EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 5, 2020, 1110-1130
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Special Issue Dedicated to Professor Hari M. Srivastava On the Occasion of his 80th Birthday

Solution of Delay Differential equation via N_{1}^{v} iteration algorithm

Nisha Sharma ${ }^{1}$, Lakshmi Narayan Mishra ${ }^{2, *}$, Vishnu Narayan Mishra ${ }^{3}$, Shikha Pandey ${ }^{4}$
${ }^{1}$ Department of Mathematics, Assistant Professor, Pt. J.L.N. Govt. College, Faridabad, Haryana 121 002, India
${ }^{2}$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Vellore 632 014, Tamil Nadu, India
${ }^{3}$ Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh 484 887, India
${ }^{4}$ Department of Mathematics, School of Sciences and Languages, VIT-AP University, Amaravati 522 237, Andhra Pradesh, India

Abstract

The aim of this paper is to define a new iteration scheme N_{1}^{v} which converges to a fixed point faster than some previously existing methods such as Picard, Mann, Ishikawa, Noor, SP, CR, S, Picard-S, Garodia, K and K^{*} methods etc. The effectiveness and efficiency of our algorithm is confirmed by numerical example and some strong convergence, weak convergence, T-stability and data dependence results for contraction mapping are also proven. Moreover, it is shown that differential equation with retarted argument is solved using N_{1}^{v} iteration process.

2020 Mathematics Subject Classifications: $47 \mathrm{H} 09,47 \mathrm{H} 10$
Key Words and Phrases: Iteration schemes, N_{1}^{v} iteration scheme, Convergence analysis, T stability, Data Dependency

* Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v13i5.3756
Email addresses: nnishaa.bhardwaj@gmail.com (N. Sharma), lakshminarayanmishra04@gmail.com (L.N. Mishra), vishnunarayanmishra@gmail.com (V.N. Mishra), sp1486@gmail.com (S. Pandey)

1. Introduction

Throughout in this paper, we will denote set of natural numbers by \mathbb{N} and set of real numbers by \mathbb{R}. A mapping T on a subset C of a Banach space E is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \text { for all } x, y \in C .
$$

An element $q \in C$ is said to be a fixed point of T if $q=T(q)$. From now on, we will denote set of all fixed points of T by T_{f}. A mapping $T: C \rightarrow C$ is said to be quasinonexpansive mappings if $T_{f} \neq \emptyset$ and $\|T x-T q\| \leq\|x-q\|$ for all $x \in C$ and $q \in T_{f}$. The existence of fixed points for nonexpansive mappings in the setting of Banach spaces was studied independently by Browder [3], Gohde [6] and Kirk [8]. They proved that, if C is nonempty closed bounded and convex subset of a uniformly convex Banach space, then every nonexpansive mapping $T: C \rightarrow C$ has at-least one fixed point. A numbers of generalization of nonexpansive mappings have been considered by some authors in recent years.
It is natural to study the computation of fixed points for the known existence results, which is not an easy task. The Banach contraction mapping principle uses Picard iteration process $x_{n+1}=T x_{n}$ for approximation of the unique fixed point. Some other well-known iteration schemes are Mann [9], Ishikawa [7], S [13], Noor [10], Abbas [1], Thakur et. al. [4] and so on. Speed of convergence plays an important role for an iteration process to be preferred on another iteration process. Rhoades [12] mentioned that the Mann iteration process for decreasing function converge faster than the Ishikawa iteration process and for increasing function the Ishikawa iteration process is better than the Mann iteration process. More details can be found in [16], [18], [15], [19], [5].
The most popular and simplest iteration method is formulated by

$$
\left\{\begin{array}{l}
p_{0} \in C \tag{1.3}\\
p_{n+1}=T p_{n}, \quad n \in \mathbb{N}
\end{array}\right.
$$

and is known as Picard iteration method, which is communally used to approximate fixed point of contraction mappings satisfying

$$
\begin{equation*}
\|T x-T y\| \leq \mu\|x-y\|, \quad \mu \in(0,1) \tag{1.4}
\end{equation*}
$$

for all $x, y \in C$. The subsequent iteration methods are mention to as Mann, Ishikawa, Noor, SP, S, CR, Picard-S, Garodia's, K and K^{*} iteration methods, respectively:

$$
\begin{align*}
& \left\{\begin{array}{l}
v_{0} \in C, \\
\zeta_{n+1}=\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n},
\end{array} \quad n \in \mathbb{N},\right. \tag{1.5}\\
& \left\{\begin{array}{l}
v_{0} \in C, \\
v_{n+1}=\left(1-\sigma_{n}^{0}\right) v_{n}+\sigma_{n}^{0} T w_{n}, \\
w_{n}=\left(1-\sigma_{n}^{1}\right) v_{n}+\sigma_{n}^{1} T v_{n},
\end{array} \quad n \in \mathbb{N},\right. \tag{1.6}
\end{align*}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
w_{0} \in C, \\
w_{n+1}=\left(1-\sigma_{n}^{0}\right) w_{n}+\sigma_{n}^{0} T w_{n}, \\
v_{n}=\left(1-\sigma_{n}^{1}\right) w_{n}+\sigma_{n}^{1} T u_{n}, \\
u_{n}=\left(1-\sigma_{n}^{2}\right) w_{n}+\sigma_{n}^{2} T w_{n}, \quad n \in \mathbb{N},
\end{array}\right. \tag{1.7}\\
& \left\{\begin{array}{l}
q_{0} \in C, \\
q_{n+1}=\left(1-\sigma_{n}^{0}\right) r_{n}+\sigma_{n}^{0} T r_{n}, \\
r_{n}=\left(1-\sigma_{n}^{1}\right) s_{n}+\sigma_{n}^{1} T s_{n}, \\
s_{n}=\left(1-\sigma_{n}^{2}\right) q_{n}+\sigma_{n}^{2} T q_{n}, \quad n \in \mathbb{N},
\end{array}\right. \tag{1.8}\\
& \left\{\begin{array}{l}
t_{0} \in C, \\
t_{n+1}=\left(1-\sigma_{n}^{0}\right) T t_{n}+\sigma_{n}^{0} T u_{n}, \\
u_{n}=\left(1-\sigma_{n}^{1}\right) t_{n}+\sigma_{n}^{1} T t_{n}, \quad n \in \mathbb{N},
\end{array}\right. \tag{1.9}\\
& \left\{\begin{array}{l}
u_{0} \in C, \\
u_{n+1}=\left(1-\sigma_{n}^{0}\right) v_{n}+\sigma_{n}^{0} T v_{n}, \\
v_{n}=\left(1-\sigma_{n}^{1}\right) T u_{n}+\sigma_{n}^{1} T w_{n}, \\
u_{n}=\left(1-\sigma_{n}^{2}\right) u_{n}+\sigma_{n}^{2} T u_{n}, \quad n \in \mathbb{N},
\end{array}\right. \tag{1.10}\\
& \left\{\begin{array}{l}
\jmath_{0} \in C, \\
\jmath_{n+1}=T k_{n}, \\
k_{n}=\left(1-\sigma_{n}^{0}\right) T \jmath_{n}+\sigma_{n}^{0} T \ell_{n}, \\
\ell_{n}=\left(1-\sigma_{n}^{1}\right) \jmath_{n}+\sigma_{n}^{1} T \jmath_{n}, \quad n \in \mathbb{N},
\end{array}\right. \tag{1.11}\\
& \left\{\begin{array}{l}
x_{0}^{\prime \prime} \in C, \\
x_{n+1}^{\prime \prime}=T y_{n}^{\prime \prime}, \\
y_{n}^{\prime \prime}=\left(1-\sigma_{n}^{0}\right) z_{n}^{\prime \prime}+\sigma_{n}^{0} T z_{n}^{\prime \prime}, \\
z_{n}^{\prime \prime}=T x_{n}^{\prime \prime},
\end{array} \quad n \in \mathbb{N},\right. \tag{1.12}\\
& \left\{\begin{array}{l}
\zeta_{0} \in C, \\
\zeta_{n+1}=T \eta_{n}, \\
\eta_{n}=T\left(\left(1-\sigma_{n}^{0}\right) T \zeta_{n}+\sigma_{n}^{0} T \theta_{n}\right), \\
\theta_{n}=\left(1-\sigma_{n}^{1}\right) \zeta_{n}+\sigma_{n}^{1} T \zeta_{n}, \quad n \in \mathbb{N}
\end{array}\right. \tag{1.13}
\end{align*}
$$

$$
\left\{\begin{array}{l}
x_{0}^{\prime} \in C \tag{1.14}\\
x_{n+1}^{\prime}=T y_{n}^{\prime}, \\
y_{n}^{\prime}=T\left(\left(1-\sigma_{n}^{0}\right) z_{n}^{\prime}+\sigma_{n}^{0} T z_{n}^{\prime}\right), \\
z_{n}^{\prime}=\left(1-\sigma_{n}^{1}\right) x_{n}^{\prime}+\sigma_{n}^{1} T x_{n}^{\prime}, \quad n \in \mathbb{N}
\end{array}\right.
$$

where $\alpha_{n}, \beta_{n} \in(0,1)$.

