivalence characterization of signed graphs that are switching equivalent to Tosha-degree equivalence signed graphs and $k^{\text {th }}$ iterated Tosha-degree equivalence signed graphs. Further, we have presented the structural characterization of Tosha-degree equivalence signed graphs.

2. Tosha-degree of an edge in a graph

In [4], R. Rajendra and P.S.K. Reddy have defined the Tosha-degree of an edge in a graph without multiple edges as follows: The Tosha-degree of an edge α in a graph G without multiple edges, denoted by $T(\alpha)$, is the number of edges adjacent to α in G, with self-loops counted twice. Here we allow graphs with multiple edges (multi-graphs) and the new definition of the Tosha-degree of an edge in a graph (with or without multiple edges) is given below:

Definition 1. Let α be an edge in a graph G. The Tosha-degree of α, denoted by $T(\alpha)$ or $T_{G}(\alpha)$, is the number of edges adjacent to α in G, where self-loops and edges parallel to α are counted twice.

By the Definition 1, for any edge α in a graph $G, T(\alpha) \geq 0$.
Definition 2. A graph G is said to be a Tosha-regular graph if all edges are of equal Tosha-degree. We say that G is l-Tosha-regular, if $T(\alpha)=l$, for all $\alpha \in E(G)$.

The following proposition is proved for graphs without parallel edges in [4]. This result is true for graphs having parallel edges also with respect to the Definition 1.

Proposition 1. [4] Let α be an edge in a graph G with end vertices u and v.
(i) If α is not a self-loop, then

$$
\begin{equation*}
T(\alpha)=d(u)+d(v)-2 \tag{1}
\end{equation*}
$$

(ii) If α is a self-loop, then $u=v$ and

$$
\begin{equation*}
T(\alpha)=d(u)-2 \tag{2}
\end{equation*}
$$

Proof. The proof follows by the definition 1, and the definition of degree of a vertex.
Observation: By the Proposition 1, for an edge α in a graph G, it follows that,
(a) if α is not a self-loop, then

$$
2(\delta(G)-1) \leq T(\alpha) \leq 2(\Delta(G)-1) ;
$$

(b) if α is a self-loop, then

$$
\delta(G)-2 \leq T(\alpha) \leq \Delta(G)-2
$$

Corollary 1. [4] If G is a simple graph and α is an edge in G, then

$$
\begin{equation*}
T(\alpha)=d_{L(G)}(\alpha) \tag{3}
\end{equation*}
$$

where $d_{L(G)}(\alpha)$ is the degree of α as a vertex in the line graph $L(G)$ of G.
Proof. Follows from the definition of $L(G)$ and Eq.(1).

Corollary 2. In a simple graph G, the number of odd Tosha-degree edges is even.
Proof. In any graph the number of odd degree vertices is even. So, the number of odd degree vertices in the line graph $L(G)$ of G is even. Since the vertices in $L(G)$ are corresponding to the edges in G, by Eq.(3) it follows that, the number of odd Tosha-degree edges in G is even.

Remark 1. The Corollary 2 may not be true for the graphs having self-loops. There are graphs with odd number of edges and all edges are of odd Tosha-degree. For eg., consider the graph G given in Figure 1. The graph G has three edges namely, α, β and γ. We observe that $T(\alpha)=1, T(\beta)=3, T(\gamma)=1$ and hence all the edges in G are of odd Tosha-degree.

G
Figure 1: Graph containing odd number of odd Tosha-degree edges.
Observation: Let α be an edge in a simple graph G. The addition of a parallel edge β to α gives a count plus two to the Tosha-degree of α and to the edges parallel to α, and a count plus one to non-parallel edges adjacent to α in the new graph $G+\beta$ and Tosha-degrees of all other edges are unaltered $G+\beta$. Hence an odd (even) Thosha-degree edge γ remains odd (even) Tosha-degree in $G+\beta$, if it is not adjacent to α or $\gamma=\alpha$ in G.
Corollary 3. If α and β are parallel edges in a graph G, then $T(\alpha)=T(\beta)$ in G.
Proof. The proof follows by Proposition 1.

2.1. T-line graph of a multigraph

Definition 3. A multigraph is a graph in which multiple edges (parallel edges) are permitted between any pair of vertices. All multigraphs in this paper are loopless.

We say that two distinct edges α and β in a multigraph G are k-adjacent if they are adjacent and share k end vertices.

