EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 13, No. 4, 2020, 830-839 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global # On B-ideals in a Topological B-algebra and the Uniform B-topological Space Katrina E. Belleza^{1,*}, Jocelyn P. Vilela² - ¹ Department of Computer, Information Sciences and Mathematics, School of Arts and Sciences, University of San Carlos, 6000 Cebu City, Philippines - ² Department of Mathematics and Statistics, College of Science and Mathematics, Center of Graph Theory, Algebra and Analysis, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines **Abstract.** This paper presents the characterizations and properties of B-ideals in a topological B-algebra and introduces the uniform topology on a B-algebra in terms of its B-ideals. Moreover, this paper shows that a uniform B-topological space is a topological B-algebra. 2020 Mathematics Subject Classifications: 54A05, 54F65, 54H99, 55M99 Key Words and Phrases: B-ideals, topological B-algebra, uniform B-topology #### 1. Introduction Y.B. Jun et al. [4] in 1999 introduced topological BCI-algebras, provided some properties on this structure, and characterized a topological BCI-algebra in terms of neighborhoods. In 2002, J.Neggers and H.S. Kim [9] introduced and investigated B-algebras. In 2017, S. Mehrshad and J. Golzarpoor [7] provided some properties of uniform topology and topological BE-algebras. A recent study on topological B-algebras was conducted by N.C. Gonzaga, Jr. [6] in 2019, which characterized a topological B-algebra with respect to neighborhoods. This paper provides some properties of topological B-algebra, describes the B-ideals in a topological B-algebra, and characterizes uniform B-topology in a B-algebra. DOI: https://doi.org/10.29020/nybg.ejpam.v13i4.3807 Email addresses: kebelleza@usc.edu.ph (K. Belleza), jocelyn.vilela@g.msuiit.edu.ph (J. Vilela) ^{*}Corresponding author. #### 2. Preliminaries An algebra of type (2,0) is an algebra with a binary operation and a constant element. **Definition 1.** [9] A B-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms for all x, y, z in X: (B1) $$x * x = 0$$ (B2) $x * 0 = x$ (B3) $(x * y) * z = x * [z * (0 * y)]$ **Example 1.** [8] Let $X = \{0, a, b, c, d, e\}$ be a set with the following Cayley table: | * | 0 | a | b | \mathbf{c} | d | e | |--------------|---|--------------|--------------|--------------|----------------------------|--------------| | 0 | 0 | b | a | c | d | е | | a | a | 0 | b | d | \mathbf{e} | \mathbf{c} | | b | b | a | 0 | e | \mathbf{c} | d | | \mathbf{c} | c | d | \mathbf{e} | 0 | b | a | | d | d | e | \mathbf{c} | a | 0 | b | | e | e | \mathbf{c} | d | b | d
e
c
b
0
a | 0 | Then (X, *, 0) is a *B*-algebra. **Definition 2.** [6] Let A and B be nonempty subsets of a B-algebra X. The product of A and B, denoted by A * B, is given by $$A*B = \{a*b | a \in A, b \in B\}.$$ **Lemma 1.** [9] Let (X, *, 0) be a *B*-algebra. Then for any $x, y \in X$, (i) $$x * y = 0$$ implies $x = y$; (ii) $0 * x = 0 * y$ implies $x = y$; (iii) $0 * (0 * x) = x$. **Definition 3.** [10] Let (X, *, 0) be a *B*-algebra. A nonempty subset *N* of *X* is called a *subalgebra* of *X* if $x * y \in N$ for any $x, y \in N$. **Lemma 2.