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Abstract. In [3], Acharya et al. introduced the notion of a zero ring labeling of a connected
graph G, where vertices are labeled by the elements of a zero ring such that the sum of the labels of
adjacent vertices is not the additive identity of the ring. Archarya and Pranjali [1] also constructed
a graph based on a finite zero ring called the zero ring graph. In [5], Chua et al. defined a class of
zero ring labeling called efficient zero ring labeling and it was shown that a labeling scheme exists
for some families of trees. In this paper, we provide an efficient zero ring labeling for some classes
of graphs. We also introduce the notion of the restricted zero ring graphs and use them to show
that a zero ring labeling exists for some classes of cactus graphs.
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1. Introduction

One of the fields in graph theory that has been a study of interest of many mathematical
researchers is graph labeling. Most of the methods or schemes in graph labeling can be
traced to or have links to a paper by Rosa [9]. At present, over 200 graph labeling
techniques have been studied in over 2500 papers. For an excellent survey on different
labeling schemes on graph, the readers may refer to [7].

In 2014, Acharya et al. [3] introduced zero ring labeling. In this labeling, each vertex
is assigned a unique label from a zero ring such that the sum of any two adjacent vertices
is not zero, i.e., the additive identity of the zero ring. It was proved that every graph
admits a zero ring labeling with respect to some zero ring. The zero ring index of a graph,
which is the smallest order of a zero ring in which the graph admits a zero ring labeling,
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was also studied for some well-known graphs. Acharya et al. [2] determined a necessary
and sufficient condition for a finite graph of order n to attain an optimal zero ring index.

In [5], the notion of an efficient zero ring labeling was introduced. A zero ring labeling
of a graph is called efficient if the cardinality of the set of distinct sums obtained from all
adjacent vertices is equal to the maximum degree of the graph. It was shown that some
trees have an efficient zero ring labeling. However, not all graphs have an efficient zero
ring labeling.

The paper is organized as follows. Section 2 provides some background on the notion
of zero ring labeling and efficient zero ring labeling. In section 3, we show that the
path graphs and the complete graph on 2* vertices admit an efficient zero ring labeling.
Moreover, an explicit labeling scheme for path graphs was provided. In section 4, we
construct restricted zero ring graphs. Some edge induced subgraphs of a zero ring graph
were identified and shown to admit an efficient zero ring labeling.

2. Preliminaries

For completeness, we state the following definitions and concepts related to zero ring
labeling and some terminologies in graph theory. The graphs considered in the paper are
finite undirected simple graph.

A tadpole graph denoted by T, , is a graph obtained from a cycle C,, and a path
P,, by joining an end vertex of the path to a vertex in the cycle with an edge. A cactus
graph is a connected graph in which any two cycles have at most one vertex in common.
Equivalently, any edge of a cactus graph lies on at most one cycle. A cactus graph with
minimum degree 2, maximum degree 3, and having exactly 2 cycles is a graph that can
be constructed with two disjoint cycles of length ni,ns and a vertex from one cycle joined
to a vertex of the second cycle by a path of length m. Suppose G and H are graphs with
V(G) = {ug,u1,u2,...;um—1} and V(H) = {vg,v1,v2,...,0n—1}. The Cartesian product
G x H of graphs G and H is the graph with vertex set V(G x H) = V(G) x V(H) and
e = (uj,vj)(ug,v;) is an edge of G x H if and only if either i = k and vju; € E(H); or
j =1l and wu, € E(G).

For other notations and concepts in graphs and groups not explicitly stated in the
paper, we refer to [6, 8].

Although in some literature a zero ring is defined as the trivial ring that contains only
one element, in this paper we follow the definition used by Acharya et al. [3] and use the
term zero ring for a ring with additive identity 0 such that ab = 0 for any a,b € R. This
notion of a zero ring was previously defined by Bourbaki in [4] and called it a pseudo ring
of square zero.

