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1. The Class of Neat Reducts

Neat reducts have been a central notion in algebraic logic since the very beginning, and

the notion is still a versatile active field of research, [see e.g 18, 21, 34, 31, 43, 24, 45, 41,

42, 30, 33]. Indeed, the consecutive problems 2.11, 2.12, 2.13 in the monograph [11] are on

neat reducts. Problem 2.12 is solved by Hirsch Hodkinson and Maddux [10]. The authors of

[10] show that the sequence 〈SNrnCAn+k : k ∈ ω〉 is strictly decreasing for ω > n > 2 with

respect to inclusion. (Recall that we generalized this result to quasipolyadic equality algebras).

The infinite dimensional case is settled by Pigozzi as reported in [11]. The main result in

[10] strengthes Monk’s classical result that for every finite n > 2 and any k ∈ ω, RCAn ⊂
SNrnCAn+k. Taking Ak ∈ SNrnCAn+k ∼ RCAn, and forming the ultraproduct

∏
Ak/F relative

to a non-principal ultrafilter on ω, the resulting structure will be representable, showing that

RCAn, though, elementary (indeed a variety) is not finitely axiomatizable. Problem 2.13 is

solved in [41]. Problem 2.11 which is relevant to our later discussion asks: For which pair

of ordinals α < β is the class NrαCAβ closed under forming subalgebras and homomorphic

images? Németi proves that for any 1 < α < β the class NrαCAβ though closed under

forming homomorphic images and products is not a variety, i.e., it is not closed under forming

subalgebras [14]. The next natural question is whether this class is elementary, and in this

particular case, since the class of neat reducts is closed under ultraproducts, this amounts to

asking whether it is closed under elementary subalgebras? In [18] it is proved that for any

1 < α < β , the class NrαCAβ is not elementary answering problem 4.4 in [12]. In [30], it is

shown that this class cannot be characterized by any L∞ω sentence. We know that NrnCAω
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is closed under products and homomorphic images, thus under ultraproducts. However, for

n > 1, it is not closed under elementary subalgebras, equivalently, under ultraroots. (For

n ≤ 1,NrnCAω = RCAn = CAn; so this is a degenerate case which we ignore). For a class

K , E LK denotes the elementary closure of K , that is the least elementary class containing

K . UpK denotes the class of all ultraproducts of members of K and UrK denotes the class

of all ultraroots of members of K . Recall that, by the celebrated Shelah - Keisler theorem,

ElK = UpUrK .

Theorem 1. Let n > 1. Then the class NrnCAω is pseudo-elementary, but is not elementary.

Furthermore, ElNrnCAω ⊂ RCAn, E LNrnCAω is recursively enumerable, and for n > 2 is not

finitely axiomatizable.

Proof. The class NrnCAω is not elementary [18]. To show that it is pseudo-elementary,

we use a three sorted defining theory, with one sort for a cylindric algebra of dimension n(c),

the second sort for the Boolean reduct of a cylindric algebra (b) and the third sort for a set

of dimensions (δ). We use superscripts n, b,δ for variables and functions to indicate that

the variable, or the returned value of the function, is of the sort of the cylindric algebra of

dimension n, the Boolean part of the cylindric algebra or the dimension set, respectively. The

signature includes dimension sort constants iδ for each i < ω to represent the dimensions.

The defining theory for NrnCAω incudes sentences demanding that the constants iδ for i <ω

are distinct and that the last two sorts define a cylindric algebra of dimension ω. For example

the sentence

∀xδ, yδ, zδ(d b(xδ, yδ) = cb(zδ, d b(xδ, zδ).d b(zδ, yδ)))

represents the cylindric algebra axiom di j = ck(dik.dk j) for all i, j, k < ω. We have have a

function I b from sort c to sort b and sentences requiring that I b be injective and to respect

the n dimensional cylindric operations as follows: for all x r

I b(di j) = d b(iδ, jδ)

I b(ci x
r) = cb

i (I
b(x)).