** [3] Let X be a B-algebra. If $\{N_{\alpha} : \alpha \in A\}$ is a nonempty collection of subalgebras of X, then $\bigcap_{\alpha \in A} N_{\alpha}$ is a subalgebra of X. **Definition 4.** [8] Let (X, *, 0) be a *B*-algebra. A nonempty subset *S* of *X* is said to be normal in *X* if for any $x * y, a * b \in S$, $(x * a) * (y * b) \in S$. **Theorem 1.** [10] Let N be a subalgebra of a B-algebra X. Then the following statements are equivalent: (i) N is a normal subalgebra; (ii) if $$x \in X$$ and $y \in N$, then $x * (x * y) \in N$. Suppose (X, *, 0) is a B-algebra and I a normal subalgebra of X. The relation " \cong^I " defined by $x \cong^I y$ if and only if $x * y, y * x \in I$ is a congruence relation on X for any $x, y \in X$. That is, \cong^I is an equivalence relation and for each $a, b, x, y \in X$, if $x \cong^I y$ and $a \cong^I b$, then $a * x \cong^I b * y$. Let $I_x = \{y : y \cong^I x\}$ denote the equivalence class of x and $X/I = \{I_x : x \in X\}$. Then X/I is a B-algebra called the quotient B-algebra under the binary operation given by $I_x * I_y = I_{x*y}$ [3]. **Definition 5.** [1] Let (X, *, 0) be a *B*-algebra and *I* a nonempty subset of *X*. Then *I* is called a *B*-ideal of *X* if it satisfies the following: for any x, y in X, (i) $$0 \in I$$; (ii) if $x * y \in I$ and $y \in I$, then $x \in I$. **Remark 1.** Not every *B*-ideal is a normal subset of a *B*-algebra *X*. Consider Example 1. Then $\{0, c\}$ is a *B*-ideal but is not normal since $c * a = c, b * d = c \in \{0, c\}$ with $(c * b) * (a * d) = b \notin \{0, c\}$. **Remark 2.** Any nonempty normal subset of X is a subalgebra. Hence, if I is a normal B-ideal, then X/I is a B-algebra. Let X be a set. A topology (or topological structure) in X is a family τ of subsets of X that satisfies the following: - (i) Each union of members of τ is also a member of τ ; - (ii) Each finite intersection of members of τ is also a member of τ ; and - (iii) \varnothing and X are members of τ . A couple (X, τ) consisting of a set X and a topology τ in X is called a topological space. We also say " τ is the topology of the space X". The members of τ are called open sets of (X, τ) . Let (X, τ_X) and (Y, τ_Y) be topological spaces. A map $f: X \to Y$ is called continuous if the inverse image of each open set in Y is open in X (that is, if f^{-1} maps τ_Y into τ_X) [2]. **Definition 6.** [2] Let $\{Y_{\alpha} | \alpha \in \mathcal{A}\}$ be any family of topological spaces. For each $\alpha \in \mathcal{A}$, let τ_{α} be the topology for Y_{α} . The cartersian product topology in $\prod_{\alpha} Y_{\alpha}$ is that having for subbasis all sets $\langle U_{\beta} \rangle = \rho_{\beta}^{-1}(U_{\beta})$, where $\rho : \prod_{\alpha} Y_{\alpha} \to Y_{\alpha}$, U_{β} ranges over all members of τ_{β} and β over all elements of \mathcal{A} . **Definition 7.