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Abstract. We introduce a novel approach to inform the re-opening plan followed by a post-
pandemic lockdown by integrating a stochastic optimization technique with a disease transmission
model. We assess Ontarios re-opening plans as a case-study. Taking into account the uncertainties
in contact rates during different re-opening phases, we find the optimal timing for the upcoming
re-opening phase that maximizes the relaxation of social contacts under uncertainties, while not
overwhelming the health system capacity before the arrival of effective therapeutics or vaccines.
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1. Introduction and Background

Planning re-opening after several phases of social distancing escalation in order to
manage the Coronavirus disease 2019 (COVID-19) pandemic has been challenging for
policy- and decision-makers globally. Re-opening too soon could cause an immediate local
resurgence; re-opening too late would lead to huge unnecessary economic losses and other
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adverse effects on health. Most governments around the world have adopted a stage-wise
re-opening strategy, in which different social-economic activities are permitted in different
stages while the epidemic is closely monitored to ensure the needs for intensive care units
(ICU) beds and other medical resources do not exceed the health system capacity.

COVID-19 transmission dynamic models [18, 20, 22–24] have been used to estimate the
peak demand of ICU beds. These models, however, have ignored the inherent stochasticity
in nature and human behaviour (i.e., contact rates) that will affect future social distancing
relaxation stages, which will ultimately affect the magnitude and timing of the epidemic
peak in future outbreak scenarios, including ICU bed needs. This uncertainty poses great
challenges to public health decision- and policy-makers in the design, i.e., timing, type of
change, that future phases of re-opening of the economy should include. To meet these
challenges, here we develop a quantitative stochastic programming model to support a
multi-stage decision-making process under substantial uncertainty.

Our key idea is to make the best possible decision in re-opening given currently avail-
able information that may be weak. Such available weak information is provided by a
disease transmission dynamical system that incorporates intrinsic uncertainty in individ-
ual behavior, resulting in randomness of the daily average contact rate. Indeed, the exact
contact rate for different future stages of re-opening are not known. However, they can
be informed by, for example, mathematical modelling studies of historical measures of
COVID-19 public health mitigation strategies during different closure stages – bounds of
contact rates in the future may be reasonably established in terms of the economic sec-
tor and social, economic and health considerations, from which ranges in the timing and
magnitude of peak demand of ICU units can be inferred. Furthermore, we can consider
different scenarios of the contact rate distributions. Consequently, the distribution of peak
demands can be established as well. This provides a scientific basis to calculate the ex-
pected loss of contacts, rather than considering only the worst- and/or best-case scenario.
A natural approach is to calculate the peak demand based on the average of the future
contact rate, however the dynamics of the disease transmission renders dependence of the
peak demand on the contact rate highly nonlinear, and it is known that the expectation
of a nonlinear function of a random variable is in general different from the nonlinear
function of the expectation of the random variable.

A critical consideration in re-opening is the recourse option. It is possible that, once
re-opened, or when re-opening is initiated, outcomes may be worse than expected, and
corrective actions must be taken. A complete re-implementation of lockdown would be
the safest solution, but in the long-term it is not acceptable, feasible or sustainable. We,
therefore, must consider re-opening plans that allow for some variability in outcomes
so that severe recourse actions will not be needed. In this type of multistage decision
problem, the first stage decision shall therefore leave enough room for future recourse in
unfavourable cases. An aggressive first stage decision might lead to a better result in
a favorable case, but could cause failure in an unfavourable one. On the other hand, a
pessimistic first stage decision incurs very high social-economic costs. An optimal first
stage decision shall take into account the recourse options and the distribution of future
uncertainties, and therefore, will yield a proactive and reactive re-opening policy. The
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policy is not the best in the favorable case, and is not the best in the worst case either,
but it is overall optimal in a holistic sense.

Here we develop a stochastic programming model based on an adopted disease trans-
mission dynamical system [18]. The model formulation and its numerical simulations take
full consideration of: (1) the adaptive decision process; (2) the contact rate uncertainties;
(3) recourse actions and consequences; and (4) the underlying dynamics of COVID-19
which is described by an ODE system. Stochastic programming is a well established
model and is widely used in finance, transportation, agriculture, etc., see [23]. To our best
knowledge, this is the first attempt to integrate stochastic optimization and disease trans-
mission models for informing re-opening optimal strategies. It is also innovative in that
it is the synthesis of an underlying dynamical process described by a disease transmission
model involving other public health interventions.