2. Preliminaries

The following definitions about the rate of convergence are due to Berinde [2].
Definition 1. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be two sequences of real numbers with limits a and C, respectively. Assume that there exists

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|a_{n}-a\right|}{\left|b_{n}-b\right|}=\ell, \tag{1.15}
\end{equation*}
$$

(i) If $\ell=0$, then we say that $\left\{a_{n}\right\}_{n=0}^{\infty}$ converges faster to a than $\left\{b_{n}\right\}_{n=0}^{\infty}$ to C.
(ii) If $0<\ell<\infty$, then we say that $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ have the same rate of convergence.

Definition 2. Suppose that for two fixed point iteration processes $\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ both converging to the same fixed point p, the following error estimates

$$
\begin{equation*}
\left\|u_{n}-p\right\| \leq a_{n} \tag{1.16}
\end{equation*}
$$

for all $n \in \mathbb{N}$

$$
\begin{equation*}
\left\|v_{n}-p\right\| \leq b_{n} \tag{1.17}
\end{equation*}
$$

for all $n \in \mathbb{N}$, are available where $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ are two sequences of positive numbers (converging to zero). If $\left\{a_{n}\right\}_{n=0}^{\infty}$ converges faster than $\left\{b_{n}\right\}_{n=0}^{\infty}$, then $\left\{u_{n}\right\}_{n=0}^{\infty}$ converges faster than $\left\{v_{n}\right\}_{n=0}^{\infty}$ to p.

Recent study of Ullah and Muhammad (1.14), Hussin et. al. (1.13) proved that their iterative methods converges faster than all the above mentioned iterative methods for a different class of mappings which include the aforementioned class of contraction operators. Now, the question arises whether it is possible to find scheme which is faster than K^{*}.
Inspired by the works mentioned above, we introduce the following iteration method
namely N_{1}^{v} iteration:

$$
\left\{\begin{array}{l}
\zeta_{0} \in C \tag{1.18}\\
\theta_{n}=T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}\right) \\
\eta_{n}=T \theta_{n}, \\
\zeta_{n+1}=T \eta_{n}, \quad n \in \mathbb{N}
\end{array}\right.
$$

Let E be a Banach space and C be a nonempty closed convex subset of E. Let $\left\{x_{n}\right\}$ be a bounded sequence in C. For $x \in E$, set

$$
r\left(x,\left\{x_{n}\right\}\right)=\limsup _{n \rightarrow \infty}\left\|x-x_{n}\right\|
$$

The asymptotic radius of $\left\{x_{n}\right\}$ relative to C is given by

$$
r\left(C,\left\{x_{n}\right\}\right)=\inf \left\{r\left(x,\left\{x_{n}\right\}\right): x \in C\right\} .
$$

The asymptotic centre of $\left\{x_{n}\right\}$ relative to C is the set

$$
A\left(C,\left\{x_{n}\right\}\right)=\left\{x \in C: r\left(x,\left\{x_{n}\right\}\right)=r\left(C,\left\{x_{n}\right\}\right)\right\} .
$$

It is well-known that in a uniformly convex Banach spaces, $A\left(C, x_{n}\right)$ consists of exactly one point. Also, $A\left(C, x_{n}\right)$ is nonempty and convex in the case when C is weakly compact and convex, see e.g., [14, 17]. Following are some basic definitions and results.

Definition 3. A Banach space E is said to be uniformly convex if for each $\varepsilon \in(0,2]$, there is $a \lambda>0$ such that for every $x, y \in E$,

$$
\left.\begin{array}{r}
\|x\| \leq 1 \\
\|y\| \leq 1 \\
\|x-y\|>\varepsilon
\end{array}\right\} \Longrightarrow \frac{1}{2}\|x+y\| \leq(1-\lambda)
$$

Definition 4. [11] A Banach space E is said to have Opial's property if for each sequence $\left\{x_{n}\right\}$ in E which weakly converges to $x \in E$ and for every $y \in E$, it follows the following

$$
\limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\limsup _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

Definition 5. Let E and E^{\prime} be two Banach spaces and let $T: E \rightarrow E^{\prime}$. Then the mapping T is said to be demiclosed if $x \rightharpoonup x \in E$ and $T x_{n} \rightharpoonup y$ in E^{\prime} imply $T x=y$.

Lemma 1. Let C be a non-empty closed convex subset of a uniformly convex Banach space E and T be a non-expansive on C. Then $I-T$ is demiclosed at 0 .

3. Convergence Analysis

Theorem 1. Suppose that there is a Banach space E, having subset C, which is nonempty closed and convex. Also, let there be a contraction mapping $T: C \rightarrow C$. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ be an iterative sequence generated by N_{1}^{v} and with real sequences $\left\{\sigma_{n}^{0}\right\}_{n=0}^{\infty}$ and $\left\{\sigma_{n}^{1}\right\}_{n=0}^{\infty}$ $\in[0,1]$ such that $\sum_{n=0}^{\infty} \sigma_{n}^{0} \sigma_{n}^{1}=\infty$. Then, $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ converges strongly to a fixed point of T.

Proof. It is obvious from Banach contraction theorem that existence and uniqueness of fixed point x_{δ} is guaranteed. Now, it is to show that $\zeta_{n} \rightarrow x_{\delta}$ for $n \rightarrow \infty$. From N_{1}^{v} iteration scheme it follows that,

$$
\begin{aligned}
\left\|\theta_{n}-x_{\delta}\right\| & =\left\|T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}\right)-x_{\delta}\right\| \\
& =\left\|T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}\right)-T x_{\delta}\right\| \\
& \leq \xi\left\|\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}-x_{\delta}\right\| \\
& \leq \xi\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|+\xi \sigma_{n}^{0}\left\|T \zeta_{n}-T x_{\delta}\right\| \\
& \leq \xi\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|+\sigma_{n}^{0} \xi^{2}\left\|\zeta_{n}-x_{\delta}\right\| \\
& =\xi\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|
\end{aligned}
$$

also,

$$
\begin{aligned}
\left\|\eta_{n}-x_{\delta}\right\| & \leq\left\|T \theta_{n}-x_{\delta}\right\| \\
& =\left\|T \theta_{n}-T x_{\delta}\right\| \\
& \leq \xi\left\|\theta_{n}-x_{\delta}\right\|
\end{aligned}
$$

using the value of $\left\|\theta_{n}-x_{\delta}\right\|$, we have

$$
\left\|\eta_{n}-x_{\delta}\right\| \leq \xi^{2}\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|
$$

similarly, we have

$$
\begin{aligned}
\left\|\zeta_{n+1}-x_{\delta}\right\| & =\left\|T \eta_{n}-x_{\delta}\right\| \\
& =\left\|T \eta_{n}-T x_{\delta}\right\| \\
& =\xi\left\|\eta_{n}-x_{\delta}\right\|
\end{aligned}
$$

using the value of $\left\|\eta_{n}-x_{\delta}\right\|$ and $\left\|\zeta_{n}-x_{\delta}\right\|$, we have

$$
\left\|\zeta_{n+1}-x_{\delta}\right\| \leq \xi^{3}\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|
$$