** [6] Let X be a B-algebra. A topology τ furnished on X is called a B-topology on X. A B-topological space (X,τ) is called a topological B-algebra if τ is a B-topology on X and the binary operation $*: X \times X \to X$ is continuous, where $X \times X$ is furnished by the Cartesian product topology. Let (X, τ) be a topological space and $A \subset X$. By a neighborhood of an element x in X (denoted as U(x)) is meant any open set (that is, member of τ) containing x. The interior Int(A) of A is the largest open set contained in A, that is, $Int(A) = \bigcup \{U | U \in \tau, U \subset A\}$. A point a is an interior point of A if $a \in Int(A)$, that is, there exists $U(a) \in \tau$ such that $U(a) \subset A$. A is open if and only if Int(A) = A. A set $Y \subset X$ is a closed set in X if its complement is open. A point $x \in X$ is adherent to Y if each neighborhood of x contains at least one point of Y. The set $\overline{Y} = \{x \in X | \forall U(x), U(x) \cap Y \neq \emptyset\}$ of all points in X adherent to Y is called the closure of Y [2]. **Theorem 2.** [6] Let X = (X, *, 0) be a B-algebra and τ a B-topology on the set X. Then (X, τ) is a topological B-algebra if and only if for all x, y in X and for every neighborhood W of x * y, there are neighborhoods U and V of x and y, respectively, such that $U * V \subseteq W$. Throughout this article we will denote a B-topological space (X, τ) , topological B-algebra $(X, *, \tau)$, or a B-algebra (X, *, 0) as simply, X. ## 3. B-ideals in Topological B-algebras **Example 2.** Consider the *B*-algebra $X = \{0, a, b, c\}$ with the binary operation "*" defined on the Cayley table provided. Let $\tau = \{X, \emptyset, \{0, b\}, \{a, c\}\}$. Then τ is a *B*-topology on X and $(X, *, \tau)$ is a topological *B*-algebra. **Remark 3.** Not every B-ideal of a B-algebra X is either an open or closed set in a topological B-algebra. This remark is illustrated in the next example. **Example 3.** Consider the topological B-algebra in Example 2. Let $I = \{0, c\}$. Then I is a B-ideal of X. Observe that $I \notin \tau$ implying that I is not an open set in X. Also, $X \setminus I = \{a, b\} \notin \tau$ implying that I is not a closed set in X. However if a B-ideal A in a topological B-algebra X is open, it is also a closed B-ideal in X. This is formally stated in the next theorem. **Theorem 3.** If A is an open B-ideal of a topological B-algebra X, then A is also closed. Proof. Suppose A is an open B-ideal of a topological B-algebra X. Let $x \in X \setminus A$. Since A is a B-ideal of X, $x * x = 0 \in A$ by (B1). By Theorem 2, there exists U(x) such that $U(x) * U(x) \subseteq A$. We claim that $U(x) \subseteq X \setminus A$. Assume on the contrary that $U(x) \nsubseteq X \setminus A$, that is, $U(x) \cap A \neq \emptyset$. Then there exists $y \in U(x) \cap A$. Note that for all $z \in U(x)$, $z * y \in U(x) * U(x) \subset A$. Since $y \in A$ and A is a B-ideal, $z \in A$. So, $U(x) \subseteq A$ which implies that $x \in A$, a contradiction. Hence, $X \setminus A$ is open. Therefore, A is closed in X. The next theorem is a characterization of an open set (containing 0) in a topological B-algebra. **Theorem 4.