Note that a zero ring R can always be constructed from an abelian group G, by defining
R as the set of the set of all 2 x 2 matrices of the form R = Z :Z ,a € G . We use
the notation A, € R to identify the element of the ring associated with the element a € G.
Throughout the paper, we denote this zero ring by M$(G). We often use this notation
when we wish to be specific on the ring being used in the labeling scheme.
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Let I' = (V, E) be a graph with vertex set V' =: V(I') and edge set E =: E(I"), and let
R be a finite zero ring. An injective function f : V — R is called a zero ring labeling of T’
if f(u)+ f(v) # 0 for every edge uv € E

In [5], the authors defined the notion about k-zero ring labelings and efficient zero ring
labeling of a graph. A zero ring labeling f of a graph I' = (V, E) is called a k-zero ring
labeling if |K| = |{f(u)+ f(v) :uv € E}| = k. If |[K| = A(T") where A(T") denotes the
maximum degree of a vertex in I', then the zero ring labeling is efficient. It was shown
that some families of trees have an efficient zero ring labeling. Although it was shown in
[3] that every finite graph admits a zero ring labeling, not all graphs have an efficient zero
ring labeling. In particular it was shown in [5] that some cycles do not have an efficient
zero ring labeling.

Theorem 1. [5] Cycles of odd length do not have an efficient zero ring labeling.

3. Families of Graphs with an Efficient Zero ring labeling

In this section, we show that several common families of graphs admit an efficient zero
ring labeling by explicitly providing a labeling scheme. In [5], it was shown that several
families of graphs admit an efficient zero ring labeling; however, some labeling schemes
were not explicitly shown, particularly for paths and complete graphs.

One useful result in [5] that can be used to show that a graph I' admits an efficient
zero ring labeling is shown in the following theorem.

Theorem 2. [5]. IfT" is a graph that admits an efficient zero ring labeling, then any edge
induced subgraph I of T' such that A(T") = A(T) has an efficient zero ring labeling.

In [5], it was shown that the path P, admits an efficient zero ring labeling, which is
just a corollary to the labeling scheme used for caterpillars. We now give a different and
explicit labeling scheme for paths as stated in the following theorem.

Theorem 3. The path P,,n > 1 is an integer, admits an efficient zero ring labeling.

Proof. Let vg,v1,- -+ ,v,—1 be the vertices of a path P, whose edges are of the form
(vi,viy1) where ¢ = 0,1,...,n — 2. We consider the case when n is even or odd. Let A;

denote the matrix [2 :ﬂ € MY(Zy,).
Case 1. Let n > 1 be even. Define a function f : V/(P,) — MY(Z,) such that
A; when ¢ = 1 or 7 is even
flvi) = s : :
Apto—; ifiisodd andi >3

Then f is an injective function and f(vg) + f(v1) and f(v1) + f(v2) are equal to Ay
and As, respectively. Furthermore, we have

A; when iis even, i > 2

i) + i =
fo) + f(vi) {A3 if iis odd, i > 3
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which shows that f(v;) + f(viy1) # Ap for all i =0,1,--- ,n —2.
Since K = {f(v;) + f(vi+1]i =0,1,--- ,n —2} = {A1, Az}, f is a 2-zero ring labeling of
P,.

Case 2. Let n be odd. Define a function f : V(P,) — MY(Z,) such that when n is of
the form 4k + 1, k € ZT

AL%J—H-I fori=0,2,---,[5] —2,[5]

flvg) = Antio|zj4r for Z =13, ,[5] =53] -3
A njp fori= (3] -1, 5]+ L[5/ +3  ,n—2
Apipinypr fori= |5 +2,[5] +4,-- ,n—1

and when n is of the form 4k + 3, k € Z+

Ansicigler fori=0,2,--,[5] =5, [5] -3
o= { A forim L L) bl -
Aicggipn fori=13] -1, 3]+ L5J+3-~-, n—1
I

2
Ap—ip|zjq1 fori=|3]+2,[5]+ ;=2

Clearly, f is injective for both subcases. Now we verify that f is an efficient zero ring
labeling. We show that the sums f(v;) + f(vit1) # Ap for 0 < i < n — 2, that is, within
the intervals 0 <i < [§] -2, |5] —2<i<|5]+1and |} J+1<z<n—2

For the interval 0 < i < |§] — 2, the sums f(vz) + f(vzH) are

Az i1 + Apt -2+ = 43
when ¢ is odd and n 4+ 3 taken modulo n, and
Aptic|z2)41 T Az —+1)+1 = A1

when i is even and n + 1 is taken modulo n.
For the interval | 5] —2 <4 < [§] + 1, we have the sums