In our numerical simulations, we take the province of Ontario, Canada, as a case
study. The optimal re-opening plan is achieved by maximizing the total activities from
the beginning of the re-opening process to an assumed date when an effective therapeutics
or vaccine against COVID-19 is available, subject to the capacity of the health system
and the uncertainties of contact rates during the re-opening phases. Using the tools of
stochastic programming and the disease transmission model, we find optimal timings for
each re-opening phase, that maximizes the relaxation of social contacts under uncertainties
while not overwhelming the health system, awaiting the arrival of an effective SARS-CoV-2
therapeutics or vaccine.

2. Materials and Methods

2.1. The Transmission Dynamics Model

We use a compartmental model describing COVID-19 transmission dynamics that in-
corporates feasible public health measures, including detection of cases by testing and their
isolation, and tracing of contacts with cases and their quarantine. In the model formula-
tion, the population is divided into susceptible (S), exposed (E), asymptomatic infectious
(A), infectious with symptoms (I), and recovered (R) compartments according to the
clinical-epidemiological status of individuals. We also include diagnosed and isolated (D),
isolated susceptible (Sq), and isolated exposed (Eq) compartments based on control inter-
ventions. Within the modelling framework, we take contact tracing into account, where a
proportion, q, of individuals exposed to the virus are traced and isolated (referred to as
the quarantine proportion). Quarantined individuals can either move to the compartment
Eq or Sq, depending on whether transmission has occurred (with probability q), while the
other proportion, 1 − q, consists of individuals exposed to the virus who are missed from
contact tracing and, therefore, move to the exposed compartment E if infected, or stay in
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the compartment S otherwise. The transmission dynamics model is

S′ = −βc+ cq(1 − β)S(I + θA)/N + λSq,
E′ = βc(1 − q)S(I + θA)/N − σE,
I ′ = σρE − (δI + α+ γI)I,
A′ = σ(1 − ρ)E − γAA,
S′q = (1 − β)cqS(I + θA)/N − λSq,

E′q = βcqS(I + θA)/N − δqEq,

D′ = δII + δqEq − (α+ γD)D,
R′ = γII + γAA+ γDD,

(1)

where N denotes the total population. The model was developed in a series of studies, and
parameterized by fitting to the incidence data in a number of settings including the first
reported epicenter Wuhan [17, 19, 21], in other provinces in China [20], in South Korea
[20], in Italy [14] and in the Province of Ontario, Canada [18, 24]. In what follows, we will
use the model fitted to the incidence data in Ontario, however, the model structure and
optimization techniques we develop here can be applied to other settings and regions.

In order to develop optimal strategies to gradually relax the social distancing subject
to key medical resources (hospital wards, ICU beds, for example), we divide compartment
D(t) (those diagnosed but not-yet-recovered individuals) as follows:

D = Dmild +DICU +Dward.

In other words, we distinguish the confirmed cases into those who show only mild symp-
toms and do not require hospitalization (Dmild), those who are hospitalized in the ICU
with severe symptoms (DICU ), and those who are hospitalized in non-ICU units (Dward).
The disease progression and medical treatment process is described as follows:

D′mild = (1 − h)(δII + δqEq) − (α+ γmild)Dmild,
D′ICU = h(1 − w)(δII + qEq) + bwardDward − (α+ γICU )DICU ,
D′ward = hw(δII + δqEq) − (α+ γward + bward)Dward.

(2)

Here, h is the proportion of hospitalized cases among newly confirmed cases, among which
a proportion w are hospitalized in non-ICU units directly. In our simulations and analyses,
we use values of h and w estimated in [2], namely, h = 0.16 and w = 0.77. The recovery
rates for individuals in each state are denoted by mild, ICU and ward. Here, we use
values from [10, 15, 16], namely, γmild = 1/5, γICU = 1/14 and γward = 1/12. The value
of bward we will use is estimated to be 0.26 × 1

3 which is the product of two quantities:
the proportion of patients who are moving to ICU beds among those who are originally
admitted to non-ICU units, 0.26 [22], and the average duration of the pre-ICU period of
3 days [22].