** Let X be a topological B-algebra and $A \subset X$ such that $0 \in A$. Then A is open if and only if 0 is an interior point of A. Proof. Suppose A is open. Since $0 \in A$, 0 is an interior point of A. Conversely, suppose 0 is an interior point of A. Then there exists U(0) such that $U(0) \subseteq A$. Let $y \in A$. By (B1), $y * y = 0 \in U(0)$. Since X is a topological B-algebra, by Theorem 2, there exist U(y) such that $U(y) * U(y) \subseteq U(0)$. It remains to show that $U(y) \subseteq A$. Let $x \in U(y)$. By (B1), $x * x = 0 \in A$. If $x \in A$, we are done. Suppose $x \notin A$. Then $x \notin U(0)$. This implies that $x \notin U(y) * U(y)$. By (B2), $x * 0 = x \notin U(y) * U(y)$. This implies that $x \notin U(y)$ which is a contradiction. Therefore, $U(y) \subseteq A$ and A is open. The following corollary follows from Theorem 4. Corollary 1. Let X be a topological B-algebra. Then 0 is an interior point of a B-ideal I if and only if I is open. The next example illustrates that an open subset of a topological B-algebra may not be a B-ideal in which the observation is formally stated as a remark. **Example 4.** Consider the topological *B*-algebra in Example 2. Examine the open set $\{a,c\}$. Note that $\{a,c\}$ is not a *B*-ideal since $0 \notin \{a,c\}$ and b*c=a and $c \in \{a,c\}$ but $b \notin \{a,c\}$. **Remark 4.** Not every open subset of a topological B-algebra X is a B-ideal of X. However, if all open sets are neighborhoods of 0, every open subset of a topological B-algebra X is a B-ideal of X. This is formally stated in the next theorem which is a characterization of a B-ideal in a topological B-algebra. **Theorem 5.** Let X be a topological B-algebra and I an open subset of X. If $0 \in \bigcap_{U \in \tau} U$, then I is a B-ideal of X. Proof. Let $x*y \in I$ where $y \in I$. Since I is open, by Theorem 2, there exist V(x) and V(y) such that $V(x)*V(y) \subseteq U(x*y) \subseteq I$. By (B2), $x = x*0 \in V(x)*V(y) \subseteq I$. Therefore, I is a B-ideal of X. **Lemma 3.** Let X be a topological B-algebra, $I_0 \subseteq X$ where I_0 contains 0 is such that if $0 \in U$, then $I_0 \subseteq U$ for all $U \in \tau$. Then for any $x \in I_0$ and $U(x) \in \tau$, $I_0 \subseteq U(x)$. Proof. Suppose $x \in I_0$. By (B2), $x * 0 = x \in U(x)$. By Theorem 2, there exist V(x) and V(0) such that $V(x) * V(0) \subseteq U(x)$. By (B1) and the hypothesis, $0 = x * x \in V(x) * I_0 \subseteq V(x) * V(0) \subseteq U(x)$. This implies that U(x) is an open set containing 0. Therefore, $I_0 \subseteq U(x)$. The next theorem gives another characterization of a B-ideal. **Theorem 6.** Let X be a topological B-algebra and I an open subset of X containing 0 such that if $0 \in U$, then $I \subseteq U$ for all $U \in \tau$. Then I is a B-ideal of X. Proof. Suppose $x*y, y \in I$ for any $x, y \in X$. By Theorem 2, there exist U(x) and U(y) such that $U(x)*U(y) \subset I$. By (B2), the hypothesis, and Lemma 3, $x = x*0 \in U(x)*I \subset U(x)*U(y) \subset I$. Hence, I is a B-ideal of X. Note that the converse of Theorem 6 is not always true as shown in the next example. **Example 5.** Let X be the topological B-algebra in Example 2. Then the trivial B-ideal X is not the smallest open set containing 0. However, if the B-ideal I is closed, I is also open but may not be the smallest open set containing 0. This is stated in the next theorem which is the converse of Theorem 3 **Theorem 7.