We say that two distinct vertices u and v in a multigraph G are r-adjacent if they are adjacent and the number of edges between them is r (i.e., r edges have common end vertices u and v).
From the Definition 3, it follows that, when two distinct edges α and β are k-adjacent in a multigraph G, we have,

$$
k= \begin{cases}1, & \text { if } \alpha \text { and } \beta \text { are not parallel; } \\ 2, & \text { if } \alpha \text { and } \beta \text { are parallel. }\end{cases}
$$

Definition 4. Given a multigraph $G=(V, E)$, the T-line graph of G denoted by $T L(G)$, is a graph with vertex set E; two distinct vertices α and β are k-adjacent in $T L(G)$ if and only if their corresponding edges in G are k-adjacent.

From the Definition 4, it is clear that,
(a) $T L(G)$ is also a multigraph,
(b) if G is a simple graph, then $T L(G)$ is nothing but $L(G)$.

Proposition 2. Let G be a multigraph and α be a vertex in $T L(G)$ (so α is an edge in $G)$. Then

$$
\begin{equation*}
d_{T L(G)}(\alpha)=d_{G}(u)+d_{G}(v)-2=T_{G}(\alpha) \tag{4}
\end{equation*}
$$

where u and v are end vertices of α in G.
Proof. Proof follows by the definitions 1, 3 and 4, and propositions 1 and 2.

Corollary 4. In a multigraph G, the number of odd Tosha-degree edges is even.
Proof. In any graph(multigraph) the number of odd degree vertices is even. So, the number of odd degree vertices in the line graph $T L(G)$ of G is even. Since the vertices in $T L(G)$ are corresponding to the edges in G, by Eq.(4), the number of odd Tosha-degree edges in G is even.

3. Zero edges in a graph

Definition 5. In a graph G, an edge α is said to be a zero edge if its Tosha degree is zero i.e., $T(\alpha)=0$.

Observations: The edge in the complete graph K_{2} is a zero edge. The self-loop in the graph containing only one vertex and a self-loop attached to that vertex, is a zero edge.

Proposition 3. A simple connected graph G has a zero edge if and only if $G \cong K_{2}$.
Proof. Suppose that G is a simple connected graph having a zero edge, say $\alpha=u v$, where u and v are end vertices of α. Then

$$
\begin{equation*}
d(u)+d(v)-2=0 \tag{5}
\end{equation*}
$$

Since G is connected, $d(u) \geq 1$ and $d(v) \geq 1$; from Eq.(5), $d(u)=1$ and $d(v)=1$. Therefore, there is no other edge in G incident to u and v. So G has only one edge α. Since G is connected, $G \cong K_{2}$.

Conversely, if $G \cong K_{2}$, then clearly G is a simple connected graph having only one edge whose Tosha-degree is zero.

Corollary 5. A simple connected graph G with two or more edges, has no zero edge. Hence $T(\alpha) \geq 1, \forall \alpha \in E(G)$.

Proof. Follows from Proposition 3.

Corollary 6. A simple graph G has no zero edge if and only if either $G \not \neq K_{2}$ or no component of G is isomorphic to K_{2} or no component of G is of only one vertex with a self-loop.

Proof. Follows from Proposition 3.

4. Degree colorable graphs

In this section we consider self-loop free graphs (multigraphs).
Definition 6. A graph G is degree colorable if no two adjacent vertices have the same degree.

Theorem 1. If all the edges of a graph G are of odd Tosha-degree, then G is a degree colorable graph with even number of vertices.

Proof. Suppose that G is a graph in which all the edges are of odd Tosha-degree. By the corollaries 2 and 4, it follows that G has an even number of vertices. Let α be an edge in G with end vertices u and v. Then by Eq.(1) and Eq.(4),

$$
T(\alpha)=d(u)+d(v)-2
$$

Since $T(\alpha)$ is odd, $d(u) \neq d(v)$. Thus, no two adjacent vertices in G have the same degree. Therefore G is a degree colorable graph.

By Theorem 1, the following corollary is immediate.
Corollary 7. An l-Tosha-regular graph, where l is an odd positive integer, is degree colourable.

Remark 2. There are degree colorable non-Tosha-regular graphs with odd number of vertices. The following graph is an example for such graphs, in which the edges are indicated by respective Tosha-degrees.

5. Tosha-even graphs

Definition 7. A graph G is said to be Tosha-even if all its edges are of even Tosha-degree.
We recall the following proposition from [4].
Proposition 4. [4, Proposition 2.15] If G is an Euler graph, then all edges in G are of even Tosha-degree.