Specifically, after March 2, the model was used to determine a time varying contact rate
c(t) and quarantine proportion q(t), that were assumed to be exponentially decreasing and
increasing with exponential rates r1 and r2, respectively. That is, by introducing T0, T1 and
Ts corresponding to March 14 (School closure began), March 18 (Emergency declaration,
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Figure 1: The flowchart of the transmission dynamics model, where the population is stratified by susceptible
(S), exposed (E), asymptomatic infectious (A), symptomatic infectious (I), and recovered status (R), and by
quarantine and isolation status (i.e. Sq and Eq). The compartment of diagnosed but not yet resolved cases is
further stratified by the need for the use of hospital wards (Dward) and/or ICU beds (DICU ), and mild (Dmild).

with closure of public events and recreational venues; Escalation), and March 24 (Closure
of all non-essential workplaces), respectively, a full paramterization of the model for each
phase of the escalation process in Ontario, Canada was determined (see [18]). Table 1
contains the values of parameters used for the simulation. Parameters estimated from [18]
are presented with standard deviations.

2.2. Stochastic Optimization of De-escalation Plans

We investigate a social distancing de-escalation plan in which the escalation process
experienced in the Province Ontario is reversed through a staged approach. Therefore,
four main de-escalation phases will be considered:

De-escalation-Phase 0 and 1: Opening of workplaces;
De-escalation-Phase 2: Resumption of public events and activities;
De-escalation-Phase 3: School opening.
We set up the initiation time of de-escalation phase 0 to be May 19, the first day

of the (partial) workplace re-opening. We look for the optimal initiation time of de-
escalation phase 1, 2 and 3 while keeping the number of diagnosed cases below a certain
threshold. This threshold is set by the health system capacity, especially the number
of ICU beds in the province. We aim to minimize the reduction in contacts compared
to the contacts of the pre-pandemic level until an expected arrival time of a COVID-19
therapeutics or vaccine, assumed, herewithin, to be January 2021. In the final discussion
section, we discuss how our approach can be modified to obtain results subject to different
assumptions on public health measures and the arrival time of vaccines. We aim to find the
optimal de-escalation strategy (the optimal time to switch between contact rates) within
the health system capacity, taking into account the various scenarios of social-economic
activities at each de-escalation phase. We emphasize that in our study, we assume that
the contact rates at each de-escalation phase (1, 2, and 3) are random variables.
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Table 1: Parameters for COVID-19 transmission dynamics in Ontario, Canada.

Parameter Definition Mean (STD)
c0 Contact rate before March 14 11.5801 (0.3456)
c1 Contact rate between March 14 to March 18 10.1202 (0.9185)
c2 Contact rate between March 18 to March 24 8.0495 (0.2787)
r1 Exponential decrease of contact rate 0.0466 (0.0152)
cb Minimum contact rate after March 24 2.1987 (0.2400)
β Probability of transmission per contact 0.1469 (0.0023)
q0 Fraction of quarantined exposed individuals before March 24 0.1145 (0.0114)
r2 Exponential increase of quarantine fraction 0.1230 (0.0123)
qb The maximum quarantine fraction 0.3721 (0.0371)
σ Transition rate of exposed individuals to the infected class 1/5
λ Rate at which the quarantined uninfected contacts were 1/14

released into the wider community
ρ Probability of having symptoms among infected individuals 0.7036 (0.0261)
δI Transition rate of symptomatic infected individuals 0.1344 (0.0134)

to the quarantined infected class
δq Transition rate of quarantined exposed individuals 0.1237 (0.0086)

to the quarantined infected class
γI Recovery rate of symptomatic infected individuals 0.1957 (0.0111)
γA Recovery rate of asymptomatic infected individuals 0.139
γmild Recovery rate of diagnosed individuals 0.2

with mild symptoms
γICU Recovery rate of individuals in ICU units 1/14
γward Recovery rate of individuals in non-ICU units 1/12
α Disease-induced death rate 0.008
θ Modification factor of asymptomatic infectiousness 0.0275 (0.0128)
h Proportion of hospitalized cases among newly confirmed cases 0.16
w Proportion of cases admitted to non-ICU units 0.77

among newly hospitalized cases
bward Rate of transfer from non-ICU units to ICU units 0.26 × 1