** Let X be a topological B-algebra and I a closed B-ideal of X. Then I is also open. Proof. Suppose I is a closed B-ideal of X. Assume on the contrary that I is not an open set in X. By Theorem 4, 0 is not an interior point of I. This implies that for all $U(0) \in \tau$, $U(0) \nsubseteq I$. Let I_0 be open with property defined in Lemma 3. Then $I_0 \nsubseteq I$. Hence, $(X \setminus I) \cap I_0 \neq \emptyset$ and so there exists $z \in (X \setminus I) \cap I_0$. Note that $(X \setminus I) \cap I_0$ is an open set containing z. By Lemma 3, $I_0 \subset (X \setminus I)$. This implies that $0 \in X \setminus I$ which is a contradiction. Therefore, I is open. The next corollary follows directly from Theorems 3 and 7. Corollary 2. Suppose X is a topological B-algebra and I a B-ideal of X. Then I is an open subset of X if and only if I is a closed subset of X. **Theorem 8.** Let \mathcal{I} be a family of normal B-ideals in a B-algebra X. Then there is a topology $\tau = \{U \subseteq X | \forall x \in U, \exists I \in \mathcal{I} \text{ such that } I_x \subseteq U\}$ such that $(X, *, \tau)$ is a topological B-algebra. Proof. Note that for all $x \in X$, there exists $I \in \mathcal{I}$ such that $I_x \subseteq X$. This implies that $X \in \tau$. Suppose $\varnothing \notin \tau$. Then there exists $x \in \varnothing$ such that for all $I \in \mathcal{I}$, $I_x \nsubseteq U$ which is a contradiction. Hence, $\varnothing \in \tau$. Let $y \in U_1 \cap U_2$, where $U_1, U_2 \in \tau$. Then $y \in U_1$ and $y \in U_2$ which imply that there exist $I_1, I_2 \in \mathcal{I}$ such that $I_{1y} \subseteq U_1$ and $I_{2y} \subseteq U_2$. Let $I = I_1 \cap I_2 \in \mathcal{I}$. Claim 1: $I_y \subseteq I_{1y}, I_y \subseteq I_{2y}$. Suppose $x \in I_y$. Then $y \cong^I x$ which implies that $y * x \in I \subseteq I_1$. Hence, $y \cong^{I_1} x$ implying that $x \in I_{1y}$ so that $I_y \subseteq I_{1y}$. Similarly, $I_y \subseteq I_{2y}$. This proves claim 1. Since $I_{1y} \subseteq U_1$ and $I_{2y} \subseteq U_2$, it follows that $I_y \subseteq (U_1 \cap U_2)$. Hence, $U_1 \cap U_2 \in \tau$. Let $y \in \bigcup_{\alpha \in \mathcal{A}} U_\alpha$ where $U_\alpha \in \tau$ for all $\alpha \in \mathcal{A}$. Then $y \in U_\beta$ for some $\beta \in \mathcal{A}$. This implies that there exists $I_{\beta} \in \mathcal{I}$ such that $I_{\beta_y} \subseteq U_{\beta} \subseteq \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$. Hence, $U_{\alpha} \in \tau$. This implies that τ is a Claim 2: For any $I \in \mathcal{I}$ and $x \in X$, $I_x \in \tau$ Let $y \in I_x$. Then $y \cong^I x$. We will show that $I_y \subseteq I_x$. Let $z \in I_y$. Then $z \cong^I y$. By transitivity, $z \cong^I x$. Hence, $z \in I_x$ so that $I_y \subseteq I_x$. This proves claim 2. Suppose $x * y \in U \in \tau$. Then there exists $I \in \mathcal{I}$ such that $I_{x*y} \subseteq U$. Note that I_x and I_y are open sets containing x and y, respectively. Then $I_x * I_y = I_{x*y} \subseteq U$. This implies that * is continuous. Therefore, $(X, *, \tau)$ is a topological B-algebra by Theorem 2. ## 4. Uniform Topology on B-Algebras Throughout this section, all B-ideals of a B-algebra X are normal B-ideals of X. The following definitions are parallel to that of [5], page 340-341. Suppose X is a B-algebra and $U, V \subseteq X \times X$, consider the following notations: (i) $$U^{-1} = \{(y, x) | (x, y) \in U\};$$ (iii) $U[[x]] = \{y | (x, y) \in U\};$ (ii) $$U \circ V = \{(x, z) | \exists y \in X, (x, y) \in V, (y, z) \in U\}; \text{ (iv) } \Delta = \{(x, x) | x \in X\}.