Finally we require that I b maps onto the set of n dimensional elements

∀y b((∀zδ(zδ 6= 0δ, . . . (n− 1)δ→ cb(zδ, y b) = y b))↔∃x r(y b = I b(x r))).

For A ∈ CAn, Rd3A denotes the CA3 obtained from A by discarding all operations indexed

by indices in n ∼ 3. Dfn denotes the class of diagonal free cylindric algebras. Rdd f A denotes

the Dfn obtained from A by deleting all diagonal elements. To prove the non-finite axiomati-

zability result we use Monk’s algebras. For 3 ≤ n, i < ω, with n− 1 ≤ i,Cn,i denotes the CAn

associated with the cylindric atom structure as defined on p. 95 of [11]. Then by [11, 3.2.79]

for 3≤ n, and j <ω, Rd3Cn,n+ j can be neatly embedded in a CA3+ j+1.

(1) By [11, 3.2.84]) we have for every j ∈ω, there is an 3≤ n such that Rdd f Rd3C n,n+ j

is a non-representable Df3.
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(2) Now suppose m ∈ ω. By (2), choose j ∈ ω ∼ 3 so that Rdd f Rd3C j, j+m+n−4 is a

non-representable Df3. By (1) we have Rdd f Rd3C j, j+m+n−4 ⊆Nr3Bm, for some B ∈ CAn+m.

Put Am = NrnBm. Rdd f Am is not representable, a friotri, Am /∈ RCAn, for else its Df reduct

would be representable. Therefore Am /∈ E LNrnCAω. Now let Cm be an algebra similar to

CAω’s such that Bm = Rdn+mCm. Then Am = NrnCm. Let F be a non-principal ultrafilter on

ω. Then ∏
m∈ω

Am/F =
∏
m∈ω

(NrnCm)/F =Nrn(
∏
m∈ω

Cm/F)

But
∏

m∈ωCm/F ∈ CAω. Hence CAn ∼ ElNrnCAω is not closed under ultraproducts. It follows

that the latter class is not finitely axiomatizable. In [18] it is proved that for 1 < α < β ,

ElNrαCAβ ⊂ SNrαCAβ .

From the above proof it follows that

Corollary 1. Let K be any class such that NrnCAω ⊆ K ⊆ RCAn. Then E LK is not finitely

axiomatizable

For n> 2 the addition of finitely many first order definable operations does not remedy the

non-finite axiomatizability result for RCAn, as proved by Biro. First order definable operations

are those operations that can be defined using spare dimensions, and hence the notion of

neat reducts are appropriate for handing them. A non-trivial question that involves the class

NrnCAω in an essential way, is whether we can expand the signature of cylindric algebras by

extra natural operations on n-ary relations so that if A ∈ Csn and is closed under these opera-

tions then this forces A to be in the class NrnCAω. (For example, the polyadic operations are

not enough.) The class NrnCAω contains all first order definable operations, so the question

can be reformulated as to whether one can capture all first order definable operations using a

finite set of operations. This is strongly related to the Finitizability Problem [48] in algebraic

logic. Next we characterize the class NrnCAω using games. Since games go deeper into the

analysis, they could shed light on the possible choice of such operations. For that, we need

some preparations. We use “cylindric algebra” games that are analogues to certain “relation

algebra” games used by Robin Hirsch in [7]. In [7] Robin Hirsch studies quite extensively the

class RaCAn of relation algebra reducts of cylindric algebras of dimension n. This class was

studied by many authors, to mention a few, Maddux, Simon and Nemeti. References for their

work can be found in the most recent reference [7]. Our treatment in this part follows very

closely [7].