3

Initial values Definition Mean (STD)
S(0) Initial susceptible population 1.471107
E(0) Initial exposed population 8.9743 (0.6558)
I(0) Initial symptomatic infected population 5.3887 (0.9442)
A(0) Initial asymptomatic infected population 19.4186 (3.9406)
Sq(0) Initial quarantined susceptible population 0
Eq(0) Initial quarantined exposed population 0

Dmild(0) Initial diagnosed population with mild symptom 4
DICU (0) Initial diagnosed population in ICU units 0
Dward(0) Initial diagnosed population in non-ICU units 1
R(0) Initial recovered population 0

We consider four time-points, t0, t1, t2 and t3, each of which corresponds to the first
re-opening date of some workplaces (May 19, 2020), de-escalation-phase 1, de-escalation-
phase 2 and de-escalation-phase 3. Each de-escalation phase is characterized by a contact
rate, with cr,0, cr,1, cr,2 and cr,3 denoting the contact rates in each de-escalation phase
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Table 2: Parameters for COVID-19 transmission dynamics post-re-opening in Ontario, Canada.

Parameter Definition Value
cp Contact rate between April 22 and May 19 4.5191
cr,0 Contact rate during de-escalation phase 0 (since May 19) 5.3736

[cr,1, cr,1] Range of the contact rate during de-escalation phase 1 [6, 9.394]

[cr,2, cr,2] Range of the contact rate during de-escalation phase 2 [9.394, 10.5]

[cr,3, cr,3] Range of the contact rate during de-escalation phase 3 [10.5, 11.58]

qr Quarantine fraction after re-opening (since May 19) 0.3741
δI,r Transition rate of symptomatic infected individuals 0.1586

to the quarantined infected class after re-opening (since May 19)
βr probability of transmission per contact (since May 19) 0.13

(0, 1, 2 and 3). Symmetric triangular distributions are defined on the ranges presented
in Table 2. We set up the maximum level of contact rate to be the one at the pre-
pandemic level and assume that cr,3 = 11.58. The ranges of each triangular distribution
are chosen from [25]. They are calculated by modifying weights of four different contact
matrices at households, workplaces, schools and communities and others according to
strategies of relaxing social distance in different de-escalation phases in Ontario, Canada.
In [25], we used age- and location-specific contact matrices to calculate the average total
contact rate (per day) during different phases of COVID-19 mitigation in Ontario, Canada.
Using the transformations between different populations developed in [3], we calculated the
contact matrix for Ontario, Canada based on the POLYMOD 2015s survey data ([11, 13])
for Canada. We then constructed contact matrices for four different location settings:
households, workplaces, community-and-others, and schools among 18 age groups. These
age groups have different daily schedules during weekdays and weekend, for example,
young kids may go to daycares, students go to primary schools, high schools and colleges,
working adults and seniors go to work during the weekdays. Assuming the overall contact
mixing is a function of the four baseline matrices, base on possible age groups-specific
schedules, we calculated different weights for these four baseline matrices from May 19,
2020 for the three de-escalation phases.

In order to obtain the contact rate cr,0, the quarantine rate qr and case detection rate
δI,r post re-opening (i.e. after May 19), we have first fixed all the other parameter values
(all the parameters are constants) to those estimated in the previous study [18]. Note
that, we also introduced a new parameter cp describing the contact rate during the pre-
re-opening stage (i.e. April 22 to May 19) as the estimation in the previous study [18]
only used the data till April 21. Using the least square method, we fitted the model to
the data of cumulative reported cases between April 22 to June 9 in Ontario, where the
initial conditions (i.e. April 22) are obtained by solving the model in the previous study
[18] based on the estimated parameter values. The estimated values for cp, cr,0, qr, δI,r are
displayed in Table 2. Further, the transmission probability after re-opening is assumed
to be lower than that of the pre-re-opening stage (βr > β) due to increased use of PPE
(masks) by the public and personal distancing. The estimate of βr is taken from the result
of the similar modeling study in China [20].



K. Nah, S. Chen et al. / Eur. J. Pure Appl. Math, 13 (3) (2020), 710-729 717

We consider the acceptable de-escalation strategies which meet the constraints

DICU (t) ≤ DICU for t0 < t < t0 + T,

where, t0+T is the time corresponding to the end of cost-evaluation and DICU is a capacity
of the ICU beds available for COVID-19 patients. The total number of existing ICU and
acute beds in Ontario, Canada as of April 16, 2020 is 3504 and 20,354, respectively [1].
We assume that only a portion of these resources is available for COVID-19 patients.

