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Abstract. Using the concept of a neutrosophic quadruple number to a fuzzy duplex number,
we introduce the concept of a fuzzy duplex UP-algebra, and investigate some related properties.
Also, we find the necessary condition for a fuzzy duplex UP-set to be a fuzzy duplex UP-algebra.
Furthermore, we study the relationship between special subsets of a UP-algebra and special subsets
of a fuzzy duplex UP-set.
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1. Introduction

The type of the logical algebra, a UP-algebra was introduced by Iampan [9], and it is
known that the class of KU-algebras is a proper subclass of the class of UP-algebras. Later
Somjanta et al. [29] studied fuzzy UP-subalgebras, fuzzy UP-ideals and fuzzy UP-filters of
UP-algebras. Guntasow et al. [7] studied fuzzy translations of a fuzzy set in UP-algebras.
Kesorn et al. [16] studied intuitionistic fuzzy sets in UP-algebras. Kaijae et al. [15]
studied anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. Tanamoon et al. [35] and
Sripaeng et al. [34] introduced the concept of Q-fuzzy sets in UP-algebras, and studied
anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras. Dokkhamdang et
al. [6] introduced the concept of fuzzy UP-subalgebras (fuzzy UP-filters, fuzzy UP-ideals,
fuzzy strong UP-ideals) with thresholds of UP-algebras.

Ansari et al. [3] introduced the concept of graphs associated with commutative
UP-algebras and defined a graph of equivalence classes of commutative UP-algebras.
Songsaeng and Iampan [31–33] studied N -fuzzy sets, fuzzy proper UP-filters, and neu-
trosophic sets in UP-algebras. Senapati et al. [26, 27] studies applied cubic set and
interval-valued intuitionistic fuzzy structure in UP-algebras.
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More concepts on UP-algebras are discussed in [4, 5, 17].
A fuzzy set f in a nonempty set S is a function from S to the closed interval [0, 1].

The concept of a fuzzy set in a nonempty set was first considered by Zadeh [36] in 1965.
The fuzzy set theories developed by Zadeh and others have found many applications in
the domain of mathematics and elsewhere.

The concept of a neutrosophic set was introduced by Smarandache [28] in 1999. Neu-
trosophic algebraic structures in BCK/BCI-algebras are discussed in [11, 12, 19, 21, 30].
Neutrosophic quadruple algebraic structures and hyperstructure are discussed in [1, 2].
Neutrosophic quadruple algebraic structures in BCK/BCI-algebras are discussed in [13,
14, 18, 20, 22].

In this paper, we apply the concept of a neutrosophic quadruple number to a fuzzy
duplex number, introduce the concept of a fuzzy duplex set base on a UP-algebra, which
is called a fuzzy duplex UP-set, and investigate some related properties. We find the
necessary conditions that a fuzzy duplex UP-set form a UP-algebra, which is called a
fuzzy duplex UP-algebra. Furthermore, we study the relationship between special subsets
of a UP-algebra and the same special subsets of a fuzzy duplex UP-set.

2. Basic concepts and preliminary notes on UP-algebras

Before we begin our study, we will give the definition and useful properties of UP-
algebras.

Definition 1. [9] An algebra X = (X, ·, 0) of type (2, 0) is called a UP-algebra, where X
is a nonempty set, · is a binary operation on X, and 0 is a fixed element of X (i.e., a
nullary operation) if it satisfies the following axioms:

(UP-1) (∀x, y, z ∈ X)((y · z) · ((x · y) · (x · z)) = 0),

(UP-2) (∀x ∈ X)(0 · x = x),

(UP-3) (∀x ∈ X)(x · 0 = 0), and

(UP-4) (∀x, y ∈ X)(x · y = 0, y · x = 0⇒ x = y).

From [9], we know that the concept of UP-algebras is a generalization of KU-algebras
(see [23]).

For more examples of UP-algebras, see [6, 10, 24–27].

In a UP-algebra X = (X, ·, 0), the following assertions are valid (see [9, 10]).

