EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 3, 2020, 459-471
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

## Fuzzy duplex UP-algebras ${ }^{\dagger}$

Aiyared Iampan ${ }^{1}$, Metawee Songsaeng ${ }^{1}$, G. Muhiuddin ${ }^{2, *}$<br>${ }^{1}$ Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand<br>${ }^{2}$ Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia


#### Abstract

Using the concept of a neutrosophic quadruple number to a fuzzy duplex number, we introduce the concept of a fuzzy duplex UP-algebra, and investigate some related properties. Also, we find the necessary condition for a fuzzy duplex UP-set to be a fuzzy duplex UP-algebra. Furthermore, we study the relationship between special subsets of a UP-algebra and special subsets of a fuzzy duplex UP-set.


2020 Mathematics Subject Classifications: 03G25, 08A72
Key Words and Phrases: UP-algebra, UP-subalgebra, near UP-filter, UP-filter, UP-ideal, strong UP-ideal, fuzzy duplex UP-set, fuzzy duplex UP-algebra

## 1. Introduction

The type of the logical algebra, a UP-algebra was introduced by Iampan [9], and it is known that the class of KU-algebras is a proper subclass of the class of UP-algebras. Later Somjanta et al. [29] studied fuzzy UP-subalgebras, fuzzy UP-ideals and fuzzy UP-filters of UP-algebras. Guntasow et al. [7] studied fuzzy translations of a fuzzy set in UP-algebras. Kesorn et al. [16] studied intuitionistic fuzzy sets in UP-algebras. Kaijae et al. [15] studied anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. Tanamoon et al. [35] and Sripaeng et al. [34] introduced the concept of $Q$-fuzzy sets in UP-algebras, and studied anti $Q$-fuzzy UP-ideals and anti $Q$-fuzzy UP-subalgebras of UP-algebras. Dokkhamdang et al. [6] introduced the concept of fuzzy UP-subalgebras (fuzzy UP-filters, fuzzy UP-ideals, fuzzy strong UP-ideals) with thresholds of UP-algebras.

Ansari et al. [3] introduced the concept of graphs associated with commutative UP-algebras and defined a graph of equivalence classes of commutative UP-algebras. Songsaeng and Iampan [31-33] studied $\mathcal{N}$-fuzzy sets, fuzzy proper UP-filters, and neutrosophic sets in UP-algebras. Senapati et al. [26, 27] studies applied cubic set and interval-valued intuitionistic fuzzy structure in UP-algebras.

[^0]More concepts on UP-algebras are discussed in [4, 5, 17].
A fuzzy set $f$ in a nonempty set $S$ is a function from $S$ to the closed interval $[0,1]$. The concept of a fuzzy set in a nonempty set was first considered by Zadeh [36] in 1965. The fuzzy set theories developed by Zadeh and others have found many applications in the domain of mathematics and elsewhere.

The concept of a neutrosophic set was introduced by Smarandache [28] in 1999. Neutrosophic algebraic structures in BCK/BCI-algebras are discussed in [11, 12, 19, 21, 30]. Neutrosophic quadruple algebraic structures and hyperstructure are discussed in $[1,2]$. Neutrosophic quadruple algebraic structures in BCK/BCI-algebras are discussed in [13, $14,18,20,22]$.

In this paper, we apply the concept of a neutrosophic quadruple number to a fuzzy duplex number, introduce the concept of a fuzzy duplex set base on a UP-algebra, which is called a fuzzy duplex UP-set, and investigate some related properties. We find the necessary conditions that a fuzzy duplex UP-set form a UP-algebra, which is called a fuzzy duplex UP-algebra. Furthermore, we study the relationship between special subsets of a UP-algebra and the same special subsets of a fuzzy duplex UP-set.

## 2. Basic concepts and preliminary notes on UP-algebras

Before we begin our study, we will give the definition and useful properties of UPalgebras.

Definition 1. [9] An algebra $X=(X, \cdot, 0)$ of type $(2,0)$ is called a UP-algebra, where $X$ is a nonempty set, • is a binary operation on $X$, and 0 is a fixed element of $X$ (i.e., a nullary operation) if it satisfies the following axioms:
(UP-1) $(\forall x, y, z \in X)((y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z))=0)$,
(UP-2) $(\forall x \in X)(0 \cdot x=x)$,
(UP-3) $(\forall x \in X)(x \cdot 0=0)$, and
(UP-4) $(\forall x, y \in X)(x \cdot y=0, y \cdot x=0 \Rightarrow x=y)$.
From [9], we know that the concept of UP-algebras is a generalization of KU-algebras (see [23]).

For more examples of UP-algebras, see $[6,10,24-27]$.
In a UP-algebra $X=(X, \cdot, 0)$, the following assertions are valid (see [9, 10]).

$$
\begin{align*}
& (\forall x \in X)(x \cdot x=0)  \tag{1}\\
& (\forall x, y, z \in X)(x \cdot y=0, y \cdot z=0 \Rightarrow x \cdot z=0)  \tag{2}\\
& (\forall x, y, z \in X)(x \cdot y=0 \Rightarrow(z \cdot x) \cdot(z \cdot y)=0)  \tag{3}\\
& (\forall x, y, z \in X)(x \cdot y=0 \Rightarrow(y \cdot z) \cdot(x \cdot z)=0)  \tag{4}\\
& (\forall x, y \in X)(x \cdot(y \cdot x)=0) \tag{5}
\end{align*}
$$

$$
\begin{align*}
& (\forall x, y \in X)((y \cdot x) \cdot x=0 \Leftrightarrow x=y \cdot x),  \tag{6}\\
& (\forall x, y \in X)(x \cdot(y \cdot y)=0),  \tag{7}\\
& (\forall a, x, y, z \in X)((x \cdot(y \cdot z)) \cdot(x \cdot((a \cdot y) \cdot(a \cdot z)))=0),  \tag{8}\\
& (\forall a, x, y, z \in X)((((a \cdot x) \cdot(a \cdot y)) \cdot z) \cdot((x \cdot y) \cdot z)=0),  \tag{9}\\
& (\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot(y \cdot z)=0),  \tag{10}\\
& (\forall x, y, z \in X)(x \cdot y=0 \Rightarrow x \cdot(z \cdot y)=0),  \tag{11}\\
& (\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot(x \cdot(y \cdot z))=0), \text { and }  \tag{12}\\
& (\forall a, x, y, z \in X)(((x \cdot y) \cdot z) \cdot(y \cdot(a \cdot z))=0) . \tag{13}
\end{align*}
$$