Now, inductively using the behaviour of sequence, we have

$$
\left\|\zeta_{n}-x_{\delta}\right\| \leq \xi^{3}\left(1-(1-\xi) \sigma_{n-1}^{0}\right)\left\|x_{n-1}-x_{\delta}\right\|
$$

$$
\left\|x_{n-1}-x_{\delta}\right\| \leq \xi^{3}\left(1-(1-\xi) \sigma_{n-2}^{0}\right)\left\|x_{n-2}-x_{\delta}\right\|
$$

the repetition results

$$
\left\|x_{1}-x_{\delta}\right\| \leq \xi^{3}\left(1-(1-\xi) \sigma_{0}^{0}\right)\left\|\zeta_{0}-x_{\delta}\right\|
$$

Proceeding in the same manner, we have

$$
\left\|\zeta_{n+1}-x_{\delta}\right\| \leq\left\|\zeta_{0}-x_{\delta}\right\| \xi^{3(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)
$$

where $\left(1-\sigma_{n}^{0}(1-\xi)\right) \in(0,1)$ because $\xi \in(0,1)$ and $\sigma_{n}^{0} \in[0,1]$, for all $n \in \mathbb{N}$, Since we know that $1-x \leq e^{-x}$ for all $x \in[0,1]$, so from the above inequality

$$
\left\|\zeta_{n+1}-x_{\delta}\right\| \leq \frac{\left\|\zeta_{0}-x_{\delta}\right\| \xi^{3(n+1)}}{e^{(1-\xi) \sum_{k=0}^{n} \sigma_{k}^{0}}}
$$

Taking the limit both sides of this inequality, it yields

$$
\lim _{n \rightarrow \infty}\left\|\zeta_{n+1}-x_{\delta}\right\|=0
$$

which implies that $\zeta_{n} \rightarrow x_{\delta}$ for $n \rightarrow \infty$, as required.

Theorem 2. Suppose that there is a Banach space E, having subset C, which is nonempty closed and convex and also that there is a contraction mapping T on C with a fixed point x_{δ}. For given $x_{0}^{\prime}=\zeta_{0} \in C$, let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ and $\left\{x_{n}^{\prime}\right\}_{n=0}^{\infty}$ be the iterative sequences generated by N_{1}^{v} and K^{*} respectively, with real sequences $\left\{\sigma_{n}^{0}\right\}_{n=0}^{\infty},\left\{\sigma_{n}^{1}\right\}_{n=0}^{\infty} \in(0,1)$ such that $\sum_{k=0}^{\infty} \sigma_{n}^{0}=\infty$ and for all $n \in \mathbb{N}$. Then N_{1}^{v} converges to x_{δ} faster than K^{*} iteration scheme.

Proof. Using The result of Theorem 1 it is clear that

$$
\left\|\zeta_{n+1}-x_{\delta}\right\| \leq\left\|\zeta_{0}-x_{\delta}\right\| \xi^{3(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)
$$

Now, for the K^{*} iteration scheme,

$$
\begin{aligned}
\left\|z_{n}^{\prime}-x_{\delta}\right\| & =\left\|\left(1-\sigma_{n}^{1}\right) x_{n}^{\prime}+\sigma_{n}^{0} T x_{n}^{\prime}-x_{\delta}\right\| \\
& \leq\left(1-\sigma_{n}^{1}\right)\left\|x_{n}^{\prime}-x_{\delta}\right\|+\sigma_{n}^{0}\left\|T x_{n}^{\prime}-T x_{\delta}\right\| \\
& \leq\left(1-\sigma_{n}^{1}\right)\left\|x_{n}^{\prime}-x_{\delta}\right\|+\xi \sigma_{n}^{0}\left\|x_{n}^{\prime}-x_{\delta}\right\| \\
& \leq\left(1-\sigma_{n}^{1}(1-\xi)\right)\left\|x_{n}^{\prime}-x_{\delta}\right\|
\end{aligned}
$$

Similarly

$$
\left\|y_{n}^{\prime}-x_{\delta}\right\| \leq \| T\left(\left(\sigma_{n}^{0} z_{n}^{\prime}+\left(1-\sigma_{n}^{0}\right) T z_{n}^{\prime}\right)-x_{\delta} \|\right.
$$

$$
\begin{aligned}
& \leq \xi\left\|\sigma_{n}^{0} z_{n}^{\prime}+\left(1-\sigma_{n}^{0}\right) T z_{n}^{\prime}-x_{\delta}\right\| \\
& \leq \xi \sigma_{n}^{0}\left\|z_{n}^{\prime}-x_{\delta}\right\|+\left(1-\sigma_{n}^{0}\right)\left\|T z_{n}^{\prime}-x_{\delta}\right\| \\
& \leq \xi \sigma_{n}^{0}\left\|z_{n}^{\prime}-x_{\delta}\right\|+\xi\left(1-\sigma_{n}^{0}\right) \xi\left\|z_{n}^{\prime}-x_{\delta}\right\| \\
& \leq \xi\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|z_{n}^{\prime}-x_{\delta}\right\| \\
& \leq \xi\left(1-(1-\xi) \sigma_{n}^{0}\right)\left(1-(1-\xi) \sigma_{n}^{1}\right)\left\|x_{n}^{\prime}-x_{\delta}\right\|
\end{aligned}
$$

similarly,

$$
\begin{aligned}
\left\|x_{n+1}^{\prime}-x_{\delta}\right\| & =\left\|T y_{n}^{\prime}-x_{\delta}\right\| \\
& \leq \xi\left\|y_{n}^{\prime}-x_{\delta}\right\|
\end{aligned}
$$

using the value of $\left\|y_{n}^{\prime}-x_{\delta}\right\|$ and by using the fact that $\left(1-(1-\xi) \sigma_{n}^{1}\right)<0$ and finally we have

$$
\begin{aligned}
\left\|x_{n+1}^{\prime}-x_{\delta}\right\| & \leq \xi^{2}\left(1-(1-\xi) \sigma_{n}^{0}\right) \\
\left\|x_{n}^{\prime}-x_{\delta}\right\| & \leq \xi^{2}\left(\xi-(1-\xi) \sigma_{n-1}^{0}\right)\left\|x_{n-1}^{\prime}-x_{\delta}\right\|
\end{aligned}
$$

also,

$$
\left\|x_{n-1}^{\prime}-x_{\delta}\right\| \leq \xi^{2}\left(1-(1-\xi) \sigma_{n-2}^{0}\right)\left\|x_{n-2}^{\prime}-x_{\delta}\right\|
$$

continually, we have

$$
\left\|x_{1}^{\prime}-x_{\delta}\right\| \leq \xi^{2}\left(1-(1-\xi) \sigma_{0}^{0}\right)\left\|x_{0}^{\prime}-x_{\delta}\right\|
$$

So, it is quite obvious that the following deduction

$$
\left\|x_{n+1}^{\prime}-x_{\delta}\right\| \leq\left\|x_{0}^{\prime}-x_{\delta}\right\| \xi^{2(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)
$$

is correct. Now, let

$$
r_{n}=\left\|\zeta_{0}-x_{\delta}\right\| \xi^{3(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)
$$

and

$$
p_{n}=\left\|x_{0}^{\prime}-x_{\delta}\right\| \xi^{2(n+1)} \prod_{k=1}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)
$$

Then

$$
\frac{p_{n}}{r_{n}}=\frac{\left\|x_{0}^{\prime}-x_{\delta}\right\| \xi^{2(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)}{\left\|\zeta_{0}-x_{\delta}\right\| \xi^{3(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)}
$$

approaches to 0 as n approaches to ∞. Thus, $\left\{\zeta_{n}\right\}$ is a sequence defined in N_{1}^{v} iteration defined by (1.14), then $\left\{\zeta_{n}\right\}$ converges faster than the iteration scheme of Ullah and Muhhamad known as K^{*}.