Definition 1. Let n be an ordinal. An s word is a finite string of substitutions (s
j

i
), a c word is a

finite string of cylindrifications (ck). An sc word is a finite string of substitutions and cylindrifi-

cations Any sc word w induces a partial map ŵ : n→ n by

• ε̂ = Id

• cw i
j
= ŵ ◦ [i| j]

• dwci = ŵ ↾ (n∼ {i}
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If ā ∈ <n−1n, we write sā, or more frequently sa0...ak−1
, where k = |ā|, for an an arbitrary

chosen sc word w such that ŵ = ā. w exists and does not depend on w by [9, definition 5.23

lemma 13.29]. We can, and will assume [9, Lemma 13.29] that w = scn−1cn. [In the notation

of [9, definition 5.23, lemma 13.29], Ósi jk for example is the function n → n taking 0 to i, 1

to j and 2 to k, and fixing all l ∈ n \ {i, j, k}.] Let δ be a map. Then δ[i → d] is defined as

follows. δ[i→ d](x) = δ(x) if x 6= i and δ[i→ d](i) = d . We write δ
j

i
for δ[i→ δ j].

Definition 2. From now on let 2 ≤ n <ω. Let C be an atomic CAn. An atomic network over C

is a map

N : n∆→ AtC

such that the following hold for each i, j < n, δ ∈ n∆ and d ∈∆:

• N(δi
j
)≤ di j

• N(δ[i→ d])≤ ciN(δ)

Note than N can be viewed as a hypergraph with set of nodes ∆ and each hyperedge in
µ∆ is labeled with an atom from C. We call such hyperedges atomic hyperedges. We write

nodes(N) for ∆. But it can happen let N stand for the set of nodes as well as for the function

and the network itself. Context will help.

Define x ∼ y if there exists z̄ such that N(x , y, z̄) ≤ d01. Define an equivalence relation

∼ over the set of all finite sequences over nodes(N) by x̄ ∼ ȳ iff | x̄ | = | ȳ | and x i ∼ yi for all

i < | x̄ |.
(3) A hypernetwork N = (N a, Nh) over C consists of a network N a together with a la-

belling function for hyperlabels Nh : <ωnodes(N)→ Λ (some arbitrary set of hyperlabels Λ)

such that for x̄ , ȳ ∈ <ωnodes(N)

IV. x̄ ∼ ȳ ⇒ Nh( x̄) = Nh( ȳ).

If | x̄| = k ∈ nats and Nh( x̄) = λ then we say that λ is a k-ary hyperlabel. ( x̄) is referred

to a a k-ary hyperedge, or simply a hyperedge. (Note that we have atomic hyperedges and

hyperedges) When there is no risk of ambiguity we may drop the superscripts a,h.

The following notation is defined for hypernetworks, but applies equally to networks.

(4) If N is a hypernetwork and S is any set then N↾S is the n-dimensional hypernetwork

defined by restricting N to the set of nodes S ∩ nodes(N). For hypernetworks M , N if there is

a set S such that M = N↾S then we write M ⊆ N . If N0 ⊆ N1 ⊆ . . . is a nested sequence of

hypernetworks then we let the limit N =
⋃

i<ω Ni be the hypernetwork defined by nodes(N) =⋃
i<ω nodes(Ni), N a(x0, . . . xn−1) = N a

i (x0, . . . xn−1) if x0 . . . xµ−1 ∈ nodes(Ni), and Nh( x̄) =

Nh
i
( x̄) if rng( x̄) ⊆ nodes(Ni). This is well-defined since the hypernetworks are nested and

since hyperedges x̄ ∈ <ωnodes(N) are only finitely long.

For hypernetworks M , N and any set S, we write M ≡S N if N↾S = M↾S . For hypernetworks

M , N , and any set S, we write M ≡S N if the symmetric difference ∆(nodes(M),nodes(N))⊆
S and M ≡(nodes(M)∪nodes(N))\S N . We write M ≡k N for M ≡{k} N .

Let N be a network and let θ be any function. The network Nθ is a complete labeled

graph with nodes θ−1(nodes(N)) = {x ∈ dom(θ) : θ(x) ∈ nodes(N)}, and labeling defined by
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(Nθ)(i0, . . . iµ−1) = N(θ(i0),θ(i1),θ(iµ−1)), for i0, . . . iµ−1 ∈ θ
−1(nodes(N)). Similarly, for a

hypernetwork N = (N a, Nh), we define Nθ to be the hypernetwork (N aθ , Nhθ) with hyperla-

beling defined by Nhθ(x0, x1, . . .) = Nh(θ(x0),θ(x1), . . .) for (x0, x1, . . .) ∈ <ωθ−1(nodes(N)).