From [9], the binary relation $\leq$ on a UP-algebra $X=(X, \cdot, 0)$ defined as follows:

$$
\begin{equation*}
(\forall x, y \in X)(x \leq y \Leftrightarrow x \cdot y=0) \tag{14}
\end{equation*}
$$

Definition 2. [7-9, 29] A nonempty subset $S$ of a UP-algebra $X=(X, \cdot, 0)$ is called
(1) a UP-subalgebra of $X$ if $(\forall x, y \in S)(x \cdot y \in S)$.
(2) a near UP-filter of $X$ if
(i) the constant 0 of $X$ is in $S$, and
(ii) $(\forall x, y \in X)(y \in S \Rightarrow x \cdot y \in S)$.
(3) a UP-filter of $X$ if
(i) the constant 0 of $X$ is in $S$, and
(ii) $(\forall x, y \in X)(x \cdot y \in S, x \in S \Rightarrow y \in S)$.
(4) a UP-ideal of $X$ if
(i) the constant 0 of $X$ is in $S$, and
(ii) $(\forall x, y, z \in X)(x \cdot(y \cdot z) \in S, y \in S \Rightarrow x \cdot z \in S)$.
(5) a strong UP-ideal (renamed from a strongly UP-ideal) of $X$ if
(i) the constant 0 of $X$ is in $S$, and
(ii) $(\forall x, y, z \in X)((z \cdot y) \cdot(z \cdot x) \in S, y \in S \Rightarrow x \in S)$.

Guntasow et al. [7] and Iampan [8] proved that the concept of UP-subalgebras is a generalization of near UP-filters, near UP-filters is a generalization of UP-filters, UP-filters is a generalization of UP-ideals, and UP-ideals is a generalization of strong UP-ideals. Furthermore, they proved that the only strong UP-ideal of a UP-algebra $X$ is $X$.

## 3. Fuzzy duplex UP-algebras

In this section, we introduce the concepts of fuzzy duplex UP-numbers and fuzzy duplex UP-sets, and investigate some properties. We find the necessary conditions that a fuzzy duplex UP-set form a UP-algebra. Furthermore, we study the relationship between special subsets of a UP-algebra and the same special subsets of a fuzzy duplex UP-set.

Definition 3. Let $X$ and $Y$ be nonempty sets and $T: X \rightarrow Y$ be a function. A fuzzy duplex $X$-number is an ordered pair $(x, y T)$, where $x, y \in X$, and $T(y)$ denoted by $y T$. The Cartesian product $X \times \operatorname{Im}(T)$ is called the fuzzy duplex set based on $X$. If $X$ is a UP-algebra, a fuzzy duplex $X$-number is called a fuzzy duplex UP-number and we say that $X \times \operatorname{Im}(T)$ is the fuzzy duplex UP-set. For any two nonempty subsets $A$ and $B$ of $X$, we see that $A \times T(B)$ is a nonempty subset of $X \times \operatorname{Im}(T)$. If $(a, y T) \in A \times T(B)$, then $(x, y T) \in A \times T(B)$ for all $x \in A$.

In what follows, $X$ will denote a UP-algebra $(X, \cdot, 0), Y$ will denote a nonempty set, and $T: X \rightarrow Y$ will be a function.

We define the binary operation $\odot$ on the fuzzy duplex UP-set $X \times \operatorname{Im}(T)$ by

$$
\begin{equation*}
(\forall(a, x T),(b, y T) \in X \times \operatorname{Im}(T))((a, x T) \odot(b, y T)=(a \cdot b,(x \cdot y) T)) \tag{15}
\end{equation*}
$$

If the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra, then it is called the fuzzy duplex UPalgebra. We denote by $\tilde{a}$ the fuzzy duplex UP-number, that is, $\tilde{a}=\left(a_{1}, a_{2} T\right)$ for some $a_{1}, a_{2} \in X$, and the zero fuzzy duplex UP-number $(0,0 T)$ is denoted by $\tilde{0}$. We define the binary relation $\ll$ and the equality $\doteq$ on $X \times \operatorname{Im}(T)$ as follows:
$(\forall(a, x T),(b, y T) \in X \times \operatorname{Im}(T))\left(\begin{array}{rl}(a, x T) \ll(b, y T) \Leftrightarrow a \leq b, x \leq y \\ (a, x T) & \doteq(b, y T) \Leftrightarrow(a, x T) \ll(b, y T),(b, y T) \ll(a, x T)\end{array}\right)$.
Then we can easily prove that the binary relation $\ll$ is an order relation on $X \times \operatorname{Im}(T)$ and

$$
(\forall(a, x T),(b, y T) \in X \times \operatorname{Im}(T))\binom{(a, x T) \ll(b, y T) \Leftrightarrow(a, x T) \odot(b, y T)=\tilde{0}}{(a, x T) \doteq(b, y T) \Leftrightarrow a=b, x=y}
$$