Theorem 3. Suppose that there is a Banach space E, having subset C, which is nonempty closed and convex and also that there is a contraction mapping T with contraction factor $\xi \in(0,1)$ such that $T_{F} \neq \emptyset$. if $\left\{\zeta_{n}\right\}$ is a sequence defined in N_{1}^{v} iteration defined by (1.14), then $\left\{x_{n}^{\prime \prime}\right\}$ converges faster than the iteration scheme of Garodia and Uddin defined by (1.12).

Proof. Using the result of Theorem 1 it is clear that

$$
\left\|\zeta_{n+1}-x_{\delta}\right\| \leq\left\|\zeta_{0}-x_{\delta}\right\| \xi^{3(n+1)} \prod_{k=0}^{n}\left(1-\sigma_{k}^{0}(1-\xi)\right)
$$

Now, for scheme (1.12),

$$
\begin{aligned}
\left\|z_{n}^{\prime \prime}-x_{\delta}\right\| & =\left\|T x_{n}^{\prime \prime}-x_{\delta}\right\| \\
& \leq \xi\left\|x_{n}^{\prime \prime}-x_{\delta}\right\| \\
\left\|y_{n}^{\prime \prime}-x_{\delta}\right\| & =\left\|\left(1-\sigma_{n}^{0}\right) z_{n}^{\prime \prime}-\sigma_{n}^{0} T z_{n}^{\prime \prime}-x_{\delta}\right\| \\
& \leq\left\|\left(1-\sigma_{n}^{0}\right) z_{n}^{\prime \prime}-\sigma_{n}^{0} T z_{n}^{\prime \prime}-x_{\delta}\right\| \\
& \left.\leq\left(1-\sigma_{n}^{0}\right)\left\|z_{n}^{\prime \prime}-x_{\delta}\right\|+\xi \sigma_{n}^{0}\left\|T z_{n}^{\prime \prime}-x_{\delta}\right\|\right] \\
& \leq\left(1-\sigma_{n}^{0}\right)\left\|z_{n}^{\prime \prime}-x_{\delta}\right\|+\xi \sigma_{n}^{0}\left\|z_{n}^{\prime \prime}-x_{\delta}\right\| \\
& =\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|z_{n}^{\prime \prime}-x_{\delta}\right\|
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\|x_{n+1}^{\prime \prime}-x_{\delta}\right\| & =\left\|T y_{n}^{\prime \prime}-x_{\delta}\right\| \\
& \leq \xi\left\|y_{n}^{\prime \prime}-x_{\delta}\right\|
\end{aligned}
$$

using the value of $\left\|y_{n}^{\prime \prime}-x_{\delta}\right\|$ and using the inductive behaviour, we have

$$
\begin{aligned}
\left\|x_{n+1}^{\prime \prime}-x_{\delta}\right\| & =\xi^{2}\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|x_{n}^{\prime \prime}-x_{\delta}\right\| \\
\left\|x_{n}^{\prime \prime}-x_{\delta}\right\| & =\xi^{2}\left(1-(1-\xi) \sigma_{n-1}^{0}\right)\left\|x_{n-1}^{\prime \prime}-x_{\delta}\right\| \\
\left\|x_{n-1}^{\prime \prime}-x_{\delta}\right\| & =\xi^{2}\left(1-(1-\xi) \sigma_{n-2}^{0}\right)\left\|x_{n-2}^{\prime \prime}-x_{\delta}\right\|
\end{aligned}
$$

on combining all the inequalities, we have

$$
\left\|x_{n+1}^{\prime \prime}-x_{\delta}\right\| \leq\left\|x_{0}^{\prime \prime}-x_{\delta}\right\| \xi^{2(n+1)} \prod_{k=0}^{n}\left(1-\sigma_{k}^{0}(1-\xi)\right)
$$

Let

$$
r_{n}=\left\|\zeta_{0}-x_{\delta}\right\| \xi^{3(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)
$$

and

$$
p_{n}=\left\|x_{0}^{\prime \prime}-x_{\delta}\right\| \xi^{2(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)
$$

Then

$$
\frac{p_{n}}{r_{n}}=\frac{\left\|x_{0}^{\prime \prime}-x_{\delta}\right\| \xi^{2(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)}{\left\|\zeta_{0}-x_{\delta}\right\| \xi^{3(n+1)} \prod_{k=0}^{n}\left(1-(1-\xi) \sigma_{k}^{0}\right)}
$$

approaches to 0 as n approaches to ∞. Thus $\left\{\zeta_{n}\right\}$ is a sequence defined in N_{1}^{v} iteration defined by (1.14), then $\left\{\zeta_{n}\right\}$ converges faster than the iteration scheme of Garodia and Uddin defined by (1.12).

Lemma 2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and a nonexpansive self mapping T on C with $T_{f} \neq \emptyset$. Let $\left\{\zeta_{n}\right\}$ be an iterative sequence defined as N_{1}^{v}. Then $\lim _{n \rightarrow \infty}\left\|\zeta_{n}-x_{\delta}\right\|$ exists for all $x_{\delta} \in T_{f}$.

Proof. From N_{1}^{v} iteration scheme it follows that,

$$
\begin{aligned}
\left\|\theta_{n}-x_{\delta}\right\| & =\left\|T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}\right)-x_{\delta}\right\| \\
& =\left\|T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}\right)-T x_{\delta}\right\| \\
& \leq\left\|\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}-x_{\delta}\right\| \\
& \leq\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|+\sigma_{n}^{0}\left\|T \zeta_{n}-T x_{\delta}\right\| \\
& \leq\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|+\sigma_{n}^{0}\left\|\zeta_{n}-x_{\delta}\right\| \\
& \leq\left\|\zeta_{n}-x_{\delta}\right\| \\
\left\|\eta_{n}-x_{\delta}\right\| & \leq\left\|T \theta_{n}-x_{\delta}\right\| \\
& =\left\|T \theta_{n}-T x_{\delta}\right\| \\
& \leq\left\|\theta_{n}-x_{\delta}\right\|
\end{aligned}
$$

using the value of $\left\|\theta_{n}-x_{\delta}\right\|$, we have

$$
\left\|\eta_{n}-x_{\delta}\right\| \leq\left\|\zeta_{n}-x_{\delta}\right\|
$$

similarly, we have

$$
\begin{aligned}
\left\|\zeta_{n+1}-x_{\delta}\right\| & =\left\|T \eta_{n}-x_{\delta}\right\| \\
& =\left\|T \eta_{n}-T x_{\delta}\right\| \\
& \leq\left\|\eta_{n}-x_{\delta}\right\|
\end{aligned}
$$

using the value of $\left\|\eta_{n}-x_{\delta}\right\|$, we have

$$
\left\|\zeta_{n+1}-x_{\delta}\right\| \leq\left\|\zeta_{n}-x_{\delta}\right\|
$$

which confirms the existence of $\lim _{n \rightarrow \infty}\left\|\zeta_{n}-x_{\delta}\right\|$ for all $x_{\delta} \in T_{f}$. Since, $\left\{\left\|\zeta_{n}-x_{\delta}\right\|\right\}$ is bounded and non-increasing for all $x_{\delta} \in T_{f}$.

Now, we prove the weak convergence of N_{1}^{v} iteration process.

Theorem 4. Suppose that there is a uniformly Banach space E, having a nonempty subset C, which is nonempty closed and convex satisfying Opial's condition and also that there is a nonexpansive mapping $T: C \rightarrow C$ with $T_{f} \neq \emptyset$. If $\left\{\zeta_{n}\right\}$ is an iterative sequence defined by N_{1}^{v}, then $\left\{\zeta_{n}\right\}$ converges weakly to a fixed point of T.