Corollary 8. Euler graphs are Tosha-even.
Proof. Follows from the Proposition 4.
Remark 3. .The converse of the Corollary 8 is not true in general. There are connected graphs with even number of vertices and all vertices are of odd degree, for instance, K_{4}. Such graphs are not Euler graphs, but are Tosha-even.

Proposition 5. There exist degree colorable Tosha-even graphs that are not Euler graphs.
Proof. The following graph G (see Figure 3) is an example of a degree colorable Toshaeven graph which is not an Euler graph. In G, the vertices and edges are indicated by their degrees and Tosha-degrees, respectively. We see that all vertices of G are of odd degree and hence G is not an Euler graph. But all edges are of Tosha-even, so G is a Tosha-even graph.

6. Tosha-adjacency matrix of a graph

Definition 8. If G is a graph with n vertices v_{1}, \ldots, v_{n} and no parallel edges. The Toshaadjacency matrix of the graph G is an $n \times n$ matrix $A_{T}(G)=\left(t_{i j}\right)$ defined over the ring of integers such that

$$
t_{i j}= \begin{cases}T\left(v_{i} v_{j}\right), & \text { if } v_{i} v_{j} \in E \\ 0, & \text { otherwise }\end{cases}
$$

Observations:

G
Figure 2: A degree colorable non-Tosha-regular graph with 3 vertices.

Figure 3: A degree colorable Tosha-even graph which is not an Euler graph.
(i) By the definition of the Tosha-degree of an edge, we have

$$
T\left(v_{i} v_{j}\right)= \begin{cases}d\left(v_{i}\right)+d\left(v_{j}\right)-2, & \text { if } v_{i} v_{j} \in E \text { and } i \neq j ; \\ d\left(v_{i}\right)-2, & \text { if } v_{i} v_{j} \in E \text { and } i=j ; \\ 0, & \text { if } v_{i} v_{j} \notin E .\end{cases}
$$

Therefore, $t_{i j}=t_{j i}$. Therefore $A_{T}(G)$ is a real symmetric matrix.
(ii) The entries along the principal diagonal of $A_{T}(G)$ are all 0 s if and only if either G has no self-loops or G has only self loops that are zero edges. Hence if either G has no self-loops or G has only self loops that are zero edges, then $\operatorname{tr}\left(A_{T}(G)\right)=0$. In this case, if $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the eigenvalues of $A_{T}(G)$, then

$$
\sum_{i=1}^{n} \mu_{i}=0 .
$$

(iii) If G has no zero edges, then the degree of a vertex equals the number of non-zero entries in the corresponding row or column; and the non-zero entry in the $i j$-th place gives the Tosha-degree of the corresponding edge incident to i-th and j-th vertices.
(iv) For a zero edge free graph G, the adjacency matrix $A(G)$ can be obtained from the Tosha-adjacency matrix $A_{T}(G)$ by replacing all the non-zero entries by 1s. This is possible because, in a zero edge free graph Tosha-degrees of edges are non-zero. Thus, reconstriction of the graph from the Tosha-adjacency matrix is possible if the given graph has no zero edges.

Throughout this section G denotes a graph with no parallel edges.
Theorem 2. If a graph G with n vertices is l-Tosha-regular, then

$$
A_{T}(G)=l \cdot A(G)
$$

Proof. Suppose that G is l-Tosha-regular. Then $T(\alpha)=l$, for all $\alpha \in E(G)$. Let $A(G)=\left(a_{i j}\right)$ and $A_{T}(G)=\left(t_{i j}\right)$ be the adjacency matrix and the Tosha-adjacency matrix of G, respectively. Then by the definition of the Tosha-adjacency matrix $A_{T}(G)$, we have

$$
\begin{aligned}
t_{i j} & = \begin{cases}l, & \text { if } v_{i} v_{j} \in E \\
0, & \text { otherwise }\end{cases} \\
& =l \cdot a_{i j} .
\end{aligned}
$$

Therefore, $A_{T}(G)=l \cdot A(G)$.

Corollary 9. If a graph G with n vertices is r-regular, then

$$
A_{T}(G)=2(r-1) A(G)
$$

Proof. If a graph G with n vertices is r-regular, then G is $2(r-1)$-Tosha-regular(by [4, Corollary 2.6]) and hence by Theorem $2, A_{T}(G)=2(r-1) A(G)$.

Corollary 10. A graph G is 1 -Tosha-regular if and only if $A_{T}(G)=A(G)$.
Proof. $\left(\Leftarrow\right.$:) Suppose that for a graph $G, A_{T}(G)=A(G)$. Then by the definitions of $A_{T}(G)$ and $A(G)$, it follows that, $T(\alpha)=1, \forall \alpha \in E(G)$. Hence, G is 1-Tosha-regular. $(\Rightarrow$:) Follows by Theorem 2.

7. Tosha-energy of a graph

Definition 9. Let G be graph with n vertices v_{1}, \ldots, v_{n} and no parallel edges. Let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the eigenvalues of the Tosha-adjacency matrix $A_{T}(G)$ of G. The Toshaenergy of G, denoted by $\mathcal{E}_{T}(G)$, is defined as

$$
\begin{equation*}
\mathcal{E}_{T}(G)=\sum_{i=1}^{n}\left|\mu_{i}\right| \tag{6}
\end{equation*}
$$

Throughout this section G denotes a graph with no parallel edges.
Proposition 6. The Tosha-energy of an l-Tosha-regular graph G with n vertices is given by

$$
\begin{equation*}
\mathcal{E}_{T}(G)=l \cdot \mathcal{E}(G) \tag{7}
\end{equation*}
$$

where $\mathcal{E}(G)$ is the energy of G.
Proof. Le G be an l-Tosha-regular graph with n vertices. Then by the Theorem 2, the Tosha-adjacency matrix of G is

$$
\begin{equation*}
A_{T}(G)=l \cdot A(G) \tag{8}
\end{equation*}
$$

where $A(G)$ is the adjacency matrix of G. For brevity we write A for $A(G)$ and A_{T} for $A_{T}(G)$. We consider two cases: (i) When $l>0$ and (i) When $l=0$.
Case (i): When $l>0$. Let μ be an eigenvalue of A_{T}. From Eq.(8) we have,

$$
\begin{aligned}
\operatorname{det}\left(A_{T}-\mu I\right)=0 & \Longleftrightarrow \operatorname{det}(l A-\mu I)=0 \\
& \Longleftrightarrow l^{n} \operatorname{det}\left(A-\frac{\mu}{l} I\right)=0 \\
& \Longleftrightarrow \operatorname{det}\left(A-\frac{\mu}{l} I\right)=0
\end{aligned}
$$

Therefore, μ is an eigenvalue of A_{T} if and only if $\frac{\mu}{l}$ is an eigenvalue of A. Let μ_{1}, μ_{2}, \ldots, μ_{n} be the eigenvalues of the A_{T}. Then $\frac{\mu_{1}}{l}, \frac{\mu_{2}}{l}, \ldots, \frac{\mu_{n}}{l}$ are the eigenvalues of A and the Tosha-energy of G is

$$
\begin{aligned}
\mathcal{E}_{T}(G) & =\sum_{i=1}^{n}\left|\mu_{i}\right| \\
& =l \cdot \sum_{i=1}^{n}\left|\frac{\mu_{i}}{l}\right| \\
& =l \cdot \mathcal{E}(G) .
\end{aligned}
$$

Case (ii): When $l=0$. From Eq.(7), $A_{T}=0$ and so zero is the only eigenvalue of A_{T} of multiplicity n. In this case, $\mathcal{E}_{T}(G)=0=0 \cdot \mathcal{E}(G)$.

Corollary 11. The Tosha-energy of an r-regular graph G with n vertices is given by

$$
\begin{equation*}
\mathcal{E}_{T}(G)=2(r-1) \mathcal{E}(G) \tag{9}
\end{equation*}
$$

where $\mathcal{E}(G)$ is the energy of G.
Proof. Let G be an r-regular graph with n vertices. By [4, Corollary 2.6] G is a $2(r-1)$-Tosha-regular graph. Then by Proposition 6, the proof follows.