Hence, $\doteq \subseteq=$ on $X \times \operatorname{Im}(T)$.
Example 1. Let $X=\{0, a, b, c\}$ be a UP-algebra with a fixed element 0 and a binary operation $\cdot$ defined by the following Cayley table:

| $\cdot$ | 0 | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $a$ | $b$ | $c$ |
| $a$ | 0 | 0 | $b$ | $b$ |
| $b$ | 0 | $a$ | 0 | $b$ |
| $c$ | 0 | $a$ | 0 | 0 |

Let $T: X \rightarrow\{0.5,1\}$ be a function defined by

$$
0 T=a T=b T=0.5, c T=1 .
$$

Then the axiom (UP-4) is not satisfied. Indeed, there are $(0, a T),(0, c T) \in X \times\{0.5,1\}$ such that $(0, a T)=(0,0.5) \neq(0,1)=(0, c T)$ but

$$
(0, a T) \odot(0, c T)=(0 \cdot 0,(a \cdot c) T)=(0, b T)=(0,0 T)=\tilde{0}
$$

and

$$
(0, c T) \odot(0, a T)=(0 \cdot 0,(c \cdot a) T)=(0, a T)=(0,0 T)=\tilde{0}
$$

Hence, the algebra $(X \times\{0.5,1\}, \odot, \tilde{0})$ is not a UP-algebra.
Theorem 1. The algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ satisfies the axioms (UP-1), (UP-2), and (UP-3).

Proof. (UP-1) Let $\tilde{x}, \tilde{y}, \tilde{z} \in X \times \operatorname{Im}(T)$ where $\tilde{x}=\left(x_{1}, x_{2} T\right), \tilde{y}=\left(y_{1}, y_{2} T\right)$, and $\tilde{z}=\left(z_{1}, z_{2} T\right)$. Then

$$
\begin{align*}
& (\tilde{y} \odot \tilde{z}) \odot((\tilde{x} \odot \tilde{y}) \odot(\tilde{x} \odot \tilde{z})) \\
& =\left(\left(y_{1}, y_{2} T\right) \odot\left(z_{1}, z_{2} T\right)\right) \odot\left(\left(\left(x_{1}, x_{2} T\right) \odot\left(y_{1}, y_{2} T\right)\right) \odot\left(\left(x_{1}, x_{2} T\right) \odot\left(z_{1}, z_{2} T\right)\right)\right) \\
& =\left(y_{1} \cdot z_{1},\left(y_{2} \cdot z_{2}\right) T\right) \odot\left(\left(x_{1} \cdot y_{1},\left(x_{2} \cdot y_{2}\right) T\right) \odot\left(x_{1} \cdot z_{1},\left(x_{2} \cdot z_{2}\right) T\right)\right) \\
& =\left(y_{1} \cdot z_{1},\left(y_{2} \cdot z_{2}\right) T\right) \odot\left(\left(x_{1} \cdot y_{1}\right) \cdot\left(x_{1} \cdot z_{1}\right),\left(\left(x_{2} \cdot y_{2}\right) \cdot\left(x_{2} \cdot z_{2}\right)\right) T\right) \\
& =\left(\left(y_{1} \cdot z_{1}\right) \cdot\left(\left(x_{1} \cdot y_{1}\right) \cdot\left(x_{1} \cdot z_{1}\right)\right),\left(\left(y_{2} \cdot z_{2}\right) \cdot\left(\left(x_{2} \cdot y_{2}\right) \cdot\left(x_{2} \cdot z_{2}\right)\right)\right) T\right) \\
& =(0,0 T)  \tag{UP-1}\\
& =\tilde{0} .
\end{align*}
$$

(UP-2) Let $\tilde{x} \in X \times \operatorname{Im}(T)$ where $\tilde{x}=\left(x_{1}, x_{2} T\right)$. Then

$$
\begin{align*}
\tilde{0} \odot \tilde{x} & =(0,0 T) \odot\left(x_{1}, x_{2} T\right) \\
& =\left(0 \cdot x_{1},\left(0 \cdot x_{2}\right) T\right) \\
& =\left(x_{1}, x_{2} T\right)  \tag{UP-2}\\
& =\tilde{x} .
\end{align*}
$$

(UP-3) Let $\tilde{x} \in X \times \operatorname{Im}(T)$ where $\tilde{x}=\left(x_{1}, x_{2} T\right)$. Then

$$
\begin{align*}
\tilde{x} \odot \tilde{0} & =\left(x_{1}, x_{2} T\right) \odot(0,0 T) \\
& =\left(x_{1} \cdot 0,\left(x_{2} \cdot 0\right) T\right) \\
& =(0,0 T)  \tag{UP-3}\\
& =\tilde{0} .
\end{align*}
$$

Hence, (UP-1), (UP-2), and (UP-3) are valid.

Proposition 1. The algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ satisfies the following properties:
(1) $(\forall \tilde{a} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{a})$,
(2) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b}, \tilde{b} \ll \tilde{c} \Rightarrow \tilde{a} \ll \tilde{c})$,
(3) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b} \Rightarrow \tilde{c} \odot \tilde{a} \ll \tilde{c} \odot \tilde{b})$,
(4) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b} \Rightarrow \tilde{b} \odot \tilde{c} \ll \tilde{a} \odot \tilde{c})$,
(5) $(\forall \tilde{a}, \tilde{b} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b} \odot \tilde{a})$,
(6) $(\forall \tilde{a}, \tilde{b} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b} \odot \tilde{b})$,
(7) $(\forall \tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(\tilde{a} \odot(\tilde{b} \odot \tilde{c}) \ll \tilde{a} \odot((\tilde{x} \odot \tilde{b}) \odot(\tilde{x} \odot \tilde{c})))$,
(8) $(\forall \tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(((\tilde{x} \odot \tilde{a}) \odot(\tilde{x} \odot \tilde{b})) \odot \tilde{c} \ll(\tilde{a} \odot \tilde{b}) \odot \tilde{c})$,
(9) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))((\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot \tilde{c})$,
(10) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b} \Rightarrow \tilde{a} \ll \tilde{c} \odot \tilde{b})$,
(11) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))((\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{a} \odot(\tilde{b} \odot \tilde{c}))$, and
(12) $(\forall \tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))((\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot(\tilde{x} \odot \tilde{c}))$.