Proof. Let $x_{\delta} \in T_{f}$. Then from Lemma 2 , it is obvious that $\lim _{n \rightarrow \infty}\left\|\zeta_{n}-x_{\delta}\right\|$ exists. To prove weak convergence of N_{1}^{v} iterative process, it is to be shown that $\left\{\zeta_{n}\right\}$ has a weak subsequential limit in T_{f}. Let $\left\{x_{n_{u}}\right\}$ and $\left\{x_{n_{v}}\right\}$ are the subsequences of $\left\{\zeta_{n}\right\}$, converges to u and v respectively. Using Lemma $2 \lim _{n \rightarrow \infty}\left\|T_{n}-\zeta_{n}\right\|=0, I-T$ is demiclosed at 0 . So $u, v \in T_{f}$.
Next, to show the uniqueness, we assume that $\lim _{n \rightarrow \infty}\left\|\zeta_{n}-u\right\|$ and $\lim _{n \rightarrow \infty}\left\|\zeta_{n}-v\right\|$ exists. Assuming $u \neq v$. Then using Opial's condition, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|\zeta_{n}-u\right\| & =\lim _{n \rightarrow \infty}\left\|x_{n_{u}}-u\right\| \\
& <\lim _{n \rightarrow \infty}\left\|x_{n_{u}}-v\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\zeta_{n}-v\right\| \\
& =\lim _{n \rightarrow \infty}\left\|x_{n_{v}}-v\right\| \\
& <\lim _{n \rightarrow \infty}\left\|x_{n_{v}}-u\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\zeta_{n}-u\right\|
\end{aligned}
$$

which is a contradiction, so $u=v$. So, $\left\{\zeta_{n}\right\}$ converges weakly to a fixed point of T.
Now, we prove the strong convergence of N_{1}^{v} iteration process.
Theorem 5. Suppose that there is a uniformly Banach space E, having a nonempty subset C, which is nonempty closed and convex. Also, there be a nonexpansive mapping $T: C \rightarrow C$ with $T_{f} \neq \phi$. If $\left\{\zeta_{n}\right\}$ is an iterative sequence defined by N_{1}^{v}, then $\left\{\zeta_{n}\right\}$ converges strongly to a point of T_{f} iff $\liminf _{n \rightarrow \infty} d\left(\zeta_{n}, T_{f}\right)=0$.

Proof. If a sequence $\left\{\zeta_{n}\right\}$ converges to a fixed point $q \in T_{f}$, then it is obvious that $\liminf _{n \rightarrow \infty} d\left(\zeta_{n}, T_{f}\right)=0$.

For converse, $\liminf _{n \rightarrow \infty} d\left(\zeta_{n}, T_{f}\right)=0$. From Lemma 2, we have the existence of $\lim \inf _{n \rightarrow \infty} \| \zeta_{n}-$ $q \|$ for all $q \in T_{f}$, we have

$$
\left\|\zeta_{n+1}-q\right\| \leq\left\|\zeta_{n}-q\right\| \text { for any } q \in T_{f}
$$

which yields

$$
d\left(\zeta_{n+1}, T_{f}\right) \leq d\left(\zeta_{n}, T_{f}\right)
$$

which implies that $\left\{d\left(\zeta_{n}, T_{f}\right)\right\}$ is a decreasing sequence which is bounded below by zero. Results,

$$
\lim _{n \rightarrow \infty} d\left(\zeta_{n}, T_{f}\right)=0
$$

Now, to prove that $\left\{\zeta_{n}\right\}$ is a Cauchy sequence in C. Let $\epsilon>0$ be arbitrarily chosen. Since, $\liminf _{n \rightarrow \infty} d\left(\zeta_{n}, T_{f}\right)=0$, there is an existence of n_{0} in such a manner that $\forall n \geq n_{0}$, we have

$$
d\left(\zeta_{n}, T_{f}\right)<\frac{\epsilon}{4}
$$

Particularly,

$$
\inf \left\{\left\|x_{n_{0}}-q\right\|: q \in T_{f}\right\}<\epsilon
$$

so there must be an existence of $\alpha \in T_{f}$ in such a manner that $\left\|x_{n_{0}}-\alpha\right\|<\epsilon$. Thus, for $m, n \geq n_{0}$, we have

$$
\left\|x_{n_{+} m}-\zeta_{n} \leq\right\| x_{n_{+} m}-\alpha\|+\| \zeta_{n}-\alpha\|<2\| x_{n_{0}}-\alpha \|<2 \frac{\epsilon}{2}=\epsilon
$$

which proves the Cauchy behaviour of $\left\{\zeta_{n}\right\}$. Since it is given that C is a closed subset of a Banach space E, therefore the convergence of $\left\{\zeta_{n}\right\}$ in C is confirmed. Let $\lim _{n \rightarrow \infty} \zeta_{n}=\alpha$ for some $\alpha \in B$.

Now using, $\lim _{n \rightarrow \infty}\left\|T \zeta_{n}-\zeta_{n}\right\|=0$, we get

$$
\begin{gathered}
\|\alpha-T \alpha\| \leq\left\|\alpha-\zeta_{n}\right\|+\left\|\zeta_{n}-T \zeta_{n}\right\|+\left\|T \zeta_{n}-T \alpha\right\| \\
\leq\left\|\alpha-\zeta_{n}\right\|+\left\|\zeta_{n}-T \zeta_{n}\right\|+\left\|\zeta_{n}-\alpha\right\|
\end{gathered}
$$

which proves that $\|\alpha-T \alpha\|$ approaches to 0 as n approaches to ∞. This shows that $\alpha=T \alpha$. This proves our result.

4. Numerical Example

In this section, an example is to be given which confirms the behaviour of N_{1}^{v}. In order to support the proof of Theorems 2 and 3 , we will use a numerical example as follow

Example. Assuming $E=(-\infty, \infty)$ and $C=[1,50]$. Let $T: C \rightarrow C$ be mapping defined as $T(x)=\sqrt{x^{2}-9 x+54}$ for all $x \in C$. Clearly, $x=5$ is the fixed point of T. Set $\sigma_{n}^{0}=\sigma_{n}^{1}=\sigma_{n}^{2}=0.75$ for all $n \in \mathbb{N}$. choose initial value as 40 . Then, we get the following table and graph. Also, in table N_{1}^{v} is represented by n^{p} of iteration values:

A NEW FASTER METHOD

Garodia's	K^{*}	n^{p}
40	40	40
29.08214360104216	26.209490048705245	25.258002332048
18.89759552091176	13.96352052291395	12.461420120882993
10.484796658965704	6.769336442232295	6.313982447524068
6.452679669681885	6.011327288189042	6.002368918530358
6.014592571160892	6.000135918062143	6.000016205805245
6.000401231816844	6.000001626031984	6.000000110782435
6.000010972856014	6.0000000194520515	6.000000000757303
6.000000300040283	6.000000000232704	6.000000000005177
6.0000000082042275	6.000000000002784	6.0000000000000355
6.000000000224334	6.000000000000033	6.000000000000001

Figure 1: Comparison Graph based on Numerical example to prove the efficiency of N_{1}^{v}.
Thus, it is evident from the above table and graph that the newly defined iteration scheme N_{1}^{v} converges much faster and is more efficient than many iteration schemes in exiting literature.

5. T-stability of N_{1}^{v} iteration algorithm

Now, we prove the stability of N_{1}^{v}.
Theorem 6. Suppose that there is a Banach space E, having subset C, which is nonempty closed and convex. Also, let there be a contraction mapping $T: C \rightarrow C$. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ be an iterative sequence generated by N_{1}^{v} and with real sequence $\left\{\sigma_{n}^{0}\right\}_{n=0}^{\infty} \in[0,1]$ such that $\sum_{n=0}^{\infty} \sigma_{n}^{0}=\infty$. Then the iteration algorithm defined as N_{1}^{v} is T-stable.

Proof. Let an arbitrary sequence $\left\{t_{n}\right\}_{n=0}^{\infty} \subset E$ in C, generated by N_{1}^{v} and now defined as $\zeta_{n+1}=f\left(T, \zeta_{n}\right)$ converges to a fixed point x_{δ} (by Theorem 1) and $\epsilon_{n}=\left\|t_{n+1}-f\left(T, t_{n}\right)\right\|$. We will prove that $\lim _{n \rightarrow \infty} t_{n}=p$.