Apnjipr + A 241 = A3

when ¢ = I_gj —2and = L%J, and when i = L%J - 1, Ai—l_%]-ﬁ-l + AL%j—(i-Fl)-l-l = Al.
For the interval [§] +1 <4 < n — 2, we have the sums

Aoz + A+ 12)+1 = A
when 7 is odd and n + 1 is taken modulo n, and
Ap—it|z)41 + Aipr—|2)41 = 43

when 7 is even and n + 3 is taken modulo n.
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Ay Ay Ay Ag Ag

A Ay A7 A5 As
Figure 1: An efficient zero ring labeling for Pio using the zero ring R = M2 (Z10).

Similar computations can be done for the case when n is odd and of the form 4k + 3
to yield the same result. Since K = {f(v;) + f(viy1|i =0,1,--- ,n —2} = {41, A3}, f is
a 2-zero ring labeling of P,,. Therefore, P,, admits an efficient zero ring labeling. O

The zero ring labeling for Pjy shown in Figure 1 using the zero ring MJ3(Zig) is an
efficient zero ring labeling where K = {4;, As}.

It is a well-known result in group theory that if in a finite group G the order of the
non-identity elements is 2, then the order of the group is a power of 2. We state this as
the following lemma.

Lemma 1. If G is a finite group such that every non-identity element is of order 2, then
|G| = 2F for some positive integer k.

Now consider a finite group G with identity e such that 2> = e for any € G. Note
that by Lemma 1, |G| = 2" for n > 0. This group is always abelian. Thus, a zero ring R
can be constructed from G.

Consider a zero ring R = MJ3(G) where G is a finite group whose non-identity elements
have order 2. Consider the complete graph I' = (V| ') with 2" vertices and any zero ring
labeling f : V — R on I'. Since f is injective, the sum of any two distinct elements of R
is not the identity and {f(u) + f(v) : wv € E} = R — {Ap}, hence f is an efficient zero
ring labeling of the complete graph. From this observation, the next theorem follows.

Theorem 4. The complete graph on 2™ vertices, n > 0, denoted by Kon admits an efficient
zero ring labeling.

4. Restricted Zero Ring Graphs

In [1], Acharya and Pranjali defined the notion of a zero ring graph as follows. Let
R be a finite zero ring. The zero ring graph I'(R) is a simple undirected graph whose
vertices are the elements of R and two distinct vertices « and y are adjacent if and only if
x +y # 0 where 0 is the additive identity of R. In this study, we define a variation of this
graph called restricted zero ring graph. Let S C R — {0} for any zero ring R. We define
the restricted zero ring graph of R in S denoted by I's(R) = (V, E) to be the graph with
V = R and edge set given by E = {(u,v) : u+ v € S}. In view of the above definition, if
S = R — {0}, then the graph I's(R) is isomorphic to the zero ring graph I'(R).

Consider the zero ring R = MY(Z,), the following are examples of restricted zero ring
graphs on R where |S| = 2.

Note that if Sy, S2 € R—{0}, the graphs I's, (R), I's, (R) are not necessarily isomorphic
even if |S1| = |Sa].
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Ao A3 AQ A3 AO A3
Al A2 Al AQ Al A2
Tiap a3 (R) Tia;,453(R) T (45,45} (R)

Figure 2: Some restricted zero ring graphs in M3 (Zy).

The following lemma follows directly from the definition of the restricted zero ring
graph and the fact that R together with the addition operation on the ring is an abelian

group.

Lemma 2. Consider a zero ring R with additive identity 0 and a non-empty S C R—{0}
such that |R| =n and |S| = m > 1. Then the graph I's(R) = (V, E) satisfies the following:

(i) ATs(R)) =m
(ii) T's(R) is a disconnected graph for n > 2 and m = 1.

Proof. For (i) : Note that for any S = {s1,...,8m} € R — {0}, the edge (0,s;) €
E('s(R)) by the definition of I'g(R). Suppose there is a vertex v in the graph with
neighbor set N(v) = {u1,...,ur} where k > m. Since {v+u; : i =1,2...,k} C S, there
is at least one pair of distinct vertices ui,us where v +u; = s; = v + uy for some s; € S.
Then u; = uo, which is a contradiction. Hence, the maximum degree of a vertex is m.
Statement (i7) follows directly from (i) for any zero ring R with |R| > 2. O

The following are some examples of restricted zero ring graphs.