Proof. By Theorem 1, the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ satisfies the axioms (UP-1), (UP-2), and (UP-3).
(1) Let $\tilde{a} \in X \times \operatorname{Im}(T)$. Then

$$
\begin{align*}
\tilde{0} & =(\tilde{0} \odot \tilde{a}) \odot((\tilde{0} \odot \tilde{0}) \odot(\tilde{0} \odot \tilde{a}))  \tag{UP-1}\\
& =(\tilde{0} \odot \tilde{a}) \odot(\tilde{0} \odot \tilde{a})  \tag{UP-2}\\
& =\tilde{a} \odot \tilde{a} \tag{UP-2}
\end{align*}
$$

Hence, $\tilde{a} \ll \tilde{a}$.
(2) Let $\tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T)$ be such that $\tilde{a} \ll \tilde{b}$ and $\tilde{b} \ll \tilde{c}$. Then $\tilde{a} \odot \tilde{b}=\tilde{0}$ and $\tilde{b} \odot \tilde{c}=\tilde{0}$. Thus

$$
\begin{align*}
\tilde{a} \odot \tilde{c} & =\tilde{0} \odot(\tilde{0} \odot(\tilde{a} \odot \tilde{c}))  \tag{UP-2}\\
& =(\tilde{b} \odot \tilde{c}) \odot((\tilde{a} \odot \tilde{b}) \odot(\tilde{a} \odot \tilde{c})) \\
& =\tilde{0} \tag{UP-1}
\end{align*}
$$

Hence, $\tilde{a} \ll \tilde{c}$.
(3) Let $\tilde{a}, \tilde{b} \in X \times \operatorname{Im}(T)$ be such that $\tilde{a} \ll \tilde{b}$. Then $\tilde{a} \odot \tilde{b}=\tilde{0}$.

$$
\begin{equation*}
(\tilde{c} \odot \tilde{a}) \odot(\tilde{c} \odot \tilde{b})=\tilde{0} \odot((\tilde{c} \odot \tilde{a}) \odot(\tilde{c} \odot \tilde{b})) \tag{UP-2}
\end{equation*}
$$

$$
\begin{align*}
& =(\tilde{a} \odot \tilde{b}) \odot((\tilde{c} \odot \tilde{a}) \odot(\tilde{c} \odot \tilde{b})) \\
& =\tilde{0} \tag{UP-1}
\end{align*}
$$

Hence, $\tilde{c} \odot \tilde{a} \ll \tilde{c} \odot \tilde{b}$.
(4) Let $\tilde{a}, \tilde{b} \in X \times \operatorname{Im}(T)$ be such that $\tilde{a} \ll \tilde{b}$. Then $\tilde{a} \odot \tilde{b}=\tilde{0}$.

$$
\begin{align*}
(\tilde{b} \odot \tilde{c}) \odot(\tilde{a} \odot \tilde{c}) & =(\tilde{b} \odot \tilde{c}) \odot(\tilde{0} \odot(\tilde{a} \odot \tilde{c}))  \tag{UP-2}\\
& =(\tilde{b} \odot \tilde{c}) \odot((\tilde{a} \odot \tilde{b}) \odot(\tilde{a} \odot \tilde{c})) \\
& =\tilde{0} \tag{UP-1}
\end{align*}
$$

Hence, $\tilde{b} \odot \tilde{c} \ll \tilde{a} \odot \tilde{c}$.
(5) Let $\tilde{a}, \tilde{b} \in X \times \operatorname{Im}(T)$. Then

$$
\begin{align*}
\tilde{a} \odot(\tilde{b} \odot \tilde{a}) & =(\tilde{0} \odot \tilde{a}) \odot(\tilde{0} \odot(\tilde{b} \odot \tilde{a}))  \tag{UP-2}\\
& =(\tilde{0} \odot \tilde{a}) \odot((\tilde{b} \odot \tilde{0}) \odot(\tilde{b} \odot \tilde{a}))  \tag{UP-3}\\
& =\tilde{0} \tag{UP-1}
\end{align*}
$$

Hence, $\tilde{a} \ll \tilde{b} \odot \tilde{a}$.
(6) Let $\tilde{a}, \tilde{b} \in X \times \operatorname{Im}(T)$. By (UP-3) and (1), we have $\tilde{a} \odot(\tilde{b} \odot \tilde{b})=\tilde{a} \odot \tilde{0}=\tilde{0}$. Hence, $\tilde{a} \ll \tilde{b} \odot \tilde{b}$.
(7) Let $\tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T)$. By (UP-1), we have $(\tilde{b} \odot \tilde{c}) \odot((\tilde{x} \odot \tilde{b}) \odot(\tilde{x} \odot \tilde{c}))=\tilde{0}$. Thus $\tilde{b} \odot \tilde{c} \ll(\tilde{x} \odot \tilde{b}) \odot(\tilde{x} \odot \tilde{c})$. By $(3)$, we have $\tilde{a} \odot(\tilde{b} \odot \tilde{c}) \ll \tilde{a} \odot((\tilde{x} \odot \tilde{b}) \odot(\tilde{x} \odot \tilde{c}))$.
(8) Let $\tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T)$. By $(\mathrm{UP}-1)$, we have $(\tilde{a} \odot \tilde{b}) \odot((\tilde{x} \odot \tilde{a}) \odot(\tilde{x} \odot \tilde{b}))=\tilde{0}$. Thus $\tilde{a} \odot \tilde{b} \ll(\tilde{x} \odot \tilde{a}) \odot(\tilde{x} \odot \tilde{b})$. By (4), we have $((\tilde{x} \odot \tilde{a}) \odot(\tilde{x} \odot \tilde{b})) \odot \tilde{c} \ll(\tilde{a} \odot \tilde{b}) \odot \tilde{c}$.
(9) Let $\tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T)$. Then