A de-escalation strategy refers to the vectors (ε0, ε1, ε2) determined by εi = ti+1 − ti,
for i = 1, 2, 3. Here, ε0 represents the length of de-escalation phase 0 starting from t0
(May 19), 1, 2 and 3 are the duration of the de-escalation phases 1, 2 and 3, respectively.
The initiation time of de-escalation phase 3 is at the time t3 = t2 + ε2. Note that ε3 is
determined by the equation ε0 + ε1 + ε2 + ε3 = T and we denote a de-escalation strategy
corresponding to the scenario (cjr,1, c

j
r,2, c

j
r,3) to be (εj0, ε

j
1, ε

j
2). We consider the situation

that re-opening phases are separated by at least two weeks so that the minimal 2 weeks
phase switching time is assumed εi ≥ 14, for i = 0, 1, 2. The days of cost-evaluation are
set so that the end of the evaluation time corresponds to January 2021.

We solve the following scenario based stochastic programming model [4] to minimize
the intensity of reduced contacts (cost) during de-escalation phases 0, 1, 2 and 3,∑

j

wj

(
3∑

i=0

(cr,3 − cjr,i)ε
j
i + ug(εj0, ε

j
1, ε

j
2)

)
,

where
g(εj0, ε

j
1, ε

j
2) = −log(DICU − max

t0<t<t0+T
DICU (t)),

u is set to 10−6, wj are the likelihood of scenarios. All constraints mentioned above,
especially the transmission dynamic model, are included in the above scenario based
stochastic programming model. Furthermore, all decision variables are subject to the
non-anticipativity constraints [4] so as to generate a recourse solution, in which ε0 is made
before any uncertainty is revealed, εj1 are made after cjr,1 is observed and is adapted to it,

and εj2 are made after both cjr,1 and cjr,2 are observed and is adaptive as well. In a way,

cjr,3 are not included in the non-anticipative conditions, however, they change the value
of the cost function and therefore also change the optimal strategy. Hence ε0 part of the
resource solution is immediately implementable by the policy maker, while εj1 and εj2 are
path dependent, providing solutions to all possible future cases present in the model. The
solution suite covers favorable cases, as well as unfavorable cases. The decision model
incorporates uncertainty and models the adaptive decision process.

The scenario-based model is then implemented in a rolling horizon scheme, i.e., we
solve the model and implement the optimal ε0 right away, and near the end of ε0, we solve
the model with new information collected during ε0, such as the actual system status and
updated distribution of involved random variables, etc. The updated model will yield a
new ε0 to be implemented at that time. Though the εj1 and and εj2 are never implemented,
their existence show that the ε0 being implemented won’t lead to any future infeasibility
for any scenario considered in the model.
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3. Results

Figure 2: A scenario tree with 8 scenarios presented in Table 3. The date of vaccine arrival time is assumed to
be in January 2021.

Fig. 2 and Table 3 present the optimal de-escalation strategy considering 8 different
scenarios of the contact rates during 3 de-escalation phases, (cjr,1, c

j
r,2, c

j
r,3), j = 1, . . . , 8.

The resulting duration of de-escalation phase 0 is approximately 144 days (ε0 = 144.17
(days)). The optimal lengths of de-escalation phase 1 are close to the minimum length,
ε1 = 14 (days), while the length of de-escalation phase 2 (ε2) varies from approximately
35 days to 42 days, depending on the scenario.

As shown in Fig. 3, while the expected cases in ICU units remain to be less than
the capacity by the time of therapeutics/vaccine availability, the number of symptomatic
infected cases (I(t)) and asymptomatic infected cases (A(t)) will exceed the capacity of
ICU beds at the end of December, a few days prior to the therapeutics/vaccine arrival
time. We also observe that regardless of the choice of the scenario, the solution curves for
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Table 3: Optimal de-escalation strategies considering various scenarios for de-escalation phase 0, 1, 2 and 3.
Each of the ε1, ε2, ε3 and ε4 represents the duration (in days) of de-escalation phase 0, 1, 2 and 3, respectively.
Calendar dates presented in the rows of t1, t2, t3 correspond to the date of initiating de-escalation phase 1, 2
and 3, in the year of 2020.