$$ Suppose Ω is an arbitrary family of B-ideals in a B-algebra X and $A \subseteq X$. Consider the following notations: (i) $$U_I = \{(x, y) \in X \times X | x \cong^I y\};$$ (iii) $\mathcal{K} = \{U \subseteq X \times X | U_I \subseteq U, \exists U_I \in \mathcal{K}^*\};$ (ii) $$\mathcal{K}^* = \{U_I : I \in \Omega\};$$ (iv) $U_I[[A]] = \bigcup_{a \in A} U_I[[a]].$ Remark 5. $\mathcal{K}^* \subseteq \mathcal{K}$. **Definition 8.** By a *uniformity* on a *B*-algebra X, we shall mean a nonempty collection \mathcal{K} of subsets of $X \times X$ which satisfies the following conditions for any $U, V \in \mathcal{K}$: (i) $$\Delta \subseteq U$$; (iv) $U \cap V \in \mathcal{K}$; and (ii) $$U^{-1} \in \mathcal{K}$$; (v) If $U \subseteq W \subseteq X \times X$ then $W \in \mathcal{K}$. (iii) $W \circ W \subseteq U$, for some $W \in \mathcal{K}$; The pair (X, \mathcal{K}) is called a uniform B-structure. **Example 6.** Consider the *B*-algebra $X = \{0, a, b, c, d, e\}$ in Example 1. The normal *B*-ideals of *X* are $\{X, I\}$ where $I = \{0, a, b\}$. By routine calculations, (X, \mathcal{K}) is a uniform *B*-structure where $\mathcal{K}^* = \{U_X, U_I\}$, $U_X[[0]] = U_X[[a]] = U_X[[b]] = U_X[[c]] = U_X[[d]] = U_X[[e]] = \{0, a, b, c, d, e\} = X$, $U_I[[0]] = U_I[[a]] = U_I[[b]] = \{0, a, b\}$, $U_I[[c]] = U_I[[d]]$, $U_I[[e]] = \{c, d, e\}$. **Remark 6.** (X, \mathcal{K}^*) is not a uniform B-structure as shown in the next example. **Example 7.** Consider the *B*-algebra $X = \{0, a, b, c, d, e\}$ in Example 1 and the *B*-ideal $I = \{0, a, b\}$ in Example 6. By Theorem 1, X and I are normal *B*-ideals of X. Hence, $\mathcal{K}^* = \{U_X, U_I\}$ where $U_X = \{(x, y) \in X \times X | x * y, y * x \in X\} = X \times X$ and $U_I = \{(0, 0), (a, a), (b, b), (c, c), (d, d), (e, e),$ $(0,b),(b,0),(a,0),(0,a),(b,a),(a,b),(c,e),(e,c),(d,c),(c,d),(e,d),(d,e)\}.$ Let $M=I\cup\{0,e\}=\{0,a,b,e\}.$ Then $U_M=U_I\cup\{(0,e),(e,0),(a,d),(d,a),(b,c),$ (c,b)}. Note that $U_I \subseteq U_M \subseteq X \times X$. Moreover, $M \notin \Omega$ since $d*a = e, a \in M$ but $d \notin M$. Hence, $U_M \notin \mathcal{K}^*$. This implies that \mathcal{K}^* does not satisfy condition (v) of Definition 8. However, in view of Remark 5, the next theorem states that the pair (X, \mathcal{K}) is a uniform B-structure. **Theorem 9.** Let Ω be an arbitrary family of B-ideals in a B-algebra X. Then (X, \mathcal{K}) is a uniform B-structure. Proof. Suppose Ω is an arbitrary family of B-ideals in a B-algebra X and $U, V \in \mathcal{K}$. Then there exist $U_I, U_J \in \mathcal{K}^*$ such that $U_I \subseteq U$ and $U_J \subseteq V$, respectively. (i) Let $(x, x) \in \Delta$. Since $x \cong^I x$, it follows that $(x, x) \in U_I$. Hence, $(x, x) \in U$ so that $\Delta \subseteq U$. (ii) Let $(x, y) \in U_I$. Then $x \cong^I y$ and $y \cong^I x$. This implies that $(y, x) \in U_I$. Hence, $(y, x) \in U$. It follows that $(x, y) \in U^{-1}$ with $U_I \subseteq U^{-1}$ so that $U^{-1} \in \mathcal{K}$. (iii) Consider $U_I \in \mathcal{K}$ and $(x, z) \in U_I \circ U_I$. Then there exists $y \in X$ such that $(x, y), (y, z) \in U_I$. This implies that $x \cong^I y$ and $y \cong^I z$. Hence, $x \cong^I z$. It follows that $(x, z) \in U_I \subseteq U$ so that $U_I \circ U_I \subseteq U$. (iv) Let $U_I, U_J \in \mathcal{K}^*$. Note that a B-ideal is a subalgebra of X. By Lemma 2, Ω is closed under finite intersections. Claim: $U_I \cap U_J = U_{I \cap J} \in \mathcal{K}^*$. Let $(x,y) \in U_I \cap U_J$. Then $x \cong^I y$ and $x \cong^J y$. These imply that $x * y, y * x \in I, J$. Hence, $x * y, y * x \in I \cap J$ implying that $x \cong^{I \cap J} y$ and so $(x,y) \in U_{I \cap J}$. Therefore, $U_I \cap U_J \subseteq U_{I \cap J}$. The converse is similar. This proves the claim. Let $(x,y) \in U_{I\cap J} = U_I \cap U_J$. Then $x \cong^I y$ and $x \cong^J y$. Thus, $(x,y) \in U_I$ and $(x,y) \in U_J$. Hence, $(x,y) \in U$ and $(x,y) \in V$. Therefore, $(x,y) \in U \cap V$ so that $U_{I\cap J} \subseteq U \cap V$. Consequently, $U \cap V \in \mathcal{K}$. It remains to show that \mathcal{K} satisfies condition (v). Let $U \in \mathcal{K}$ such that $U \subseteq V \subseteq X \times X$. Then there exists $U_I \in \mathcal{K}^*$ such that $U_I \subseteq U \subseteq V$. Hence, $V \in \mathcal{K}$. Therefore, \mathcal{K} satisfies condition (v) and (X,\mathcal{K}) is a uniform B-structure. **Definition 9.** Let (X, K) be a uniform B-structure. If τ is a topology on X, then τ is called a uniform B-topology and the pair (X, τ) is called a uniform B-topological space. **Example 8.** Consider the uniform structure (X, \mathcal{K}) in Example 6. Then the family $\tau = \{X, \emptyset, \{0, a, b\}, \{c, d, e\}\}$ is a uniform *B*-topology on *X*. Thus, (X, τ) is a uniform *B*-topological space. **Theorem 10.** Suppose (X, \mathcal{K}) is a uniform B-structure. Then $\tau = \{G \subseteq X | \forall x \in G, \exists U \in \mathcal{K}, U[[x]] \subseteq G\}$ is a uniform B-topology on X. *Proof.* Suppose (X, \mathcal{K}) is a uniform B-structure. Note that for all $x \in X$ and $U \in \mathcal{K}$, $U[[x]] \subseteq X$. Hence, $X \in \tau$. Also, $\emptyset \in \tau$ by definition. Let $x \in \bigcup_{G_i \in \tau, i \in \mathcal{A}} G_i$. Then there exists $j \in \mathcal{A}$ such that $x \in G_j$. Since $G_j \in \tau$, there exists $U_j \in \mathcal{K}$ such that $U_j[[x]] \subseteq G_j$. This implies that $U_j[[x]] \subseteq \bigcup_{G_i \in \tau, i \in \mathcal{A}} G_i$. Hence, $\bigcup_{G_i \in \tau, i \in \mathcal{A}} G_i \in \tau$. Suppose $G, H \in \tau$ such that $x \in G \cap H$. Then there exist $U, V \in \mathcal{K}$ such that $U[[x]] \subseteq G$ and $V[[x]] \subseteq H$. Let $W = U \cap V$. By Definition 8(iv), $W \in \mathcal{K}$. Claim: $W[[x]] \subseteq U[[x]] \cap V[[x]]$. Let $y \in W[[x]]$. Then $(x,y) \in U$ and $(x,y) \in V$. This implies that $y \in U[[x]]$ and $y \in V[[x]]$. Hence, $W[[x]] \subseteq U[[x]] \cap V[[x]]$. This proves the claim. By the claim, $W[[x]] \subseteq U[[x]] \subseteq G$ and $W[[x]] \subseteq V[[x]] \subseteq H$. Hence, $W[[x]] \subseteq G \cap H$. This implies that $G \cap H \in \tau$. Therefore, τ is a B-topology on X. The next remark follows from Definition 9 and Theorem 10. **Remark 7.