Corollary 12. (i) For the complete graph K_{n} on $n>1$ vertices,

$$
\mathcal{E}_{T}\left(K_{n}\right)=2(n-2) \mathcal{E}\left(K_{n}\right)=4(n-1)(n-2) .
$$

(ii) For the cycle graph C_{n} on $n>1$ vertices,

$$
\mathcal{E}_{T}\left(C_{n}\right)=2 \mathcal{E}\left(C_{n}\right)=4 \sum_{i=0}^{n-1}\left|\cos \left(\frac{2 \pi i}{n}\right)\right| .
$$

(iii) For the complete bipartite graph $K_{m, n}$,

$$
\mathcal{E}_{T}\left(K_{m, n}\right)=(m+n-2) \mathcal{E}\left(K_{m, n}\right)=2(m+n-2) \sqrt{m n} .
$$

Proof. (i) The eigen values of $A\left(K_{n}\right)$ are given below:

$$
\begin{aligned}
& \text { eigen value } \rightarrow \\
& \text { multiplicity } \rightarrow
\end{aligned}\left(\begin{array}{cc}
n-1 & -1 \\
1 & n-1
\end{array}\right)
$$

Therefore

$$
\mathcal{E}\left(K_{n}\right)=|n-1|+(n-1)|-1|=2(n-1) .
$$

Since K_{n} is an $(n-1)$-regular graph, from Eq.(9) we have,

$$
\mathcal{E}_{T}\left(K_{n}\right)=2(n-2) \mathcal{E}\left(K_{n}\right)=2(n-2) \cdot 2(n-1)=4(n-1)(n-2)
$$

(ii) The eigen values of $A\left(C_{n}\right)$ are

$$
2 \cos \left(\frac{2 \pi i}{n}\right), \quad i=0,1, \ldots, n-1
$$

Therefore

$$
\mathcal{E}\left(C_{n}\right)=2 \sum_{i=0}^{n-1}\left|\cos \left(\frac{2 \pi i}{n}\right)\right| .
$$

Since C_{n} is an 2-regular graph, from Eq.(9) we have,

$$
\mathcal{E}_{T}\left(C_{n}\right)=2 \cdot \mathcal{E}\left(C_{n}\right)=4 \sum_{i=0}^{n-1}\left|\cos \left(\frac{2 \pi i}{n}\right)\right| .
$$

(iii) The eigen values of $A\left(K_{n}\right)$ are given below:

$$
\begin{aligned}
& \text { eigen value } \rightarrow\left(\begin{array}{ccc}
-\sqrt{m n} & 0 & \sqrt{m n} \\
\text { multiplicity } \rightarrow
\end{array}\left(\begin{array}{ccc}
n & n+m-2 & 1
\end{array}\right)\right.
\end{aligned}
$$

Therefore

$$
\mathcal{E}\left(K_{m, n}\right)=2 \sqrt{m n} .
$$

Since $K_{m, n}$ is an ($m+n-2$)-Tosha-regular graph, from Eq.(8) we have,

$$
\mathcal{E}_{T}\left(K_{m, n}\right)=(m+n-2) \mathcal{E}\left(K_{m, n}\right)=2(m+n-2) \sqrt{m n} .
$$

Corollary 13. (i) For the path P_{2} of 2 vertices, $\mathcal{E}_{T}\left(P_{2}\right)=0$.
(ii) For the path P_{3} of 3 vertices, $\mathcal{E}_{T}\left(P_{3}\right)=\mathcal{E}\left(P_{3}\right)=2 \sqrt{2}$.

Proof. Since $P_{2}=K_{1,1}$ and $P_{3}=K_{2,1},(i)$ and (ii) follow immediately from Corollary 12 (iii).

Theorem 3. Let G be a simple connected graph with at least one edge. Then

$$
A_{T}(G)=A(G) \Longleftrightarrow G=P_{3} .
$$

Proof. (\Leftarrow :) If $G=P_{3}$, then it has two edges and each of these are of Tosha-degree 1.
Therefore, it is 1-Tosha-regular and hence by Theorem 2, $A_{T}(G)=A(G)$. $\left(\Rightarrow:\right.$) Suppose that $A_{T}(G)=A(G)$. Then G is 1-Tosha-regular and hence

$$
T\left(v_{i} v_{j}\right)=1, \forall v_{i} v_{j} \in E(G)
$$

$$
\begin{aligned}
& \Longrightarrow d\left(v_{i}\right)+d\left(v_{j}\right)-2=1, \forall v_{i} v_{j} \in E(G) \\
& \Longrightarrow d\left(v_{i}\right)=3-d\left(v_{j}\right), \forall v_{i} v_{j} \in E(G)
\end{aligned}
$$

Therefore, for any edge α in G with end vertices u and v,

$$
\begin{equation*}
d(u)=3-d(v) \tag{10}
\end{equation*}
$$

Since G is connected, $d(v)>0$ and $d(u)>0$, and from Eq.(10) we have, $d(u)<3$; which implies

$$
\begin{equation*}
d(u)=1 \text { or } 2 \tag{11}
\end{equation*}
$$

Let u be an arbitrary vertex in G. Since G is a simple connected graph with at least one edge, u is an end vertex of at least one edge say α. Let v be the other end vertex of α in G. Then by Eq.(10) and Eq.(11), either $d(u)=1$ and $d(v)=2$ or $d(u)=1$ and $d(v)=2$.