(∀x ∈ X)(x · x = 0), (1)

(∀x, y, z ∈ X)(x · y = 0, y · z = 0⇒ x · z = 0), (2)

(∀x, y, z ∈ X)(x · y = 0⇒ (z · x) · (z · y) = 0), (3)

(∀x, y, z ∈ X)(x · y = 0⇒ (y · z) · (x · z) = 0), (4)

(∀x, y ∈ X)(x · (y · x) = 0), (5)
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(∀x, y ∈ X)((y · x) · x = 0⇔ x = y · x), (6)

(∀x, y ∈ X)(x · (y · y) = 0), (7)

(∀a, x, y, z ∈ X)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0), (8)

(∀a, x, y, z ∈ X)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0), (9)

(∀x, y, z ∈ X)(((x · y) · z) · (y · z) = 0), (10)

(∀x, y, z ∈ X)(x · y = 0⇒ x · (z · y) = 0), (11)

(∀x, y, z ∈ X)(((x · y) · z) · (x · (y · z)) = 0), and (12)

(∀a, x, y, z ∈ X)(((x · y) · z) · (y · (a · z)) = 0). (13)

From [9], the binary relation ≤ on a UP-algebra X = (X, ·, 0) defined as follows:

(∀x, y ∈ X)(x ≤ y ⇔ x · y = 0). (14)

Definition 2. [7–9, 29] A nonempty subset S of a UP-algebra X = (X, ·, 0) is called

(1) a UP-subalgebra of X if (∀x, y ∈ S)(x · y ∈ S).

(2) a near UP-filter of X if

(i) the constant 0 of X is in S, and

(ii) (∀x, y ∈ X)(y ∈ S ⇒ x · y ∈ S).

(3) a UP-filter of X if

(i) the constant 0 of X is in S, and

(ii) (∀x, y ∈ X)(x · y ∈ S, x ∈ S ⇒ y ∈ S).

(4) a UP-ideal of X if

(i) the constant 0 of X is in S, and

(ii) (∀x, y, z ∈ X)(x · (y · z) ∈ S, y ∈ S ⇒ x · z ∈ S).

(5) a strong UP-ideal (renamed from a strongly UP-ideal) of X if

(i) the constant 0 of X is in S, and

(ii) (∀x, y, z ∈ X)((z · y) · (z · x) ∈ S, y ∈ S ⇒ x ∈ S).

Guntasow et al. [7] and Iampan [8] proved that the concept of UP-subalgebras is a
generalization of near UP-filters, near UP-filters is a generalization of UP-filters, UP-filters
is a generalization of UP-ideals, and UP-ideals is a generalization of strong UP-ideals.
Furthermore, they proved that the only strong UP-ideal of a UP-algebra X is X.
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3. Fuzzy duplex UP-algebras

In this section, we introduce the concepts of fuzzy duplex UP-numbers and fuzzy
duplex UP-sets, and investigate some properties. We find the necessary conditions that a
fuzzy duplex UP-set form a UP-algebra. Furthermore, we study the relationship between
special subsets of a UP-algebra and the same special subsets of a fuzzy duplex UP-set.

Definition 3. Let X and Y be nonempty sets and T : X → Y be a function. A fuzzy
duplex X-number is an ordered pair (x, yT ), where x, y ∈ X, and T (y) denoted by yT .
The Cartesian product X × Im(T ) is called the fuzzy duplex set based on X. If X is a
UP-algebra, a fuzzy duplex X-number is called a fuzzy duplex UP-number and we say that
X × Im(T ) is the fuzzy duplex UP-set. For any two nonempty subsets A and B of X,
we see that A × T (B) is a nonempty subset of X × Im(T ). If (a, yT ) ∈ A × T (B), then
(x, yT ) ∈ A× T (B) for all x ∈ A.

In what follows, X will denote a UP-algebra (X, ·, 0), Y will denote a nonempty set,
and T : X → Y will be a function.