Let M , N be hypernetworks. A partial isomorphism θ : M → N is a partial map θ :

nodes(M)→ nodes(N) such that for any ii . . . iµ−1 ∈ dom(θ)⊆ nodes(M) we have

M a(i1, . . . iµ−1) = N a(θ(i), . . .θ(iµ−1)) and for any finite sequence x̄ ∈ <ωdom(θ) we have

Mh( x̄) = Nhθ( x̄). If M = N we may call θ a partial isomorphism of N .

Definition 3. Let 2 ≤ n < ω. For any CAn atom structure α, and n ≤ m ≤ ω, we define two-

player games F m
n (α), and Hn(α), each with ω rounds, and for m < ω we define Hm,n(α) with n

rounds.

• Let m ≤ω. In a play of F m
n (α) the two players construct a sequence of networks N0, N1, . . .

where nodes(Ni) is a finite subset of m= { j : j < m}, for each i. In the initial round of this

game ∀ picks any atom a ∈ α and ∃ must play a finite network N0 with nodes(N0) ⊆ n,

such that N0(d̄) = a for some d̄ ∈ µnodes(N0). In a subsequent round of a play of F m
n (α)

∀ can pick a previously played network N an index ł < n, a “face” F = 〈 f0, . . . fn−2〉 ∈
n−2nodes(N), k ∈ m \ { f0, . . . fn−2}, and an atom b ∈ α such that

b ≤ clN( f0, . . . fi , x , . . . fn−2). (the choice of x here is arbitrary, as the second part of

the definition of an atomic network together with the fact that ci(ci x) = ci x ensures

that the right hand side does not depend on x). This move is called a cylindrifier move

and is denoted (N , 〈 f0, . . . fµ−2〉, k, b, l) or simply (N , F, k, b, l). In order to make a legal

response, ∃ must play a network M ⊇ N such that M( f0, . . . fi−1, k, fi , . . . fn−2)) = b and

nodes(M) = nodes(N)∪ {k}.

∃ wins F m
n (α) if she responds with a legal move in each of the ω rounds. If she fails to

make a legal response in any round then ∀ wins.

• Fix some hyperlabel λ0. Hn(α) is a game the play of which consists of a sequence of λ0-

neat hypernetworks N0, N1, . . . where nodes(Ni) is a finite subset of ω, for each i < ω. In

the initial round ∀ picks a ∈ α and ∃ must play a λ0-neat hypernetwork N0 with nodes

contained in µ and N0(d̄) = a for some nodes d̄ ∈ µN0. At a later stage ∀ can make

any cylindrifier move (N , F, k, b, l) by picking a previously played hypernetwork N and

F ∈ n−2nodes(N), l < n, k ∈ ω \ nodes(N) and b ≤ clN( f0, fl−1, x , fn−2). [In Hn we

require that ∀ chooses k as a ’new node’, i.e. not in nodes(N), whereas in F m
n for finite

m it was necessary to allow ∀ to ’reuse old nodes’. This makes the game easior as far as ∀
is concerned.) For a legal response, ∃ must play a λ0-neat hypernetwork M ≡k N where

nodes(M) = nodes(N) ∪ {k} and M( f0, fi−1, k, fn−2) = b. Alternatively, ∀ can play a

transformation move by picking a previously played hypernetwork N and a partial, finite

surjection θ : ω → nodes(N), this move is denoted (N ,θ). ∃ must respond with Nθ .

Finally, ∀ can play an amalgamation move by picking previously played hypernetworks

M , N such that M ≡nodes(M)∩nodes(N) N and nodes(M) ∩ nodes(N) 6= ;. This move is

denoted (M , N). To make a legal response, ∃must play a λ0-neat hypernetwork L extending

M and N, where nodes(L) = nodes(M)∪ nodes(N).