Ao A4 Al A3
Dl LN
A1 A2 Ag AQ AO A4
P{A1}(MS(Z5)) F{Az,A37A4}(M§(Z5))

Figure 3: Some restricted zero ring graphs in M2 (Z,,).

Now we consider the restricted zero ring graph I's(R) where R = MY(Z,). The
following lemma can be easily verified from the definition of I'g(R) and the fact that R
together with the additive operation in the ring is an abelian group.

Lemma 3. If|S| = 1, then T's(MY(Zy,,)) is a disconnected graph. In particular, the graph
Ds(M2(Zy)) consists of at most | %] disjoint copies of Ka.

Proof. By Lemma 2, the maximum degree of a vertex in I's(M$(Z,)) is 1. Thus, the
graph should consist only of disjoint edges. For an integer n > 2, the maximum number
of disjoint edges is |7 |.
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Theorem 5. Consider the zero ring R = M3Y(Z,,) and S C R — {0}, where |S| = m > 1.
Let ne = |{4; € S :i even }| and n, = |{A; € S:i odd }|. Then

. . . . m(n—1
(i) If n is odd, then the number of edges in I's(R) is (2 )

n (Tl B 2) o(n)
e 5 4+ 2(n )
Proof. Consider the additive group table of Z,,. If n is odd, then every element of the

group occurs exactly (”;1) times above the main diagonal entries of the table. Thus, if

|S| = m then there are % distinct pairs of indices 4, j such that A; + A; € S. Now, if
n is even, the number of occurrences of an odd index above the main diagonal entries of
the table is § while there are @ occurrences of an odd index above the main diagonal
entrie(s. H(;r)me, if ‘(ch<)3re are ne,n, even and odd indices respectively in S, there is a total

ne(n — ne(n
of 5 + 5

In Theorem 3, it was shown that P, admits an efficient zero ring labeling by providing
an explicit labeling of its vertices. Moreover, given the zero ring M3Y(Z,), the restricted
zero ring graph I's(M3(Z,)) where S = {A1, A3} is isomorphic to P, as shown in Figure
4.

(ii) If n is even, then the number of edges in I's(R) is

distinct pairs of indices 7,7 whose sum is an index in S. L.

AO AnflAn72 An 4A"—2

NN

Ay Ay Ay An An
Figure 4: The graphs I'(4, 4,

g,
—~
5
—~
N
3
N
Nt

Lemma 4. Let R = MY(Z,) and S; = {A;, Aiz1} where 0 € S;. Then T'g,(R) = I's,

; (1)
fori,je{1,2,...,n—2}.

Proof. Since I'g; 91(R) = P,, we need to show that each of I's,(R) = P,. Let n be
even. For the set S;, consider the arrangement of the elements of R in a matrix of size
2 x 5 in the order Ag, Ay,...,Ay—1 in a counterclockwise manner such that the entry of
the first row column L%J + 1 is Ap. In this arrangement, the sum of the entries for each
column taken under addition modulo n is A; if ¢ is odd and A;44 if ¢ is even. The sum of
the (1, j)-entry and (2,5 + 1) entry is A;4q for j =1,2,..., 5 —1if 4 is odd, and the sum
of the (2, j)-entry and (1,7 + 1) entry is A; for j = 1,2,...,5 — 1 if 4 is even. With this
arrangement of the elements of R, it is easy to see that the graph I'g,(R) is a path on n
vertices.

Let » be an odd integer, we now consider the arrangement of the elements of R in
array with 2 rows such that the first row contains |5 | columns when i is odd and [%]
columns when 7 is even. The second row always contains [5 | columns. The elements of R
are arranged in the following order Ag, A1,..., A,—1 in a clockwise manner such that the
entry of the first row column L%j +11is Ap. In a similar manner, the sum of the entries for
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each column taken under addition modulo n is A; if ¢ is odd and A;; if i is even. Using the
same arguments in the case for an even n, the sum of the (1, j)-entry and (2, j 4+ 1)-entry
is Ajy1 for j =1,2,...,5 —1ifiis odd, and the sum of the (2, j)-entry and (1, j +1)-entry
is A; for j =1,2,...,5 — 1if i is even. O