$$
\begin{align*}
\tilde{0} & =(((\tilde{a} \odot \tilde{0}) \odot(\tilde{a} \odot \tilde{b})) \odot \tilde{c}) \odot((\tilde{0} \odot \tilde{b}) \odot \tilde{c})  \tag{8}\\
& =((\tilde{0} \odot(\tilde{a} \odot \tilde{b})) \odot \tilde{c}) \odot(\tilde{b} \odot \tilde{c}) \\
& =((\tilde{a} \odot \tilde{b}) \odot \tilde{c}) \odot(\tilde{b} \odot \tilde{c}) \tag{UP-2}
\end{align*}
$$

((UP-2), (UP-3))

Hence, $(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot \tilde{c}$.
(10) Let $\tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T)$ be such that $\tilde{a} \ll \tilde{b}$. By $(3)$, we have $(\tilde{c} \odot \tilde{a}) \odot(\tilde{c} \odot \tilde{b})=\tilde{0}$. Thus

$$
\begin{align*}
\tilde{a} \odot(\tilde{c} \odot \tilde{b}) & =\tilde{0} \odot(\tilde{a} \odot(\tilde{c} \odot \tilde{b}))  \tag{UP-2}\\
& =((\tilde{c} \odot \tilde{a}) \odot(\tilde{c} \odot \tilde{b})) \odot(\tilde{a} \odot(\tilde{c} \odot \tilde{b})) \\
& =\tilde{0} \tag{9}
\end{align*}
$$

Hence, $\tilde{a} \ll \tilde{c} \odot \tilde{b}$.
(11) Let $\tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T)$. By (9), we have $(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot \tilde{c}$. By (5), we have $\tilde{b} \odot \tilde{c} \ll \tilde{a} \odot(\tilde{b} \odot \tilde{c})$. It follows from (2) that $(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{a} \odot(\tilde{b} \odot \tilde{c})$.
(12) Let $\tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T)$. By (5), we have $\tilde{b} \ll \tilde{a} \odot \tilde{b}$ and $\tilde{a} \odot \tilde{b} \ll \tilde{x} \odot(\tilde{a} \odot \tilde{b})$. By (2), we have $\tilde{b} \ll \tilde{x} \odot(\tilde{a} \odot \tilde{b})$. By (4), we have

$$
(\tilde{x} \odot(\tilde{a} \odot \tilde{b})) \odot(\tilde{x} \odot \tilde{c}) \ll \tilde{b} \odot(\tilde{x} \odot \tilde{c}) .
$$

By (UP-1), we have $((\tilde{a} \odot \tilde{b}) \odot \tilde{c}) \odot((\tilde{x} \odot(\tilde{a} \odot \tilde{b})) \odot(\tilde{x} \odot \tilde{c}))=\tilde{0}$. Then

$$
(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll(\tilde{x} \odot(\tilde{a} \odot \tilde{b})) \odot(\tilde{x} \odot \tilde{c}) .
$$

It follows from (2) that $(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot(\tilde{x} \odot \tilde{c})$.
Theorem 2. If $T: X \rightarrow Y$ is a constant function, that is, the inverse image $T^{-1}(\{0 T\})=$ $X$, then the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra which is UP-isomorphic to $X$.

Proof. (UP-4) Let $\tilde{x}, \tilde{y} \in X \times \operatorname{Im}(T)$ be such that $\tilde{x} \odot \tilde{y}=\tilde{0}$ and $\tilde{y} \odot \tilde{x}=\tilde{0}$ where $\tilde{x}=\left(x_{1}, x_{2} T\right), \tilde{y}=\left(y_{1}, y_{2} T\right)$. Then

$$
\left(x_{1} \cdot y_{1},\left(x_{2} \cdot y_{2}\right) T\right)=\left(x_{1}, x_{2} T\right) \odot\left(y_{1}, y_{2} T\right)=(0,0 T)
$$

and

$$
\left(y_{1} \cdot x_{1},\left(y_{2} \cdot x_{2}\right) T\right)=\left(y_{1}, y_{2} T\right) \odot\left(x_{1}, x_{2} T\right)=(0,0 T) .
$$

It follows that $x_{1} \cdot y_{1}=0$ and $y_{1} \cdot x_{1}=0$. By (UP-4), we have $x_{1}=y_{1}$. Since $T$ is constant, we have $x_{2} T=y_{2} T$. Thus $\tilde{x}=\left(x_{1}, x_{2} T\right)=\left(y_{1}, y_{2} T\right)=\tilde{y}$, (UP-4) holding. By Theorem 1, we have $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra. Finally, $X$ and $X \times \operatorname{Im}(T)$ are UP-isomorphic under the UP-isomorphism sending $x \mapsto(x, 0 T)$.