Let $\lim _{n \rightarrow \infty} \epsilon_{n}=0$, as from Theorem 1 using the inequality

$$
\begin{equation*}
\left\|\zeta_{n+1}-x_{\delta}\right\| \leq \xi^{3}\left(\xi-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\| \tag{-14}
\end{equation*}
$$

we have,

$$
\begin{aligned}
\left\|t_{n+1}-x_{\delta}\right\| & \leq\left\|t_{n+1}-f\left(T, t_{n}\right)\right\|+\mid f\left(T, t_{n}\right)-x_{\delta} \| \\
& =\epsilon_{n}+\left\|T\left(T\left(T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}\right)\right)+\sigma_{n}^{0} T \zeta_{n}\right)-x_{\delta}\right\|
\end{aligned}
$$

$$
\leq \xi^{3}\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|t_{n}-x_{\delta}\right\|+\epsilon_{n}
$$

Define $\psi_{n}=\left\|t_{n}-x_{\delta}\right\|, \phi_{n}=(1-\xi) \sigma_{n}^{0} \in(0,1)$ and $\varphi=\epsilon_{n}$, which implies that $\frac{\varphi_{n}}{\phi_{n}} \rightarrow 0$ as $n \rightarrow \infty$. Thus all the conditions of Lemma 2 are satisfied by above inequality. Hence, we get $\lim _{n \rightarrow \infty} t_{n}=p$, we have

$$
\begin{aligned}
\epsilon_{n} & =\left\|t_{n+1}-f\left(T, t_{n}\right)\right\| \\
& \leq\left\|t_{n+1}-x_{\delta}\right\|-\left\|f\left(T, t_{n}\right)-x_{\delta}\right\| \\
& \leq \xi^{3}\left(\xi-(1-\xi) \sigma_{n}^{0}\right)\left\|t_{n}-x_{\delta}\right\|+\epsilon_{n}
\end{aligned}
$$

This implies that $\lim _{n \rightarrow \infty} t_{n}=0$. This also implies that N_{1}^{v} is $T-$ stable with respect to T.

6. Data Dependence Result

In this section we establish some data dependence result.
Theorem 7. Let \tilde{T} be an approximate operator of a contraction mapping T. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ be an iterative sequence defines as N_{1}^{v} for T and defined an iterative sequence $\left\{\tilde{\zeta}_{n}\right\}_{n=0}^{\infty}$ for \tilde{T}, as follows constructed as, for arbitrary $\tilde{\zeta}_{0} \in X$ by

$$
\left\{\begin{array}{l}
\tilde{\theta}_{n}=\tilde{T}\left(\left(1-\sigma_{n}^{0}\right) \tilde{\zeta}_{n}+\sigma_{n}^{0} \tilde{T} \tilde{\zeta}_{n}\right) \\
\tilde{\eta}_{n}=\tilde{T} \tilde{\theta}_{n} \\
\tilde{\zeta}_{n+1}=\tilde{T} \tilde{\eta}_{n} \quad n \in \mathbb{N}
\end{array}\right.
$$

where real sequence $\left\{\sigma_{n}^{0}\right\}_{n=0}^{\infty}$ in $[0,1]$ satisfying $\frac{1}{2} \leq \sigma_{n}^{0}$, for all $n \in \mathbb{N}$ and $\sum \sigma_{n}^{0}=\infty$. Also, if $T p=p$ and $\tilde{T} \tilde{p}=\tilde{p}$ such that $\lim _{n \rightarrow \infty} \tilde{\zeta}=\tilde{p}$, then we have

$$
\|p-\tilde{p}\| \leq \frac{11 \epsilon}{1-\xi}
$$

Proof. Using $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\tilde{\zeta}_{n}\right\}_{n=0}^{\infty}$, we have

$$
\begin{aligned}
\left\|\theta_{n}-\tilde{\theta}_{n}\right\| & =\left\|T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}\right)-\tilde{T}\left(\left(1-\sigma_{n}^{0}\right) \tilde{\zeta}_{n}+\sigma_{n}^{0} \tilde{T} \tilde{\zeta}_{n}\right)\right\| \\
& \leq \| T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}\right)-T\left(\left(1-\sigma_{n}^{0}\right) \tilde{\zeta}_{n}+\sigma_{n}^{0} \tilde{T} \tilde{\zeta}_{n}\right) \\
& +T\left(\left(1-\sigma_{n}^{0}\right) \tilde{\zeta}_{n}+\sigma_{n}^{0} \tilde{T} \tilde{\zeta}_{n}\right)-\tilde{T}\left(\left(1-\sigma_{n}^{0}\right) \tilde{\zeta}_{n}+\sigma_{n}^{0} \tilde{T} \tilde{\zeta}_{n}\right) \| \\
& \left.\leq \xi\left(\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\sigma_{n}^{0} \| T \zeta_{n}-\tilde{T} \tilde{\zeta}_{n}\right) \|\right)+\epsilon
\end{aligned}
$$

$$
\begin{aligned}
& \left.\leq \xi\left(\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\sigma_{n}^{0}\left(\left\|T \zeta_{n}-T \tilde{\zeta}_{n}\right\|+\| T \tilde{\zeta}_{n}-\tilde{T} \tilde{\zeta}_{n}\right) \|\right)\right)+\epsilon \\
& \leq \xi\left(\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\sigma_{n}^{0}\left(\xi\left(\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|\right)+\epsilon+\epsilon\right)\right)+\epsilon \\
& \leq \xi\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\xi \sigma_{n}^{0} \epsilon+\epsilon
\end{aligned}
$$

In similar manner, we have

$$
\begin{aligned}
\left\|\eta_{n}-\tilde{\eta}_{n}\right\| & =\left\|T \theta_{n}-\tilde{T} \tilde{\theta}_{n}\right\| \\
\left\|\eta_{n}-\tilde{\eta}_{n}\right\| & =\left\|T \theta_{n}-T \tilde{\theta}_{n}+T \tilde{\theta}_{n}-\tilde{T} \tilde{\theta}_{n}\right\| \\
& \leq\left\|T \theta_{n}-T \tilde{\theta}_{n}\right\|+\left\|T \tilde{\theta}_{n}-\tilde{T} \tilde{\theta}_{n}\right\| \\
& \leq \xi\left\|\theta_{n}-\tilde{\theta}\right\|+\epsilon
\end{aligned}
$$

on substituting the value of $\left\|\theta_{n}-\tilde{\theta}_{n}\right\|$, we have

$$
\left\|\eta_{n}-\tilde{\eta}_{n}\right\| \leq \xi\left(\xi\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\xi \sigma_{n}^{0} \epsilon+\epsilon\right)+\epsilon
$$

In a similar manner, we have

$$
\begin{aligned}
\left\|\zeta_{n+}-\tilde{\zeta}_{n+1}\right\| & =\left\|T \eta_{n}-\tilde{T} \tilde{\eta}_{n}\right\| \\
\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\| & =\left\|T \eta_{n}-T \tilde{\eta}_{n}+T \tilde{\eta}_{n}-\tilde{T} \tilde{\eta}_{n}\right\| \\
& \leq\left\|T \eta_{n}-T \tilde{\eta}_{n}\right\|+\left\|T \tilde{\eta}_{n}-\tilde{T} \tilde{\eta}_{n}\right\| \\
& \leq \xi\left\|\eta_{n}-\tilde{\eta}\right\|+\epsilon
\end{aligned}
$$

on substituting the value of $\left\|\eta_{n}-\tilde{\eta}_{n}\right\|$, we have

$$
\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\| \leq \xi\left(\xi\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\xi \sigma_{n}^{0} \epsilon+\epsilon\right)+\epsilon
$$

using $\left\{\sigma_{n}^{0}\right\}_{n=0}^{\infty}$ in $[0,1]$ and $\xi \in(0,1)$ and combining the above inequalities of same theorem, we have

$$
\begin{aligned}
\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\| & \leq\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\sigma_{n}^{0} \epsilon+5 \epsilon \\
& \leq\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\sigma_{n}^{0} \epsilon \\
& +5\left(1-\sigma_{n}^{0}+\sigma_{n}^{0}\right) \epsilon \\
\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\| & \leq\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\sigma_{n}^{0}(1-\xi) \frac{11 \epsilon}{1-\xi}
\end{aligned}
$$

Let $\psi_{n}=\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|, \phi_{n}=\left(1-\sigma_{n}^{0}\right)(1-\xi), \varphi_{n}=\frac{11 \epsilon}{1-\xi}$, then from the Lemma 2, we have

$$
0 \leq \limsup _{n \rightarrow \infty}\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\| \leq \limsup _{n \rightarrow \infty} \frac{11 \epsilon}{1-\xi}
$$

 we have that $\lim \sup _{n \rightarrow \infty} \tilde{\zeta}_{n}=\tilde{p}$. Using the results together with

$$
\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\| \leq\left(1-(1-\xi) \sigma_{n}^{0}\right)\left\|\zeta_{n}-\tilde{\zeta}_{n}\right\|+\sigma_{n}^{0}(1-\xi) \frac{11 \epsilon}{1-\xi}
$$

we have, $\left\|p-\tilde{p}_{n}\right\| \leq \frac{11 \epsilon}{1-\xi}$ as required.