If $d(u)=1$ and $d(v)=2$, there is another vertex w adjacent to v and $d(w)=1$ (by above argument). There are no other vertices adjacent to the vertices u, v and w. So, G is a path with 3 vertices. A similar argument can be used for the case $d(u)=1$ and $d(v)=2$, to show that G is P_{3}.

8. Edge-adjacency matrix and edge-energy of a graph

Definition 10. We say that two distinct edges α and β in a graph G (where self-loops and parallel edges are allowed) are k-adjacent if they are adjacent and share k end vertices. We consider that an edge in a graph is not adjacent to itself.

Definition 11. If G is a graph with m edges e_{1}, \ldots, e_{m}. The edge-adjacency matrix of the graph G is an $m \times m$ matrix $A_{E}(G)=\left(x_{i j}\right)$ defined over the ring of integers such that

$$
x_{i j}= \begin{cases}k, & \text { if } e_{i} \text { and } e_{j} \text { are } k-\text { adjacent } \\ 0, & \text { otherwise }\end{cases}
$$

Observations:

(i) $A_{E}(G)$ is a $\{0,1,2\}$-matrix and it is real symmetric. If G is a simple graph, then $A_{E}(G)$ is a $\{0,1\}$-matrix.
(ii) The entries along the principal diagonal of $A_{E}(G)$ are all 0s. Therefore, $\operatorname{tr}\left(A_{E}(G)\right)=$ 0 . Hence if $\nu_{1}, \nu_{2}, \ldots, \nu_{m}$ are the eigenvalues of $A_{E}(G)$, then

$$
\sum_{i=1}^{m} \nu_{i}=0
$$

(iii) If G has no self-loops, then the Tosha-degree of an edge equals the sum of entries in the corresponding row or column of $A_{E}(G)$.

Proposition 7. For a multigraph G, the edge-adjacency matrix of G is the adjacency matrix of the T-line graph of G. That is,

$$
A_{E}(G)=A(T L(G)) .
$$

Proof. Follows by the definitions 4 and 11.
Corollary 14. For a simple graph G, the edge-adjacency matrix of G is the adjacency matrix of the line graph of G. That is,

$$
A_{E}(G)=A(L(G))
$$

Proof. For simple graph $G, T L(G)=L(G)$ and so by Proposition 7 the result follows.
Definition 12. Let G be graph with m edges e_{1}, \ldots, e_{m}. Let $\nu_{1}, \nu_{2}, \ldots, \nu_{m}$ be the eigenvalues of the edge-adjacency matrix $A_{E}(G)$ of G. The edge-energy of G, denoted by $\mathcal{E}_{E}(G)$, is defined as

$$
\begin{equation*}
\mathcal{E}_{E}(G)=\sum_{i=1}^{m}\left|\nu_{i}\right| . \tag{12}
\end{equation*}
$$

Corollary 15. For a multigraph G, the edge-energy of G is the energy of the T-line graph of G. That is,

$$
\mathcal{E}_{E}(G)=\mathcal{E}(T L(G)) .
$$

Proof. Follows by Proposition 7 .
Corollary 16. For a simple graph G, the edge-energy of G is the energy of the line graph of G. That is,

$$
\mathcal{E}_{E}(G)=\mathcal{E}(L(G)) .
$$

Proof. Follows by Corollary 14.

Acknowledgements

The authors would like to thank the referees for their invaluable comments and suggestions which led to the improvement of the manuscript.

References

[1] R B Bapat. Graphs and matrices. Springer, London, 2010.
[2] F Harary. Graph theory. Addison-Wesley Pub. Co., Massachusetts, 1969.
[3] R Rajendra and P Siva Kota Reddy. Tosha-degree equivalence signed graphs. Vladikavkaz. Mat. Zh., 22(2):48-52, 2020.
[4] R Rajendra and P Siva Kota Reddy. Tosha-degree of an edge in a graph. Southeast Asian Bull. Math., accepted for publication.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v13i5.3710