We define the binary operation � on the fuzzy duplex UP-set X × Im(T ) by

(∀(a, xT ), (b, yT ) ∈ X × Im(T ))((a, xT )� (b, yT ) = (a · b, (x · y)T )). (15)

If the algebra (X × Im(T ),�, 0̃) is a UP-algebra, then it is called the fuzzy duplex UP-
algebra. We denote by ã the fuzzy duplex UP-number, that is, ã = (a1, a2T ) for some
a1, a2 ∈ X, and the zero fuzzy duplex UP-number (0, 0T ) is denoted by 0̃. We define the
binary relation � and the equality

.
= on X × Im(T ) as follows:

(∀(a, xT ), (b, yT ) ∈ X × Im(T ))

(
(a, xT )� (b, yT )⇔ a ≤ b, x ≤ y

(a, xT )
.
= (b, yT )⇔ (a, xT )� (b, yT ), (b, yT )� (a, xT )

)
.

Then we can easily prove that the binary relation � is an order relation on X × Im(T )
and

(∀(a, xT ), (b, yT ) ∈ X × Im(T ))

(
(a, xT )� (b, yT )⇔ (a, xT )� (b, yT ) = 0̃

(a, xT )
.
= (b, yT )⇔ a = b, x = y

)
.

Hence,
.
=⊆= on X × Im(T ).

Example 1. Let X = {0, a, b, c} be a UP-algebra with a fixed element 0 and a binary
operation · defined by the following Cayley table:

· 0 a b c

0 0 a b c
a 0 0 b b
b 0 a 0 b
c 0 a 0 0
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Let T : X → {0.5, 1} be a function defined by

0T = aT = bT = 0.5, cT = 1.

Then the axiom (UP-4) is not satisfied. Indeed, there are (0, aT ), (0, cT ) ∈ X × {0.5, 1}
such that (0, aT ) = (0, 0.5) 6= (0, 1) = (0, cT ) but

(0, aT )� (0, cT ) = (0 · 0, (a · c)T ) = (0, bT ) = (0, 0T ) = 0̃

and

(0, cT )� (0, aT ) = (0 · 0, (c · a)T ) = (0, aT ) = (0, 0T ) = 0̃.

Hence, the algebra (X × {0.5, 1},�, 0̃) is not a UP-algebra.

Theorem 1. The algebra (X × Im(T ),�, 0̃) satisfies the axioms (UP-1), (UP-2), and
(UP-3).

Proof. (UP-1) Let x̃, ỹ, z̃ ∈ X × Im(T ) where x̃ = (x1, x2T ), ỹ = (y1, y2T ), and
z̃ = (z1, z2T ). Then

(ỹ � z̃)� ((x̃� ỹ)� (x̃� z̃))

= ((y1, y2T )� (z1, z2T ))� (((x1, x2T )� (y1, y2T ))� ((x1, x2T )�(z1, z2T )))

= (y1 · z1, (y2 · z2)T )� ((x1 · y1, (x2 · y2)T )� (x1 · z1, (x2 · z2)T ))

= (y1 · z1, (y2 · z2)T )� ((x1 · y1) · (x1 · z1), ((x2 · y2) · (x2 · z2))T )

= ((y1 · z1) · ((x1 · y1) · (x1 · z1)), ((y2 · z2) · ((x2 · y2) · (x2 · z2)))T )

= (0, 0T ) ((UP-1))

= 0̃.

(UP-2) Let x̃ ∈ X × Im(T ) where x̃ = (x1, x2T ). Then

0̃� x̃ = (0, 0T )� (x1, x2T )

= (0 · x1, (0 · x2)T )

= (x1, x2T ) ((UP-2))

= x̃.

(UP-3) Let x̃ ∈ X × Im(T ) where x̃ = (x1, x2T ). Then

x̃� 0̃ = (x1, x2T )� (0, 0T )

= (x1 · 0, (x2 · 0)T )

= (0, 0T ) ((UP-3))

= 0̃.