Corollary 1. If $Y$ is a singleton set, then the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.
Proof. If $Y$ is a singleton set, then $T: X \rightarrow Y$ is a constant function. By Theorem 2, we have the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Theorem 3. If $T: X \rightarrow Y$ is a function with the inverse image $T^{-1}(\{0 T\})=\{0\}$, then the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Proof. (UP-4) Let $\tilde{x}, \tilde{y} \in X \times \operatorname{Im}(T)$ be such that $\tilde{x} \odot \tilde{y}=\tilde{0}$ and $\tilde{y} \odot \tilde{x}=\tilde{0}$ where $\tilde{x}=\left(x_{1}, x_{2} T\right), \tilde{y}=\left(y_{1}, y_{2} T\right)$. Then

$$
\left(x_{1} \cdot y_{1},\left(x_{2} \cdot y_{2}\right) T\right)=\left(x_{1}, x_{2} T\right) \odot\left(y_{1}, y_{2} T\right)=(0,0 T)
$$

and

$$
\left(y_{1} \cdot x_{1},\left(y_{2} \cdot x_{2}\right) T\right)=\left(y_{1}, y_{2} T\right) \odot\left(x_{1}, x_{2} T\right)=(0,0 T) .
$$

It follows that $x_{1} \cdot y_{1}=0$ and $y_{1} \cdot x_{1}=0$, and $x_{2} \cdot y_{2}, y_{2} \cdot x_{2} \in T^{-1}(\{0 T\})=\{0\}$, that is, $x_{2} \cdot y_{2}=0$ and $y_{2} \cdot x_{2}=0$. By (UP-4), we have $x_{1}=y_{1}$ and $x_{2}=y_{2}$. Thus $x_{2} T=y_{2} T$ and so $\tilde{x}=\left(x_{1}, x_{2} T\right)=\left(y_{1}, y_{2} T\right)=\tilde{y}$, (UP-4) holding. By Theorem 1, we have $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Corollary 2. If $T: X \rightarrow Y$ is an injective function, then the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Proof. If $T: X \rightarrow Y$ is an injective function, then the inverse image $T^{-1}(\{0 T\})=\{0\}$. By Theorem 3, we have the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Theorem 4. Let $A$ and $B$ be nonempty subsets of a UP-algebra $X$ and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra.
(1) If $A$ and $B$ are UP-subalgebras of $X$, then $A \times T(B)$ is a UP-subalgebra of $X \times \operatorname{Im}(T)$.
(2) If $A \times T(B)$ is a UP-subalgebra of $X \times \operatorname{Im}(T)$, then $A$ is a UP-subalgebra of $X$.

Proof. (1) Assume that $A$ and $B$ are UP-subalgebras of $X$ and let $\tilde{x}, \tilde{y} \in A \times T(B)$ where $\tilde{x}=\left(a_{1}, b_{1} T\right)$ and $\tilde{y}=\left(a_{2}, b_{2} T\right)$. Then $a_{1} \cdot a_{2} \in A$ and $b_{1} \cdot b_{2} \in B$. Thus $\tilde{x} \odot \tilde{y}=$ $\left(a_{1}, b_{1} T\right) \odot\left(a_{2}, b_{2} T\right)=\left(a_{1} \cdot a_{2},\left(b_{1} \cdot b_{2}\right) T\right) \in A \times T(B)$. Hence, $A \times T(B)$ is a UP-subalgebra of $X \times \operatorname{Im}(T)$.
(2) Assume that $A \times T(B)$ is a UP-subalgebra of $X \times \operatorname{Im}(T)$. Let $x, y \in A$. Since $(0,0 T) \in A \times T(B)$, we have Then $(x, 0 T),(y, 0 T) \in A \times T(B)$. Thus $(x \cdot y, 0 T)=$ $(x \cdot y,(0 \cdot 0) T)=(x, 0 T) \odot(y, 0 T) \in A \times T(B)$, so $x \cdot y \in A$. Hence, $A$ is a UP-subalgebra of $X$.

Theorem 5. Let $A$ and $B$ be nonempty subsets of a UP-algebra $X$ and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra.
(1) If $A$ and $B$ are near UP-filters of $X$, then $A \times T(B)$ is a near UP-filter of $X \times \operatorname{Im}(T)$.
(2) If $A \times T(B)$ is a near UP-filter of $X \times \operatorname{Im}(T)$, then $A$ is a near UP-filter of $X$.

Proof. (1) Assume that $A$ and $B$ are near UP-filters of $X$. Since $0 \in A$ and $0 \in B$, we have $\tilde{0}=(0,0 T) \in A \times T(B)$. Let $\tilde{x} \in X \times \operatorname{Im}(T)$ and $\tilde{y} \in A \times T(B)$ where $\tilde{x}=\left(x_{1}, x_{2} T\right)$ and $\tilde{y}=(a, b T)$. Thus $x_{1} \cdot a \in A$ and $x_{2} \cdot b \in B$, so $\tilde{x} \odot \tilde{y}=\left(x_{1}, x_{2} T\right) \odot(a, b T)=$ $\left(x_{1} \cdot a,\left(x_{2} \cdot b\right) T\right) \in A \times T(B)$. Hence, $A \times T(B)$ is a near UP-filter of $X \times \operatorname{Im}(T)$.
(2) Assume that $A \times T(B)$ is a near UP-filter of $X \times \operatorname{Im}(T)$. Since $\tilde{0}=(0,0 T) \in$ $A \times T(B)$, we have $0 \in A$. Let $x \in X$ and $a \in A$. Then $(x, 0 T) \in X \times \operatorname{Im}(T)$ and $(a, 0 T) \in A \times T(B)$. Thus $(x \cdot a, 0 T)=(x \cdot a,(0 \cdot 0) T)=(x, 0 T) \odot(a, 0 T) \in A \times T(B)$, so $x \cdot a \in A$. Hence, $A$ is a near UP-filter of $X$.

Theorem 6. Let $A$ and $B$ be nonempty subsets of a UP-algebra $X$ and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra. If $A \times T(B)$ is a UP-filter of $X \times \operatorname{Im}(T)$, then $A$ is a $U P$-filter of $X$.