Ao A7 Ag As Ay Ao A7 As Ay Ao A7 As

A Ay As Ay Ay Az Ay As Ay As Ay As
FS1 (R) FSz (R) F53 (R)
Ay A1 Ay Ar Ay A1 Ay Ay Az Ay Ay Ap

A3 Ay As Ag Az Ay As Ag Ay As As Ar

Ls, (R) Iss (R) Lss(R)
Figure 5: The graphs T's,(R) for i = 1,...,6 respectively where S; = {i,i+ 1}, and R = M2 (Zs).

The graph FS(MS(ZTL)) where S = {41, A2, A3} is shown in Figure 6 when n is even.

n 1 An 2 A"+4
( 5 X X X I )A n+2
Ay A3 Ay

Figure 6: The graph I's(R) where S = {4, As, A3}, and R = MY(Z,).

The graph I's(MY(Z,)) where S = {A;, Aa, A3} is shown in Figure 7 when n is odd.

7’1 1 ATL 2 An+5 An+3
2 A3 A4 An 1 An

Figure 7: The graph I's(R) where S = {Al,Ag,Ag}, and R = M3(Z,).

Note that Theorem 2 can be used to determine if a graph admits an efficient zero ring
labeling. If a graph I' can be shown to be an edge induced subgraph of I's(R) for some
subset S of R — {0}, such that the maximum degree of a vertex in I" = | S|, then I admits
an efficient zero ring labeling. In particular, the following graphs can be embedded in
the restricted zero ring graph I's(R) where S = {A1, A2, A3} and R = MY(Z,,) : tadpole
graphs, cactus graphs with exactly 2 cycles and maximum degree 3, minimum degree 2
and the cartesian product of P, x P, for n > 3. Thus, these graphs admit an efficient zero
ring labeling for some appropriate zero ring R.
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Theorem 6. The following graphs admit an efficient zero ring labeling:
(1) Tadpole graphs T, m

(ii) Cactus graph with exactly two cycles having a minimum and mazximum degree of a
vertex 2 and 3, respectively.

(iii) Py x P, for anyn >3

Proof. The proof follows from the fact that these graphs are edge induced subgraphs
of the graph T's(MJ$(Z,)) for some positive integer n and S = {Aj, As, A3}. Thus, by
Theorem 2, these graphs admit an efficient zero ring labeling. In particular, the graph
Tym is an edge induced subgraph of FS(MS(Zk)) where k > n+m and S = {A1, Ag, As}.
Suppose T' is a cactus graph with exactly two cycles, and has minimum and maximum
degree of a vertex equal to 2 and 3, respectively. If the cycles in I' have lengths n; and no
and are connected by a path of length m, then the graph I' is an edge induced subgraph
of Ts(MY(Zy,)) where S = {A1, Ag, A3} and for k > ny + ng +m — 1. The graph P, x P,
can be embedded in the restricted zero ring graph I' 4(MY(Zy)) where S = {A;, Aa, A3}
and for k£ = 2n + 2. O

Ao A A Ay Ag

Ag Ag A4 A5 A6

Ao Ay A7 Ay
Figure 8: Efficient zero ring labelings of Tadpole graph 7% 5, Cartesian product P> x Ps and Cactus graph by
R = M3(Zs2)

Figure 8 shows an efficient zero ring labeling of 775, P> x P5 and a cactus graph
with exactly two cycles as edge induced subgraphs of I'g(R), where S = {41, A2, A3} and
R = M{(Zy5).

So far, the only known families of graphs that do not admit an efficient zero ring
labeling are the odd cycles. In [5], several families of trees have been shown to admit an
efficient zero ring labeling. The next logical question on this is to ask whether all trees
admit an efficient zero ring labeling, and in [5] it was conjectured that all trees admit an
efficient zero ring labeling.

If the conjecture that all trees admit an efficient zero ring labeling is proved to be true,
then the cycle graph on an odd number of vertices is the smallest graph, in terms of the
number of edges, that does not admit an efficient zero ring labeling.
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Problem: Let S,7 C R — {0} such that |S| = |T'|. Determine necessary and sufficient
conditions such that I's(R) = I'r(R).
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