Hence, (UP-1), (UP-2), and (UP-3) are valid.
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Proposition 1. The algebra (X × Im(T ),�, 0̃) satisfies the following properties:

(1) (∀ã ∈ X × Im(T ))(ã� ã),

(2) (∀ã, b̃, c̃ ∈ X × Im(T ))(ã� b̃, b̃� c̃⇒ ã� c̃),

(3) (∀ã, b̃, c̃ ∈ X × Im(T ))(ã� b̃⇒ c̃� ã� c̃� b̃),

(4) (∀ã, b̃, c̃ ∈ X × Im(T ))(ã� b̃⇒ b̃� c̃� ã� c̃),

(5) (∀ã, b̃ ∈ X × Im(T ))(ã� b̃� ã),

(6) (∀ã, b̃ ∈ X × Im(T ))(ã� b̃� b̃),

(7) (∀x̃, ã, b̃, c̃ ∈ X × Im(T ))(ã� (b̃� c̃)� ã� ((x̃� b̃)� (x̃� c̃))),

(8) (∀x̃, ã, b̃, c̃ ∈ X × Im(T ))(((x̃� ã)� (x̃� b̃))� c̃� (ã� b̃)� c̃),

(9) (∀ã, b̃, c̃ ∈ X × Im(T ))((ã� b̃)� c̃� b̃� c̃),

(10) (∀ã, b̃, c̃ ∈ X × Im(T ))(ã� b̃⇒ ã� c̃� b̃),

(11) (∀ã, b̃, c̃ ∈ X × Im(T ))((ã� b̃)� c̃� ã� (b̃� c̃)), and

(12) (∀x̃, ã, b̃, c̃ ∈ X × Im(T ))((ã� b̃)� c̃� b̃� (x̃� c̃)).

Proof. By Theorem 1, the algebra (X × Im(T ),�, 0̃) satisfies the axioms (UP-1),
(UP-2), and (UP-3).

(1) Let ã ∈ X × Im(T ). Then

0̃ = (0̃� ã)� ((0̃� 0̃)� (0̃� ã)) ((UP-1))

= (0̃� ã)� (0̃� ã) ((UP-2))

= ã� ã. ((UP-2))

Hence, ã� ã.

(2) Let ã, b̃, c̃ ∈ X×Im(T ) be such that ã� b̃ and b̃� c̃. Then ã� b̃ = 0̃ and b̃� c̃ = 0̃.
Thus

ã� c̃ = 0̃� (0̃� (ã� c̃)) ((UP-2))

= (b̃� c̃)� ((ã� b̃)� (ã� c̃))

= 0̃. ((UP-1))

Hence, ã� c̃.

(3) Let ã, b̃ ∈ X × Im(T ) be such that ã� b̃. Then ã� b̃ = 0̃.

(c̃� ã)� (c̃� b̃) = 0̃� ((c̃� ã)� (c̃� b̃)) ((UP-2))
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= (ã� b̃)� ((c̃� ã)� (c̃� b̃))

= 0̃. ((UP-1))

Hence, c̃� ã� c̃� b̃.

(4) Let ã, b̃ ∈ X × Im(T ) be such that ã� b̃. Then ã� b̃ = 0̃.

(b̃� c̃)� (ã� c̃) = (b̃� c̃)� (0̃� (ã� c̃)) ((UP-2))

= (b̃� c̃)� ((ã� b̃)� (ã� c̃))

= 0̃. ((UP-1))

Hence, b̃� c̃� ã� c̃.

(5) Let ã, b̃ ∈ X × Im(T ). Then

ã� (b̃� ã) = (0̃� ã)� (0̃� (b̃� ã)) ((UP-2))

= (0̃� ã)� ((b̃� 0̃)� (b̃� ã)) ((UP-3))

= 0̃. ((UP-1))

Hence, ã� b̃� ã.

(6) Let ã, b̃ ∈ X × Im(T ). By (UP-3) and (1), we have ã� (b̃� b̃) = ã� 0̃ = 0̃. Hence,
ã� b̃� b̃.

(7) Let x̃, ã, b̃, c̃ ∈ X × Im(T ). By (UP-1), we have (b̃ � c̃) � ((x̃ � b̃) � (x̃ � c̃)) = 0̃.
Thus b̃� c̃� (x̃� b̃)� (x̃� c̃). By (3), we have ã� (b̃� c̃)� ã� ((x̃� b̃)� (x̃� c̃)).