Again, ∃ wins Hn(α) if she responds legally in each of the ω rounds, otherwise ∀ wins.
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• For m < ω the game Hm,n(α) is similar to Hn(α) but play ends after m rounds, so a play

of Hm,n(α) could be

N0, N1, . . . , Nm

If ∃ responds legally in each of these m rounds she wins, otherwise ∀ wins.

Definition 4. For m ≥ 5 and C ∈ CAm, if A ⊆ Nrn(C) is an atomic cylindric algebra and N is

an A-network then we define bN ∈ C by

bN =
∏

i0,...in−1∈nodes(N)

si0,...in−1
N(i0 . . . in−1)

bN ∈ C depends implicitly on C.

We write A ⊆c B if A ∈ Sc{B}.

Lemma 1. Let n < m and let A be an atomic CAn, A ⊆c NrnC for some C ∈ CAm. For all

x ∈ C \ {0} and all i0, . . . in−1 < m there is a ∈ At(A) such that si0...in−1
a . x 6= 0.

Proof. We can assume, see definition 1, that si0,...in−1
consists only of substitutions, since

cm . . . cm−1 . . . cn x = x for every x ∈ A.We have si
j

is a completely additive operator (any i, j),

hence si0,...iµ−1
is too (see definition 1). So

∑
{si0...in−1

a : a ∈ At(A)} = si0...in−1

∑
At(A) =

si0...in−1
1= 1, for any i0, . . . in−1 < n. Let x ∈ C\{0}. It is impossible that si0...in−1

. x = 0 for all

a ∈ At(A ) because this would imply that 1−x was an upper bound for {si0...in−1
a : a ∈ At(A)},

contradicting
∑
{si0...in−1

a : a ∈ At(A )}= 1.

Lemma 2. Let n< m and let A ⊆c NrnC be an atomic CAn

1. For any x ∈ C \ {0} and any finite set I ⊆ m there is a network N such that nodes(N) = I

and x . bN 6= 0.

2. For any networks M , N if bM . bN 6= 0 then M ≡nodes(M)∩nodes(N) N.

Proof. The proof of the first part is based on repeated use of lemma 1. We define the

edge labeling of N one edge at a time. Initially no hyperedges are labeled. Suppose E ⊆
nodes(N)× nodes(N) . . .× nodes(N) is the set of labeled hyper edges of N (initially E = ;)
and x .
∏

c̄∈E sc̄N(c̄) 6= 0. Pick d̄ such that d̄ 6∈ E. By lemma 1 there is a ∈ At(A ) such that

x .
∏

c̄∈E sc̄N(c̄) . sd̄ a 6= 0. Include the edge d̄ in E. Eventually, all edges will be labeled,

so we obtain a completely labeled graph N with bN 6= 0. it is easily checked that N is a

network. For the second part, if it is not true that M ≡nodes(M)∩nodes(N) N then there are is

c̄ ∈n−1 nodes(M) ∩ nodes(N) such that M(c̄) 6= N(c̄). Since edges are labeled by atoms we

have M(c̄) · N(c̄) = 0, so 0= sc̄0= sc̄ M(c̄) . sc̄N(c̄)≥ bM . bN .

Lemma 3. Let Let m > n. Let C ∈ CAm and let A ⊆Nrn(C) be atomic. Let N be a network over

A and i, j < n.

1. If i 6∈ nodes(N) then ci
bN = bN.
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2.ØN Id− j ≥ bN.

3. If i 6∈ nodes(N) and j ∈ nodes(N) then bN 6= 0→ÙN[i/ j] 6= 0. where N[i/ j] = N ◦ [i| j]

4. If θ is any partial, finite map n→ n and if nodes(N) is a proper subset of n, then
bN 6= 0→dNθ 6= 0.

Proof. The first part is easy. The second part is by definition of b. For the third part suppose
bN 6= 0. Since i 6∈ nodes(N), by part 1, we have ci

bN = bN . By cylindric algebra axioms it follows

that bN . di j 6= 0. By lemma 2 there is a network M where nodes(M) = nodes(N)∪ {i} such

that bM .bN . di j 6= 0. By lemma 2 we have M ⊇ N and M(i, j) ≤ 1′. It follows that M = N[i/ j].