Proof. Assume that $A \times T(B)$ is a UP-filter of $X \times \operatorname{Im}(T)$. Since $\tilde{0}=(0,0 T) \in A \times T(B)$, we have $0 \in A$. Let $x, a \in X$ be such that $a \cdot x \in A$ and $a \in A$. Then $(a, 0 T) \odot(x, 0 T)=$ $(a \cdot x,(0 \cdot 0) T)=(a \cdot x, 0 T) \in A \times T(B)$ and $(a, 0 T) \in A \times T(B)$. Thus $(x, 0 T) \in A \times T(B)$, so $x \in A$. Hence, $A$ is a UP-filter of $X$.

Theorem 7. Let $A$ and $B$ be nonempty subsets of a UP-algebra $X$ and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra. If $A \times T(B)$ is a UP-ideal of $X \times \operatorname{Im}(T)$, then $A$ is a UP-ideal of $X$.

Proof. Assume that $A \times T(B)$ is a UP-ideal of $X \times \operatorname{Im}(T)$. Since $\tilde{0}=(0,0 T) \in$ $A \times T(B)$, we have $0 \in A$. Let $x, y, z \in X$ be such that $x \cdot(y \cdot z) \in A$ and $y \in A$. Then $(x, 0 T) \odot((y, 0 T) \odot(z, 0 T))=(x \cdot(y \cdot z),(0 \cdot(0 \cdot 0)) T)=(x \cdot(y \cdot z), 0 T) \in A \times T(B)$ and $(y, 0 T) \in A \times T(B)$. Thus $(x \cdot z, 0 T)=(x \cdot z,(0 \cdot 0) T)=(x, 0 T) \odot(z, 0 T) \in A \times T(B)$, so $x \cdot z \in A$. Hence, $A$ is a UP-ideal of $X$.

The following example shows that the sentence "if $A$ and $B$ are UP-filters (resp., UPideals) of $X$, then $A \times T(B)$ is a UP-filter (resp., UP-ideal) of $X \times \operatorname{Im}(T)$ " does not hold in general.

Example 2. Let $X=\{0, a, b, c\}$ be a UP-algebra with a fixed element 0 and a binary operation defined by the following Cayley table:

| . | 0 | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $a$ | $b$ | $c$ |
| $a$ | 0 | 0 | $b$ | $b$ |
| $b$ | 0 | $a$ | 0 | $a$ |
| $c$ | 0 | 0 | 0 | 0 |

Let $T: X \rightarrow\{0.5,0.7,1\}$ be a function defined by

$$
0 T=0.5, a T=b T=0.7, c T=1 .
$$

Let $A=\{0, a\}$. Then $A$ is a UP-ideal (also a UP-filter) of $X$ and

$$
A \times T(A)=\{(0,0 T),(0, a T),(a, 0 T),(a, a T)\}
$$

Since $(0, a T) \odot(0, c T)=(0, b T)=(0, a T) \in A \times T(A)$ and $(0, a T) \in A \times T(A)$ but $(0, c T) \notin A \times T(A)$. Hence, $A \times T(A)$ is not a UP-filter (also not a UP-ideal) of $X$.

Theorem 8. Let $A$ and $B$ be nonempty subsets of a UP-algebra $X$ and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra.
(1) If $A$ and $B$ are strong UP-ideals of $X$, then $A \times T(B)$ is a strong UP-ideal of $X \times \operatorname{Im}(T)$.
(2) If $A \times T(B)$ is a strong UP-ideal of $X \times \operatorname{Im}(T)$, then $A$ is a strong UP-ideal of $X$.

Proof. (1) Assume that $A$ and $B$ are strong UP-ideals of $X$. Then $A=B=X$, so $A \times T(B)=X \times \operatorname{Im}(T)$. Hence, $A \times T(B)$ is a strong UP-ideal of $X \times \operatorname{Im}(T)$.
(2) Assume that $A \times T(B)$ is a strong UP-ideal of $X \times \operatorname{Im}(T)$. Then $A \times T(B)=$ $X \times \operatorname{Im}(T)$, so $A=X$. Hence, $A$ is a strong UP-ideal of $X$.

## 4. Conclusions

In this paper, we have introduced the concept of a fuzzy duplex set base on a UPalgebra, which is called a fuzzy duplex UP-set, and investigated some related properties. We have found the necessary conditions that a fuzzy duplex UP-set form a UP-algebra, which is called a fuzzy duplex UP-algebra. Furthermore, we have studied the relationship between special subsets of a UP-algebra and the same special subsets of a fuzzy duplex UP-set and have presented conflicting examples for certain relationships.

## Acknowledgements

The authors would also like to thank the anonymous referee for giving many helpful suggestion on the revision of present paper.