(8) Let x̃, ã, b̃, c̃ ∈ X × Im(T ). By (UP-1), we have (ã � b̃) � ((x̃ � ã) � (x̃ � b̃)) = 0̃.
Thus ã� b̃� (x̃� ã)� (x̃� b̃). By (4), we have ((x̃� ã)� (x̃� b̃))� c̃� (ã� b̃)� c̃.

(9) Let ã, b̃, c̃ ∈ X × Im(T ). Then

0̃ = (((ã� 0̃)� (ã� b̃))� c̃)� ((0̃� b̃)� c̃) ((8))

= ((0̃� (ã� b̃))� c̃)� (b̃� c̃) ((UP-2), (UP-3))

= ((ã� b̃)� c̃)� (b̃� c̃). ((UP-2))

Hence, (ã� b̃)� c̃� b̃� c̃.

(10) Let ã, b̃, c̃ ∈ X × Im(T ) be such that ã� b̃. By (3), we have (c̃� ã)� (c̃� b̃) = 0̃.
Thus

ã� (c̃� b̃) = 0̃� (ã� (c̃� b̃)) ((UP-2))

= ((c̃� ã)� (c̃� b̃))� (ã� (c̃� b̃))

= 0̃. ((9))

Hence, ã� c̃� b̃.
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(11) Let ã, b̃, c̃ ∈ X × Im(T ). By (9), we have (ã � b̃) � c̃ � b̃ � c̃. By (5), we have
b̃� c̃� ã� (b̃� c̃). It follows from (2) that (ã� b̃)� c̃� ã� (b̃� c̃).

(12) Let x̃, ã, b̃, c̃ ∈ X × Im(T ). By (5), we have b̃� ã� b̃ and ã� b̃� x̃� (ã� b̃). By
(2), we have b̃� x̃� (ã� b̃). By (4), we have

(x̃� (ã� b̃))� (x̃� c̃)� b̃� (x̃� c̃).

By (UP-1), we have ((ã� b̃)� c̃)� ((x̃� (ã� b̃))� (x̃� c̃)) = 0̃. Then

(ã� b̃)� c̃� (x̃� (ã� b̃))� (x̃� c̃).

It follows from (2) that (ã� b̃)� c̃� b̃� (x̃� c̃).

Theorem 2. If T : X → Y is a constant function, that is, the inverse image T−1({0T}) =
X, then the algebra (X × Im(T ),�, 0̃) is a UP-algebra which is UP-isomorphic to X.

Proof. (UP-4) Let x̃, ỹ ∈ X × Im(T ) be such that x̃ � ỹ = 0̃ and ỹ � x̃ = 0̃ where
x̃ = (x1, x2T ), ỹ = (y1, y2T ). Then

(x1 · y1, (x2 · y2)T ) = (x1, x2T )� (y1, y2T ) = (0, 0T )

and

(y1 · x1, (y2 · x2)T ) = (y1, y2T )� (x1, x2T ) = (0, 0T ).

It follows that x1 ·y1 = 0 and y1 ·x1 = 0. By (UP-4), we have x1 = y1. Since T is constant,
we have x2T = y2T . Thus x̃ = (x1, x2T ) = (y1, y2T ) = ỹ, (UP-4) holding. By Theorem 1,
we have (X × Im(T ),�, 0̃) is a UP-algebra. Finally, X and X × Im(T ) are UP-isomorphic
under the UP-isomorphism sending x 7→ (x, 0T ).

Corollary 1. If Y is a singleton set, then the algebra (X × Im(T ),�, 0̃) is a UP-algebra.

Proof. If Y is a singleton set, then T : X → Y is a constant function. By Theorem 2,
we have the algebra (X × Im(T ),�, 0̃) is a UP-algebra.

Theorem 3. If T : X → Y is a function with the inverse image T−1({0T}) = {0}, then
the algebra (X × Im(T ),�, 0̃) is a UP-algebra.

Proof. (UP-4) Let x̃, ỹ ∈ X × Im(T ) be such that x̃ � ỹ = 0̃ and ỹ � x̃ = 0̃ where
x̃ = (x1, x2T ), ỹ = (y1, y2T ). Then

(x1 · y1, (x2 · y2)T ) = (x1, x2T )� (y1, y2T ) = (0, 0T )

and

(y1 · x1, (y2 · x2)T ) = (y1, y2T )� (x1, x2T ) = (0, 0T ).