HenceÙN[i/ j] 6= 0. For the final part (cf. [9, lemma 13.29]), since there is k ∈ n \ nodes(N),
θ can be expressed as a product σ0σ1 . . .σt of maps such that, for s ≤ t, we have either

σs = Id−i for some i < n or σs = [i/ j] for some i, j < n and where i 6∈ nodes(Nσ0 . . .σs−1).

Now apply the previous parts of the lemma.

We now prove two Theorems relating neat embeddings to the games we defined:

Theorem 2. Let n < m, and let A be a CAm. If A ∈ ScNrnCAm, then ∃ has a winning strategy

in F m(AtA).

Proof. If A ⊆ NrnC for some C ∈ CAm then ∃ always plays hypernetworks N with

nodes(N) ⊆ n such that bN 6= 0. In more detail, in the initial round , let ∀ play a ∈ AtA .

∃ play a network N with N(0, . . . n− 1) = a. Then bN = a 6= 0. At a later stage suppose ∀
plays the cylindrifier move (N , 〈 f0, . . . fµ−2〉, k, b, l) by picking a previously played hypernet-

work N and fi ∈ nodes(N), l < µ, k /∈ { fi : i < n − 2}, and b ≤ clN( f0, . . . fi−1, x , fn−2).

Let ā = 〈 f0 . . . fl−1, k . . . fn−2〉. Then ck
bN · sā b 6= 0. By 1 there is a network M such that

bM .ÔckN · sā b 6= 0. Hence M( f0, k, fn−2) = b.

Theorem 3. Let α be a countable CAn atom structure. If ∃ has a winning strategy in Hn(α)

then there is a representable cylindric algebra C of dimension ω such that NrnC is atomic and

AtNrnC
∼= α.

Proof. Suppose ∃ has a winning strategy in H(α). Fix some a ∈ α. We can define a

nested sequence N0 ⊆ N1 . . . of hypernetworks where N0 is ∃’s response to the initial ∀-move

a, requiring that

1. If Nr is in the sequence and and b ≤ clNr(〈 f0, fn−2〉 . . . , x , fn−2). then there is s ≥ r and

d ∈ nodes(Ns) such that Ns( f0, fi−1, d , fn−2) = b.

2. If Nr is in the sequence and θ is any partial isomorphism of Nr then there is s ≥ r and a

partial isomorphism θ+ of Ns extending θ such that rng(θ+)⊇ nodes(Nr).

Since α is countable there are countably many requirements to extend. Since the sequence

of networks is nested , these requirements to extend remain in all subsequent rounds. So

that we can schedule these requirements to extend so that eventually, every requirement gets
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dealt with. If we are required to find k and Nr+1 ⊃ Nr such that Nr+1( f0, k, fn−2) = b then

let k ∈ω \nodes(Nr) be least possible for definiteness, and let Nr+1 be ∃’s response using her

winning strategy, to the ∀move Nr , ( f0, . . . fn−1), k, b, l). For an extension of type 2, let τ be a

partial isomorphism of Nr and let θ be any finite surjection onto a partial isomorphism of Nr

such that dom(θ) ∩ nodes(Nr) = domτ. ∃’s response to ∀’s move (Nr ,θ) is necessarily Nθ .

Let Nr+1 be her response , using her wining strategy, to the subsequent ∀move (Nr , Nrθ).

Now let Na be the limit of this sequence. This limit is well-defined since the hypernetworks

are nested. Note, for b ∈ α, that

(∃i0, . . . Iµ−1 ∈ nodes(Na), Na(i0 . . . , iµ−1) = b) ⇐⇒ b ∼ a (1)

Let θ be any finite partial isomorphism of Na and let X be any finite subset of nodes(Na).