## References

[1] A. A. A. Agboola, B. Davvaz, and F. Smarandache. Neutrosophic quadruple algebraic hyperstructures. Ann. Fuzzy Math. Inform., 14(1):29-42, 2017.
[2] S. A. Akinleye, F. Smarandache, and A. A. A. Agboola. On neutrosophic quadruple algebraic structures. Neutrosophic Sets Syst., 12:122-126, 2016.
[3] M. A. Ansari, A. Haidar, and A. N. A. Koam. On a graph associated to UP-algebras. Math. Comput. Appl., 23(4):61, 2018.
[4] M. A. Ansari, A. N. A. Koam, and A. Haider. Rough set theory applied to UPalgebras. Ital. J. Pure Appl. Math., 42:388-402, 2019.
[5] M. A. Ansari, A. N. A. Koam, and A. Haider. On binary block codes associated to UP-algebras. Manuscript accepted for publication in Ital. J. Pure Appl. Math., February 2020.
[6] N. Dokkhamdang, A. Kesorn, and A. Iampan. Generalized fuzzy sets in UP-algebras. Ann. Fuzzy Math. Inform., 16(2):171-190, 2018.
[7] T. Guntasow, S. Sajak, A. Jomkham, and A. Iampan. Fuzzy translations of a fuzzy set in UP-algebras. J. Indones. Math. Soc., 23(2):1-19, 2017.
[8] A. Iampan. Multipliers and near UP-filters of UP-algebras. J. Discrete Math. Sci. Cryptography, page to appear.
[9] A. Iampan. A new branch of the logical algebra: UP-algebras. J. Algebra Relat. Top., 5(1):35-54, 2017.
[10] A. Iampan. Introducing fully UP-semigroups. Discuss. Math., Gen. Algebra Appl., 38(2):297-306, 2018.
[11] Y. B. Jun, F. Smarandache, and H. Bordbar. Neutrosophic $\mathcal{N}$-structures applied to BCK/BCI-algebras. Inform., 8(4):128, 2017.
[12] Y. B. Jun, F. Smarandache, S.-Z. Song, and M. Khan. Neutrosophic positive implicative $\mathcal{N}$-ideals in BCK-algebras. Axioms, 7(1):3, 2018.
[13] Y. B. Jun, S. Z. Song, and S. J. Kim. Neutrosophic quadruple BCI-positive implicative ideals. Mathematics, 7(5):385, 2019.
[14] Y. B. Jun, S. Z. Song, F. Smarandache, and H. Bordbar. Neutrosophic quadruple BCK/BCI-algebras. Axioms, 7(2):41, 2018.
[15] W. Kaijae, P. Poungsumpao, S. Arayarangsi, and A. Iampan. UP-algebras characterized by their anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. Ital. J. Pure Appl. Math., 36:667-692, 2016.
[16] B. Kesorn, K. Maimun, W. Ratbandan, and A. Iampan. Intuitionistic fuzzy sets in UP-algebras. Ital. J. Pure Appl. Math., 34:339-364, 2015.
[17] A. N. A. Koam, M. A. Ansari, and A. Haidar. $n$-ary block codes related to KUalgebras. J. Taibah Univ. Sci., 14(1):172-176, 2020.
[18] G. Muhiuddin, A. N. Al-Kenani, E. H. Roh, and Y. B. Jun. Implicative neutrosophic quadruple BCK-algebras and ideals. Symmetry, 11(2):277, 2019.
[19] G. Muhiuddin, H. Bordbar, F. Smarandache, and Y. B. Jun. Further results on $(\in, \in)$-neutrosophic subalgebras and ideals in BCK/BCI-algebras. Neutrosophic Sets Syst., 20:36-43, 2018.
[20] G. Muhiuddin and Y. B. Jun. p-semisimple neutrosophic quadruple BCI-algebras and neutrosophic quadruple p-ideals. Ann. Commun. Math., 1(1):26-37, 2018.
[21] G. Muhiuddin, S. J. Kim, and Y. B. Jun. Implicative $\mathcal{N}$-ideals of BCK-algebras based on neutrosophic $\mathcal{N}$-structures. Discrete Math. Algorithms Appl., 11(1):1950011, 2019.
[22] G. Muhiuddin, F. Smarandache, and Y. B. Jun. Neutrosophic quadruple ideals in neutrosophic quadruple BCI-algebras. Neutrosophic Sets Syst., 25:161-173, 2019.
[23] C. Prabpayak and U. Leerawat. On ideals and congruences in KU-algebras. Sci. Magna, 5(1):54-57, 2009.
[24] A. Satirad, P. Mosrijai, and A. Iampan. Formulas for finding UP-algebras. Int. J. Math. Comput. Sci., 14(2):403-409, 2019.
[25] A. Satirad, P. Mosrijai, and A. Iampan. Generalized power UP-algebras. Int. J. Math. Comput. Sci., 14(1):17-25, 2019.
[26] T. Senapati, Y. B. Jun, and K. P. Shum. Cubic set structure applied in UP-algebras. Discrete Math. Algorithms Appl., 10(4):1850049, 2018.
[27] T. Senapati, G. Muhiuddin, and K. P. Shum. Representation of UP-algebras in interval-valued intuitionistic fuzzy environment. Ital. J. Pure Appl. Math., 38:497517, 2017.
[28] F. Smarandache. A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.
[29] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, and A. Iampan. Fuzzy sets in UPalgebras. Ann. Fuzzy Math. Inform., 12(6):739-756, 2016.
[30] S. Z. Song, F. Smarandache, and Y. B. Jun. Neutrosophic commutative $\mathcal{N}$-ideals in BCK-algebras. Inform., 8:130, 2017.
[31] M. Songsaeng and A. Iampan. $\mathcal{N}$-fuzzy UP-algebras and its level subsets. J. Algebra Relat. Top., 6(1):1-24, 2018.
[32] M. Songsaeng and A. Iampan. Fuzzy proper UP-filters of UP-algebras. Honam Math. J., 41(3):515-530, 2019.
[33] M. Songsaeng and A. Iampan. Neutrosophic set theory applied to UP-algebras. Eur. J. Pure Appl. Math., 12(4):1382-1409, 2019.
[34] S. Sripaeng, K. Tanamoon, and A. Iampan. On anti $Q$-fuzzy UP-ideals and anti $Q$-fuzzy UP-subalgebras of UP-algebras. J. Inf. Optim. Sci., 39(5):1095-1127, 2018.
[35] K. Tanamoon, S. Sripaeng, and A. Iampan. Q-fuzzy sets in UP-algebras. Songklanakarin J. Sci. Technol., 40(1):9-29, 2018.
[36] L. A. Zadeh. Fuzzy sets. Inf. Cont., 8:338-353, 1965.


[^0]:    ${ }^{\dagger}$ This work was supported by the Unit of Excellence, University of Phayao.

    * Corresponding author.

    DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3752
    Email addresses: chishtygm@gmail.com (G. Muhiuddin),
    metawee.faith@gmail.com (M. Songsaeng) aiyared.ia@up.ac.th (A. Iampan)
    https://www.ejpam.com 459 (C) 2020 EJPAM All rights reserved.