It follows that x1 · y1 = 0 and y1 · x1 = 0, and x2 · y2, y2 · x2 ∈ T−1({0T}) = {0}, that is,
x2·y2 = 0 and y2·x2 = 0. By (UP-4), we have x1 = y1 and x2 = y2. Thus x2T = y2T and so
x̃ = (x1, x2T ) = (y1, y2T ) = ỹ, (UP-4) holding. By Theorem 1, we have (X × Im(T ),�, 0̃)
is a UP-algebra.
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Corollary 2. If T : X → Y is an injective function, then the algebra (X × Im(T ),�, 0̃)
is a UP-algebra.

Proof. If T : X → Y is an injective function, then the inverse image T−1({0T}) = {0}.
By Theorem 3, we have the algebra (X × Im(T ),�, 0̃) is a UP-algebra.

Theorem 4. Let A and B be nonempty subsets of a UP-algebra X and (X× Im(T ),�, 0̃)
be a fuzzy duplex UP-algebra.

(1) If A and B are UP-subalgebras of X, then A×T (B) is a UP-subalgebra of X×Im(T ).

(2) If A× T (B) is a UP-subalgebra of X × Im(T ), then A is a UP-subalgebra of X.

Proof. (1) Assume that A and B are UP-subalgebras of X and let x̃, ỹ ∈ A × T (B)
where x̃ = (a1, b1T ) and ỹ = (a2, b2T ). Then a1 · a2 ∈ A and b1 · b2 ∈ B. Thus x̃ � ỹ =
(a1, b1T )�(a2, b2T ) = (a1 ·a2, (b1 ·b2)T ) ∈ A×T (B). Hence, A×T (B) is a UP-subalgebra
of X × Im(T ).

(2) Assume that A × T (B) is a UP-subalgebra of X × Im(T ). Let x, y ∈ A. Since
(0, 0T ) ∈ A × T (B), we have Then (x, 0T ), (y, 0T ) ∈ A × T (B). Thus (x · y, 0T ) =
(x · y, (0 · 0)T ) = (x, 0T )� (y, 0T ) ∈ A× T (B), so x · y ∈ A. Hence, A is a UP-subalgebra
of X.

Theorem 5. Let A and B be nonempty subsets of a UP-algebra X and (X× Im(T ),�, 0̃)
be a fuzzy duplex UP-algebra.

(1) If A and B are near UP-filters of X, then A×T (B) is a near UP-filter of X×Im(T ).

(2) If A× T (B) is a near UP-filter of X × Im(T ), then A is a near UP-filter of X.

Proof. (1) Assume that A and B are near UP-filters of X. Since 0 ∈ A and 0 ∈ B, we
have 0̃ = (0, 0T ) ∈ A× T (B). Let x̃ ∈ X × Im(T ) and ỹ ∈ A× T (B) where x̃ = (x1, x2T )
and ỹ = (a, bT ). Thus x1 · a ∈ A and x2 · b ∈ B, so x̃ � ỹ = (x1, x2T ) � (a, bT ) =
(x1 · a, (x2 · b)T ) ∈ A× T (B). Hence, A× T (B) is a near UP-filter of X × Im(T ).

(2) Assume that A × T (B) is a near UP-filter of X × Im(T ). Since 0̃ = (0, 0T ) ∈
A × T (B), we have 0 ∈ A. Let x ∈ X and a ∈ A. Then (x, 0T ) ∈ X × Im(T ) and
(a, 0T ) ∈ A× T (B). Thus (x · a, 0T ) = (x · a, (0 · 0)T ) = (x, 0T )� (a, 0T ) ∈ A× T (B), so
x · a ∈ A. Hence, A is a near UP-filter of X.

Theorem 6. Let A and B be nonempty subsets of a UP-algebra X and (X× Im(T ),�, 0̃)
be a fuzzy duplex UP-algebra. If A × T (B) is a UP-filter of X × Im(T ), then A is a
UP-filter of X.