s1 s2 s3 s4 s5 s6 s7 s8
c1,r 7.55 8.12 7.55 8.12 7.55 8.12 7.55 8.12
c2,r 9.90 9.90 10.09 10.09 9.90 9.90 10.09 10.09
c3,r 10.99 10.99 10.99 10.99 11.18 11.18 11.18 11.18

ε0 144.17 144.17 144.17 144.17 144.17 144.17 144.17 144.17
ε1 14.00 14.32 14.00 14.32 14.00 14.32 14.00 14.32
ε2 35.87 37.09 41.87 41.10 35.87 37.09 41.87 41.10
ε3 32.96 31.42 26.96 27.42 32.96 31.42 26.96 27.42

t1 10-Oct 10-Oct 10-Oct 10-Oct 10-Oct 10-Oct 10-Oct 10-Oct
t2 24-Oct 24-Oct 24-Oct 24-Oct 24-Oct 24-Oct 24-Oct 24-Oct
t3 29-Nov 30-Nov 05-Dec 04-Dec 29-Nov 30-Nov 05-Dec 04-Dec

Table 4: Expected value solution, the optimal de-escalation strategy for a single scenario, characterized by the
mean contact rates during de-escalation phase 1, 2, and 3.

c1 c2 c3 ε0 ε1 ε2 ε3 t1 t2 t3
7.70 9.95 11.04 143.00 14.04 32.14 37.83 08-Oct 23-Oct 24-Nov

infected cases and the incidence curves remains relatively unchanged, and would remain
to be low for five months from May 19 until they start to rise in November.

Fig. 4 shows the histograms of ε0 generated from a number of simulations. We observe
that the resulting ε0 has values of 146 days within ± 5 days of differences. We expect
the difference will be smaller as we increase the number of scenarios. In the figure, we
compare the cases with 8 scenarios and 27 scenarios.

Table 4 shows the optimal strategy evaluated for a single scenario, the scenario consists
of the contact rates which are the mean values of the distributions of the contact rates
in each of the de-escalation phases. It is called an expected value solution. Note that
the resulting ε0 = 143 (duration of de-escalation phase 0) is less than the one obtained
in Table 4, ε0 = 144, which considers the various future scenarios. When we incorporate
the uncertainties of the various future scenarios, the resulting optimal strategy is to take
a conservative option, to have a delayed timing of the next re-opening step which allow
us to stay within the health capacity in any of the upcoming scenarios.

Fig. 5 shows the result of using the expected value solution under the uncertainties of
contact rates. Contact rates post-re-opening phases are determined by 8 scenarios in Table
3. In the right panel, we observe that the expected number of cases in ICU units would
remain under the ICU capacity only for scenario 1 (s1, red curve), which projects the lowest
contact rates for all de-escalation phases among all scenarios considered. The expected
solution is feasible only for scenario 1 (s1) and is not feasible for all other scenarios (s2−s8).
Due to this infeasibility, the cost of using the expected value solution is infinity. Hence
the cost difference between the expected value solution and our stochastic programming
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Table 5: Optimal de-escalation strategies when the date of vaccine arrival time is assumed to be in March 2021.
The 8 scenarios of contact rates are identical to the ones presented in Table 3.

s1 s2 s3 s4 s5 s6 s7 s8
c1,r 7.55 8.12 7.55 8.12 7.55 8.12 7.55 8.12
c2,r 9.90 9.90 10.09 10.09 9.90 9.90 10.09 10.09
c3,r 10.99 10.99 10.99 10.99 11.18 11.18 11.18 11.18

ε0 192.94 192.94 192.94 192.94 192.94 192.94 192.94 192.94
ε1 14.00 14.17 14.00 14.17 14.00 14.17 14.00 14.17
ε2 37.74 39.33 44.82 44.09 37.74 39.33 44.82 44.09
ε3 41.32 39.56 34.24 34.80 41.32 39.56 34.24 34.80

t1 27-Nov 27-Nov 27-Nov 27-Nov 27-Nov 27-Nov 27-Nov 27-Nov
t2 11-Dec 12-Dec 11-Dec 12-Dec 11-Dec 12-Dec 11-Dec 12-Dec
t3 18-Jan 20-Jan 25-Jan 25-Jan 18-Jan 20-Jan 25-Jan 25-Jan