7. An Application

Let a Banach space $\left(E([a, b]),\|\cdot\|_{\infty}\right)$ which is space of all continuous real valued functions on a closed interval $[a, b]$ a with endowed chebyshev norm $\|x-y\|_{\infty}=\max _{t \in[a, b]} \mid x(t)-$ $y(t) \mid$. In this section solution of a particular delay differential equation has a solution generated by N_{1}^{v} iteration scheme.

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t), x(t-\tau)), \quad t \in\left[t_{0}, b\right] \tag{7.1}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
x(t)=\psi(t), \quad t \in\left[t_{0}-\tau, t_{0}\right] . \tag{7.2}
\end{equation*}
$$

We opine that the following conditions are performed
(i) $t_{0}, b \in \mathbb{R}, \tau>0$;
(ii) $f \in E\left(\left[t_{0}, b\right] \times \mathbb{R}^{2}, \mathbb{R}\right)$;
(iii) $\psi \in E\left(\left[t_{0}-\tau, b\right], \mathbb{R}\right)$;
(iv) if $2 L_{f}\left(b-t_{0}\right)<1$, there exist $L_{f}>0$ such that

$$
\begin{equation*}
\left|f\left(t, u_{1}, u_{2}\right)-f\left(t, v_{1}, v_{2}\right)\right| \leq L_{f} \sum_{n=0}^{2}\left|u_{i}-v_{i}\right| \tag{7.3}
\end{equation*}
$$

$$
\forall u_{i}, v_{i} \in \mathbb{R}, i=1,2, t \in\left[t_{0}, b\right],
$$

By a solution of the problem (7.1)-(7.2) we understand function $x \in E\left(\left[t_{0}-\tau, b\right], \mathbb{R}\right) \cap E^{1}\left(\left[t_{0}, b\right], \mathbb{R}\right)$. The problem (7.1)-(7.2) can be reformulated in the following form of integral

$$
x(t)=\left\{\begin{array}{l}
\psi(t), \quad t \in\left[t_{0}-\tau, t_{0}\right] \tag{7.4}\\
\psi\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s), x(s-\tau)) d s, \quad t \in\left[t_{0}, b\right] .
\end{array}\right.
$$

Theorem 8. Suppose that conditions (1)-(4) are satisfied. Then the problem (7.1)-(7.4) has a unique solution in $E\left(\left[t_{0}-\tau, b\right], \mathbb{R}\right) \cap E^{1}\left(\left[t_{0}, b\right], \mathbb{R}\right)$.

Proof. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ be an iterative sequence generative by N_{K}^{v} iteration method (1.18) for the operator

$$
T x(t)=\left\{\begin{array}{l}
\psi(t), \quad t \in\left[t_{0}-\tau, t_{0}\right] \tag{7.5}\\
\psi\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s), x(s-\tau)) d s, \quad t \in\left[t_{0}, b\right] .
\end{array}\right.
$$

Let x_{δ} denote the fixed point of T. We will show that $\zeta_{n} \rightarrow x_{\delta}$ as $n \rightarrow \infty$.
For $t \in\left[t_{0}-\tau, t_{0}\right]$, it is easy to see that $\zeta_{n} \rightarrow x_{\delta}$ as $n \rightarrow \infty$. For $t \in\left[t_{0}, b\right]$ we obtain

$$
\begin{aligned}
\left\|\theta_{n}-x_{\delta}\right\|_{\infty} & =\left\|T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}\right)-x_{\delta}\right\|_{\infty} \\
& =\left\|T\left(\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}\right)-T x_{\delta}\right\| \\
& \leq\left\|\left(1-\sigma_{n}^{0}\right) \zeta_{n}+\sigma_{n}^{0} T \zeta_{n}-x_{\delta}\right\| \\
& \leq\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|_{\infty}+\sigma_{n}^{0} \max _{t \in\left[t_{0}-\tau, b\right]}\left|T \zeta_{n}-T x_{\delta}\right| \\
& =\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|_{\infty}+\sigma_{n}^{0} \max _{\left.t \in\left[t_{0}-\tau, b\right]\right]} \mid \psi\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s), x(s-\tau)) d s \\
& -\psi\left(t_{0}\right)-\int_{t_{0}}^{t} f\left(s, x_{\delta}(s), x_{\delta}(s-\tau)\right) d s \mid \\
& =\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|_{\infty}+\sigma_{n}^{0} \max _{t \in\left[t_{0}-\tau, b\right]} \mid \psi\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s), x(s-\tau)) d s \\
& -\psi\left(t_{0}\right)-\int_{t_{0}}^{t} f\left(s, x_{\delta}(s), x_{\delta}(s-\tau)\right) d s \mid \\
& =\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|_{\infty}+\sigma_{n}^{0} \max _{t \in\left[t_{0}-\tau, b\right]} \mid \int_{t_{0}}^{t} f(s, x(s), x(s-\tau)) d s \\
& -\int_{t_{0}}^{t} f\left(s, x_{\delta}(s), x_{\delta}(s-\tau)\right) d s \mid \max ^{2} \\
& =\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|_{\infty}+\sigma_{n}^{0} \max _{t \in\left[t_{0}-\tau, b\right]} \int_{t_{0}}^{t} \mid f(s, x(s), x(s-\tau)) \\
& -f\left(s, x_{\delta}(s), x_{\delta}(s-\tau)\right) d s \mid
\end{aligned}
$$

$$
\begin{align*}
& =\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|_{\infty}+\sigma_{n}^{0} \max _{t \in\left[t_{0}-\tau, b\right]} \int_{t_{0}}^{t} L_{f}\left(\left|\zeta_{n}(s)-x_{\delta}(s)\right|\right. \\
& \left.+\left|\zeta_{n}(s-\tau)-x_{\delta}(s-\tau)\right|\right) d s \\
& =\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|_{\infty}+\sigma_{n}^{0} \max _{t \in\left[t_{0}-\tau, b\right]} \int_{t_{0}}^{t} L_{f}\left(\left|\zeta_{n}(s)-x_{\delta}(s)\right|+\mid \zeta_{n}(s-\tau)\right. \\
& \left.-x_{\delta}(s-\tau) \mid\right) d s \\
& =\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|_{\infty}+\sigma_{n}^{0} L_{f}\left(\max _{t \in\left[t_{0}-\tau, b\right]}\left|\zeta_{n}(s)-x_{\delta}(s)\right|+\max _{t \in\left[t_{0}-\tau, b\right]} \mid \zeta_{n}(s-\tau)\right. \\
& \left.-x_{\delta}(s-\tau) \mid\right) \int_{t_{0}}^{t} d s \\
& =\left(1-\sigma_{n}^{0}\right)\left\|\zeta_{n}-x_{\delta}\right\|_{\infty}+2 \sigma_{n}^{0} L_{f}\left(b-t_{0}\right)\left\|\zeta_{n}-x_{\delta}\right\| \\
\left\|\theta_{n}-x_{\delta}\right\|_{\infty} & =\left[1-\sigma_{n}^{0}\left(1-2 L_{f}\left(b-t_{0}\right)\right)\right]\left\|\zeta_{n}-x_{\delta}\right\| \tag{7.6}
\end{align*} \text { similarly, we have }
$$