** Suppose X is a B-topological space. REFERENCES 838 - (i) Then (X,τ) in Theorem 10 is a uniform B-topological space. - (ii) For any $U_I \in \mathcal{K}^*$ and $x \in X$, $x \in U_I[[x]]$ and $U_I[[x]] \in \tau$, that is, $U_I[[x]]$ is a neighborhood of x. **Lemma 4.** Suppose X is a B-algebra such that $U \subseteq V$ for any $U, V \in \mathcal{K}$. Then $U[[x]] \subseteq V[[x]]$ for all $x \in X$. *Proof.* Let $U \subseteq V$ for any $U, V \in \mathcal{K}$ and $x \in X$. Suppose $a \in U[[x]]$. Then $(x, a) \in U \subseteq V$. This implies that $(x, a) \in V$. Therefore, $a \in V[[x]]$. **Theorem 11.** Suppose X is a uniform B-topological space. Then X is a topological B-algebra. Proof. Let (X, \mathcal{K}) be a uniform structure. By Theorem 10 and Remark 7(i), there is a uniform B-topology $\tau = \{G \subseteq X | \forall x \in G, \exists U \in \mathcal{K}, U[[x]] \subseteq G\}$. Suppose $x * y \in U(x * y)$ where $x, y \in X$. By Theorem 10, there exists $G \in \mathcal{K}$ such that $G[[x * y]] \subseteq U(x * y)$. Then there exists $G_I \in \mathcal{K}^*$ such that $G_I \subseteq G$ for some B-ideal I of X. By Lemma 4, $G_I[[x * y]] \subseteq G[[x * y]]$. Note that $G_I[[x]]$ and $G_I[[y]]$ are open neighborhoods of x and y, respectively by Remark 7(ii). Claim: $G_I[[x]] * G_I[[y]] \subseteq G_I[[x * y]].$ Suppose $a * b \in G_I[[x]] * G_I[[y]]$. Then $(x, a), (y, b) \in G_I$. This implies that $x \cong^I a$ and $y \cong^I b$. Hence, $x * y \cong^I a * b$. It follows that $a * b \in G_I[[x * y]]$. This proves the claim. Hence, $G_I[[x]] * G_I[[y]] \subseteq U(x * y)$. By Theorem 2, X is a topological B-algebra. \square The converse of Theorem 11 follows directly from Definition 9 provided that the B-topology is a uniform B-topology. This is formally stated in the next corollary. Corollary 3. Suppose X is a topological B-algebra. If τ is a uniform B-topology, then X is a uniform B-topological space. ## Acknowledgements This research is funded by the Commission on Higher Education (CHED) and Mindanao State University-Iligan Institute of Technology, Philippines. ### References - [1] D. Al-Kadi. Anti Fuzzy Ideals of B-algebra. *International Journal of Pure and Applied Mathematics*, 117(3):437–445, 2017. - [2] J. Dugunji. Topology. Allyn and Bacon, Inc., Boston, 1996. - [3] J. Endam and J. Vilela. The Second Isomorphism Theorem for B-algebras. *Applied Mathematical Sciences*, 8(38):1865–1872, 2014. REFERENCES 839 [4] Y.B. Jun et al. On Topological BCI-Algebras. *Information Sciences*, 116:253–261, 1999. - [5] K.D. Joshi. *Introduction to General Topology*. New Age International Limited Publishers, India, 1997. - [6] N.C. Gonzaga Jr. Analyzing Some Structural Properties of Topological B-Algebra. *International Journal of Mathematics and Mathematical Sciences*, 2019:1–7, 2019. - [7] S. Mehrshad and J. Golzarpoor. On Topological BE-Algebras. *Mathematica Moravica*, 21(2):1–13, 2017. - [8] J. Neggers and H. Kim. A Fundamental Theorem of B-homomorphism for B-algebras. *Inter.Math.J.*, 2:207–214, 2002. - [9] J. Neggers and H. Kim. On B-algebras. Mat. Vesnik, 54:21–29, 2002. - [10] A. Walendziak. A Note on Normal Subalgebras in B-algebras. Scientiae Mathematicae Japonicae Online, pages 49–53, 2005.