Table 6: Optimal de-escalation strategies with enhanced contact tracing (qr = 0.5). Each of the ε1, ε2 and ε3
represents the duration (in days) of de-escalation phase 0, 1 and 2, respectively. Calendar dates presented in
the rows of t1, t2, t3 correspond to the date of initiating de-escalation phase 1, 2 and 3, in the year of 2020.

s1 s2 s3 s4 s5 s6 s7 s8
c1,r 7.55 8.12 7.55 8.12 7.55 8.12 7.55 8.12
c2,r 9.90 9.90 10.09 10.09 9.90 9.90 10.09 10.09
c3,r 10.99 10.99 10.99 10.99 11.18 11.18 11.18 11.18

ε0 76.76 76.76 76.76 76.76 76.76 76.76 76.76 76.76
ε1 14.00 14.03 14.00 14.03 14.00 14.03 14.00 14.03
ε2 60.85 64.25 74.74 73.50 60.85 64.25 74.74 73.50
ε3 75.38 71.96 61.50 62.71 75.38 71.96 61.50 62.71

t1 3-Aug 3-Aug 3-Aug 3-Aug 3-Aug 3-Aug 3-Aug 3-Aug
t2 17-Aug 17-Aug 17-Aug 17-Aug 17-Aug 17-Aug 17-Aug 17-Aug
t3 17-Oct 21-Oct 31-Oct 30-Oct 17-Oct 21-Oct 31-Oct 30-Oct

solution is infinity.
Table 5 show the optimal strategy with a different assumption of the vaccine arrival

time, which is delayed for two more months compared with the vaccine arrival time as-
sumed in the simulation for Fig. 2. The two months of delay in the vaccine arrival time
resulted in a longer duration of the de-escalation phase 0 and phase 2, while the length of
de-escalation phase 1 remains at the minimum length.

With the increased level of contact tracing, initiation timings of de-escalation phase
3 (t3) are expected to be earlier. An example in Table 6 and Fig. 6 shows that if 50%
of exposed individuals are quarantined, school re-opening can be in October, instead of
in November/December (as shown in Table 3 with lower quarantined proportion, qr =
0.3741). However, the curves of incidence and deaths remain to be similar to the ones
with lower quarantined proportion (see Fig. 7 and Fig. 3).
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Figure 3: Various scenarios of contact rates and the projected number of cases and deaths during 4 de-escalation
phases with a strategy presented in Table 3.
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Figure 4: Histograms of ε0, the duration of de-escalation phase 0, resulting from 100 simulations. Left (Right)
panel shows the result with 8 (27) scenarios. Mean value of ε0 with 27 scenarios is 145.79.
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Figure 5: Projected numbers of cases in ICU of the alternative approach, the expected value approach in Table
4 under the 8 scenarios given in the first three rows of Table 3. The right panel shows the curves near the
vaccine arrival time in January 2021.
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Figure 6: A scenario tree with enhanced contact tracing (qr = 0.5). The 8 scenarios and the optimal strategy
are presented in Table 6.
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Figure 7: Various scenarios of contact rates and the projected number of cases and deaths with enhanced
contact tracing (qr = 0.5).
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4. Discussion

In the existing scholarly literature, a few mathematical models have attempted to
project COVID-19 related infections, hospitalizations and deaths during the re-opening
phase, under various assumptions and scenarios.

For instance, Crawford and colleagues [6] have modelled a slow and a fast re-opening
scenario in Connecticut, one of the USA states most hard-hit by the pandemic. In the
former scenario, infections are expected to peak by late Summer (mid-August), while in the
latter scenario a second peak is anticipated to occur by late Fall. Projected hospitalizations
are not expected to exceed bed capacity in both scenarios, even though they could strain
the healthcare facilities in the fast re-opening scenario under the assumption of a high
fraction of asymptomatic cases. Finally, always under this assumption, deaths could surge
in the short-term but should stabilize and be lower in the long-term with respect to the
assumption of a low fraction of asymptomatic cases.