$$
\begin{align*}
\left\|\eta_{n}-x_{\delta}\right\|_{\infty} & =\left\|T \theta_{n}-T x_{\delta}\right\|_{\infty} \\
& \left.=\max _{t \in\left[t_{0}-\tau, b\right]} \mid \int_{t_{0}}^{t} f\left(s, \theta_{n}(s), \theta_{n}(s-\tau)\right)-f\left(s, x_{\delta}(s), x_{\delta}(s-\tau)\right)\right] d s \mid \\
& \leq \max _{t \in\left[t_{0}-\tau, b\right]} \int_{t_{0}}^{t}\left|f\left(s, \theta_{n}(s), \theta_{n}(s-\tau)\right)-f\left(s, x_{\delta}(s), x_{\delta}(s-\tau)\right)\right| d s \\
& =\max _{t \in\left[t_{0}-\tau, b\right]} \int_{t_{0}}^{t} L_{f}\left(\left|\theta_{n}(s)-x_{\delta}(s)\right|+\left|\theta_{n}(s-\tau)-x_{\delta}(s-\tau)\right|\right) d s \\
\left\|\eta_{n}-x_{\delta}\right\|_{\infty} & \leq 2 L_{f}\left(b-t_{0}\right)\left\|\theta_{n}-x_{\delta}\right\|_{\infty} \tag{7.7}
\end{align*}
$$

and hence, we have

$$
\begin{align*}
\left\|\zeta_{n+1}-x_{\delta}\right\|_{\infty} & =\left\|T \eta_{n}-T x_{\delta}\right\|_{\infty} \\
& \left.=\max _{t \in\left[t_{0}-\tau, b\right]} \mid \int_{t_{0}}^{t} f\left(s, \eta_{n}(s), \eta_{n}(s-\tau)\right)-f\left(s, x_{\delta}(s), x_{\delta}(s-\tau)\right)\right] d s \mid \\
& \leq \max _{t \in\left[t_{0}-\tau, b\right]} \int_{t_{0}}^{t}\left|f\left(s, \eta_{n}(s), \eta_{n}(s-\tau)\right)-f\left(s, x_{\delta}(s), x_{\delta}(s-\tau)\right)\right| d s \\
& =\max _{t \in\left[t_{0}-\tau, b\right]} \int_{t_{0}}^{t} L_{f}\left(\left|\eta_{n}(s)-x_{\delta}(s)\right|+\left|\eta_{n}(s-\tau)-x_{\delta}(s-\tau)\right|\right) d s \\
\left\|\zeta_{n}-x_{\delta}\right\|_{\infty} & \leq 2 L_{f}\left(b-t_{0}\right)\left\|\eta_{n}-x_{\delta}\right\|_{\infty} \tag{7.7}
\end{align*}
$$

using the equations (7.6), (7.7) and (7.8)

$$
\left\|\zeta_{n+1}-x_{\delta}\right\|_{\infty} \leq 4 L_{f}^{2}\left(b-t_{0}\right)^{2}\left\|\eta_{n}-x_{\delta}\right\|_{\infty}
$$

$$
\left\|\zeta_{n+1}-x_{\delta}\right\|_{\infty} \leq 4 L_{f}^{2}\left(b-t_{0}\right)^{2}\left[1-\sigma_{n}^{0}\left(1-2 L_{f}\left(b-t_{0}\right)\right)\right]\left\|\zeta_{n}-x_{\delta}\right\|
$$

Proceeding in the same manner, we have

$$
\left\|\zeta_{n}-x_{\delta}\right\|_{\infty} \leq\left[1-\sigma_{n-1}^{0}\left(1-2 L_{f}\left(b-t_{0}\right)\right)\right]\left\|\zeta_{n-1}-x_{\delta}\right\|_{\infty}
$$

and

$$
\left\|\zeta_{n-1}-x_{\delta}\right\|_{\infty} \leq\left[1-\sigma_{n-2}^{0}\left(1-2 L_{f}\left(b-t_{0}\right)\right)\right]\left\|\zeta_{n-2}-x_{\delta}\right\|_{\infty}
$$

and hence we have

$$
\begin{equation*}
\left\|\zeta_{n+1}-x_{\delta}\right\|_{\infty} \leq \prod_{k=0}^{n}\left[1-\sigma_{k}^{0}\left(1-2 L_{f}\left(b-t_{0}\right)\right)\right]\left\|\zeta_{0}-x_{\delta}\right\|_{\infty} \tag{7.9}
\end{equation*}
$$

where $\left[1-\sigma_{k}^{0}\left(1-2 L_{f}\left(b-t_{0}\right)\right) \in(0,1)\right.$ because $\sigma_{k}^{0} \in(0,1)$, for all natural numbers n. Also, since $(1-x) \leq e^{-x}$ for all $x \in[0,1]$, from (7.9) we can easily conclude that

$$
\begin{equation*}
\left\|\zeta_{n+1}-x_{\delta}\right\|_{\infty} \leq \frac{\left\|\zeta_{0}-x_{\delta}\right\|}{e^{\left(1-\left(2 L_{f}\left(b-t_{0}\right)\right)\right) \sum_{k=0}^{\infty} \sigma_{k}^{0}}} \tag{7.10}
\end{equation*}
$$

which led us to $\lim _{n \rightarrow \infty}\left\|\zeta_{n+1}-x_{\delta}\right\|_{\infty}=0$ when taking limits of both sides of equation (7.10).

8. Conclusion

A whole new iteration scheme namely N_{1}^{v} having rate of convergence, faster than almost all pre-existing iteration schemes to find the solution with minimum possible steps is established.

References

[1] M. Abbas and T. Nazir. A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesnik, 66(2):223-229, 2014.
[2] V. Berinde. Iterative Approximation of Fixed Points. Springer, Berlin, 2007.
[3] F.E. Browder. Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. USA., 54:1041-1044, 1965.
[4] D. Thakur B.S. Thakur and M. Postolache. A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings. App. Math. Comp., 275:147-155, 2016.
[5] Izhar C. Garodia, Uddin. Solution of a nonlinear integral equation via new fixed point iteration process. arXiv:1809.03771v1 [math.F.A], 11 Sep 2018.
[6] D. Gohde. Zum Prinzip der Kontraktiven Abbildung. Math. Nachr., 30:251-258, 1965.
[7] S. Ishikawa. Fixed points by a new iteration method. Proc. Am. Math. Soc., 44:147150, 1974.
[8] W.A. Kirk. A fixed point theorem for mappings which do not increase distance. Am. Math. Monthly, 72:1004-1006, 1965.
[9] W.R. Mann. Mean value methods in iterations. Proc. Am. Math. Soc., 4:506-510, 1953.
[10] M.A. Noor. New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251(1):217-229, 2000.
[11] Z. Opial. weak and strong convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc., 73:591-597, 1967.
[12] B.E. Rhoades. Some fixed point iteration procedures. Int. J. Math. Math. Sci., 14:1-16, 1991.
[13] D. O'Regan R.P. Agarwal and D.R. Sahu. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal., 8(1):6179, 2007.
[14] D. O'Regan R.P. Agarwal and D.R. Sahu. Fixed Point Theory for Lipschitziantype Mappings with Applications Series. Topological Fixed Point Theory and Its Applications, Springer, New York, 6:1004-1006, 2009.
[15] J. Schu. Weak and strong convergence to fixed points of asymtotically nonexpansive mappings. Bull. Austral. Math. Soc., 43:153-159, 1991.
[16] T. Suzuki. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl., 340:1088-1095, 2008.
[17] W. Takahashi. Nonlinear Functional Analysis. Yokohoma Publishers, Yokohoma, 2000.
[18] K. Ullah and M. Arshad. New three-step iteration process and fixed point approximation in Banach spaces. J. Nonlinear Topl. Algebra, 7(2):87-100, 2018.
[19] X. Weng. Fixed point iteration for local strictly pseudocontractive mapping. Proc. Amer.Math. Soc., 113:727-731, 1991.