Proof. Assume that A×T (B) is a UP-filter of X×Im(T ). Since 0̃ = (0, 0T ) ∈ A×T (B),
we have 0 ∈ A. Let x, a ∈ X be such that a · x ∈ A and a ∈ A. Then (a, 0T )� (x, 0T ) =
(a ·x, (0 ·0)T ) = (a ·x, 0T ) ∈ A×T (B) and (a, 0T ) ∈ A×T (B). Thus (x, 0T ) ∈ A×T (B),
so x ∈ A. Hence, A is a UP-filter of X.



A. Iampan, M. Songsaeng, G. Muhiuddin / Eur. J. Pure Appl. Math, 13 (3) (2020), 459-471 468

Theorem 7. Let A and B be nonempty subsets of a UP-algebra X and (X× Im(T ),�, 0̃)
be a fuzzy duplex UP-algebra. If A×T (B) is a UP-ideal of X×Im(T ), then A is a UP-ideal
of X.

Proof. Assume that A × T (B) is a UP-ideal of X × Im(T ). Since 0̃ = (0, 0T ) ∈
A × T (B), we have 0 ∈ A. Let x, y, z ∈ X be such that x · (y · z) ∈ A and y ∈ A. Then
(x, 0T )� ((y, 0T )� (z, 0T )) = (x · (y · z), (0 · (0 · 0))T ) = (x · (y · z), 0T ) ∈ A× T (B) and
(y, 0T ) ∈ A× T (B). Thus (x · z, 0T ) = (x · z, (0 · 0)T ) = (x, 0T )� (z, 0T ) ∈ A× T (B), so
x · z ∈ A. Hence, A is a UP-ideal of X.

The following example shows that the sentence “if A and B are UP-filters (resp., UP-
ideals) of X, then A× T (B) is a UP-filter (resp., UP-ideal) of X × Im(T )” does not hold
in general.

Example 2. Let X = {0, a, b, c} be a UP-algebra with a fixed element 0 and a binary
operation · defined by the following Cayley table:

· 0 a b c

0 0 a b c
a 0 0 b b
b 0 a 0 a
c 0 0 0 0

Let T : X → {0.5, 0.7, 1} be a function defined by

0T = 0.5, aT = bT = 0.7, cT = 1.

Let A = {0, a}. Then A is a UP-ideal (also a UP-filter) of X and

A× T (A) = {(0, 0T ), (0, aT ), (a, 0T ), (a, aT )}.

Since (0, aT ) � (0, cT ) = (0, bT ) = (0, aT ) ∈ A × T (A) and (0, aT ) ∈ A × T (A) but
(0, cT ) /∈ A× T (A). Hence, A× T (A) is not a UP-filter (also not a UP-ideal) of X.

Theorem 8. Let A and B be nonempty subsets of a UP-algebra X and (X× Im(T ),�, 0̃)
be a fuzzy duplex UP-algebra.

(1) If A and B are strong UP-ideals of X, then A × T (B) is a strong UP-ideal of
X × Im(T ).

(2) If A× T (B) is a strong UP-ideal of X × Im(T ), then A is a strong UP-ideal of X.

Proof. (1) Assume that A and B are strong UP-ideals of X. Then A = B = X, so
A× T (B) = X × Im(T ). Hence, A× T (B) is a strong UP-ideal of X × Im(T ).

(2) Assume that A × T (B) is a strong UP-ideal of X × Im(T ). Then A × T (B) =
X × Im(T ), so A = X. Hence, A is a strong UP-ideal of X.
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4. Conclusions

In this paper, we have introduced the concept of a fuzzy duplex set base on a UP-
algebra, which is called a fuzzy duplex UP-set, and investigated some related properties.
We have found the necessary conditions that a fuzzy duplex UP-set form a UP-algebra,
which is called a fuzzy duplex UP-algebra. Furthermore, we have studied the relationship
between special subsets of a UP-algebra and the same special subsets of a fuzzy duplex
UP-set and have presented conflicting examples for certain relationships.
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