Liu and coworkers [8] have devised a SIR model integrated by demographic and mo-
bility data to simulate the spread of COVID-19 in the USA when restrictions are eased.
Authors found that counties characterized by the lowest population density could not ex-
perience a surge in infections also when public health measures like social distancing are
lifted, even though generally in the USA a dramatic peak of cases could occur if social
distancing is completely abolished. From a quantitative standpoint, Zhou [27] has esti-
mated an increase in daily confirmed COVID-19 cases by 40%, 52%, and 53% after the
first, second, and third week of re-opening, respectively.

Zhao and Feng [26] also used SEIR-type epidemic models to analyzes the effects of
releasing different age/risk groups in different timings. By comparing several release
scenarios, authors were able to quantify benefits of staggered release compared with
simultaneous-release policies in terms of risks of venerable population and the disease
burden in the overall population.

In the UK, Panovska-Griffiths and collaborators [12] developed a stochastic individual-
based model to simulate different lockdown exit strategies. Authors found that relaxing
closures that aim to control COVID-19 would result in a rebound/second wave, which
can be controlled by a package of integrated public health measures, including expanding
testing, contact tracing, diagnosis, and isolation of symptomatic individuals. A similar
conclusion was reached by Anderson and coauthors, who devised a Bayesian epidemiologi-
cal model and found that caution should be taken during the re-opening phase, both when
re-opening borders and resuming economic-activities and businesses. A strict monitoring
of COVID-19 transmission should be conducted during the relaxation of the public health
interventions implemented and enforced during the lockdown.

McBryde and coworkers [9] modelled lockdown exit strategy in Australia utilizing
age-based contact matrices, and simulating resumption of different activities (re-opening
of workplace and schools). Authors investigated the effects of both micro- and macro-
distancing on the SARS-CoV-2 reproduction number.

Finally, Hazem and colleagues [7] have assessed the effect of relaxing the lockdown
related restrictions in a number of countries, including the USA, Germany, the UK, Italy,
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Spain, and Canada, exploiting a modified SIR model. Authors showed that, even within
different scenarios and under various assumptions, a second wave is very likely to occur.
Moreover, authors predicted the number of infections for different re-opening dates, under
various lockdown exit strategies and found that an optimal strategy would begin easing
the public health measures at least 3 months after the turning point of the epidemic
curve. Specifically concerning Canada, authors predicted a second wave up to 80 thousand
infected cases in case of re-opening on June 1, which could be reduced by 45 percent if
postponing re-opening to July 1 (55 thousand infections).

In line with the literature, our study attempted to assess re-opening strategies with the
aim of informing public health policy-makers in their decision-making process. Similarly,
Cetin and collaborators [5] have built two optimization models, namely a personal protec-
tion and a mass protection model, for making cost effective decisions against COVID-19.
However, our optimization model has different focuses on the underlying transmission pro-
cess and the dynamics of the decision process which is adapted to the sequentially revealed
uncertainty in future. In more detail, we have developed a novel framework to identify
the optimal timing of the upcoming re-opening phase taking account of the randomness
in the contact rate during post re-opening phases. This framework is designed to assist
adaptive decision process.

For the special case of re-opening strategies in Ontario, Canada, our model has found
that the outcomes of the epidemic generated from the optimal strategy would remain to
be similar regardless of the future scenario reflecting the randomness in the contact rates.
Without the enhancement of other control methods, the optimal duration of de-escalation
phase 0 (first part of workplace resumption) would be fairly long, while the duration of
succeeding de-escalation phases are shorter. Comparing our results with the expected value
solution, we also found that neglecting the uncertainties in future contact behavior would
yield an earlier optimal re-opening timing, however, this would result in exceeding the
health care capacity. Finally, we mention that our developed framework can be modified
to incorporate other uncertainties; for example, the date of effective therapeutics/vaccine
becoming available can be incorporated as a random variable.

In our study, the targeted optimization is to minimize the total number of daily av-
erage contact rates for all residents in the considered region (here the Province of On-
tario, Canada). Decisions on re-opening involve heavily social economic considerations,
where values of “contacts” are age-specific and location (household, workplace, school,
community) setting-specific. To construct a realistic targeted optimization function that
incorporates these social and economic considerations, we must first of all expand the
transmission dynamics model in a homogeneous population to age-stratified transmission
models with appropriate contact-mixing in the population, and then estimate the values
of “contacts” for different age-groups, different contact settings, and for different sectors.
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