Since θ , X are finite, there is i < ω such that nodes(Ni) ⊇ X ∪ dom(θ). There is a bijection

θ+ ⊇ θ onto nodes(Ni) and j ≥ i such that N j ⊇ Ni, Niθ
+. Then θ+ is a partial isomorphism

of N j and rng(θ+) = nodes(Ni) ⊇ X . Hence, if θ is any finite partial isomorphism of Na and

X is any finite subset of nodes(Na) then

∃ a partial isomorphism θ+ ⊇ θ of Na where rng(θ+)⊇ X (2)

and by considering its inverse we can extend a partial isomorphism so as to include an ar-

bitrary finite subset of nodes(Na) within its domain. Let L be the signature with one µ -ary

predicate symbol (b) for each b ∈ α, and one k-ary predicate symbol (λ) for each k-ary hy-

perlabel λ. [Notational point: if λ is k-ary and l-ary for k 6= l then make one k-ary predicate

symbol λ and one l-ary predicate symbol λ′, so that every predicate symbol has a unique

arity.] The set of variables for L-formulas is {x i : i < ω}. We also have equality. Pick

fa ∈
ωnodes(Na). Let Ua = { f ∈

ωnodes(Na) : {i < ω : g(i) 6= fa(i)} is finite}. We can

make Ua into the base of an L-structure Na and evaluate L-formulas at f ∈ Ua as follow. For

b ∈ α, l0, . . . lµ−1, i0 . . . , ik−1 <ω, k-ary hyperlabels λ, and all L-formulas φ,ψ, let

Na, f |= b(x l0
. . . xn−1) ⇐⇒ Na( f (l0), . . . f (ln−1)) = b

Na, f |= λ(x i0
, . . . , x ik−1

) ⇐⇒ Na( f (i0), . . . , f (ik−1)) = λ

Na, f |= ¬φ ⇐⇒ Na, f 6|= φ

Na, f |= (φ ∨ψ) ⇐⇒ Na, f |= φ or Na, f |=ψ

Na, f |= ∃x iφ ⇐⇒ Na, f [i/m] |= φ, some m ∈ nodes(Na)

For any L-formula φ, write φNa for { f ∈ ωnodes(Na) : Na, f |= φ}. Let FormNa = {φNa :

φ is an L-formula} and define a cylindric algebra

Da = (FormNa ,∪,∼,Di j ,Ci , i, j <ω)

where Di j = (x i = x j)
Na , Ci(φ

Na ) = (∃x iφ)
Na . Observe that ⊤Na = Ua, (φ ∨ ψ)Na =

φNa ∪ψNa , etc. Note also that D is a subalgebra of the ω-dimensional cylindric set algebra

on the base nodes(Na), hence D ∈ RCAω.
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Let φ(x i0
, x i1

, . . . , x ik
) be an arbitrary L-formula using only variables belonging to

{x i0
, . . . , x ik

}. Let f , g ∈ Ua (some a ∈ α) and suppose is a partial isomorphism of Na. We can

prove by induction over the quantifier depth of φ and using (2), that

Na, f |= φ ⇐⇒ Na, g |= φ (3)

Let C =
∏

a∈α Da. Then C ∈ RCAω. An element x of C has the form (xa : a ∈ α), where

xa ∈ Da. For b ∈ α let πb : C → Db be the projection defined by πb(xa : a ∈ α) = xb.

Conversely, let ιa : Da →C be the embedding defined by ιa(y) = (xb : b ∈ α), where xa = y

and xb = 0 for b 6= a. Evidently πb(ιb(y)) = y for y ∈ Db and πb(ιa(y)) = 0 if a 6= b.

Suppose x ∈NrµC \{0}. Since x 6= 0, it must have a non-zero component πa(x) ∈ Da, for

some a ∈ α. Say ; 6= φ(x i0
, . . . , x ik

)Da = πa(x) for some L-formula φ(x i0
, . . . , x ik

). We have

φ(x i0
, . . . , x ik

)Da ∈NrµDa). Pick f ∈ φ(x i0
, . . . , x ik

)Da and let b = Na( f (0), f (1), . . . fn−1) ∈ α.

We will show that b(x0, x1, . . . xn−1)
Da ⊆ φ(x i0

, . . . , x ik
)Da . Take any g ∈ b(x0, x1 . . . xn−1)

Da ,

so Na(g(0), g(1) . . . g(n−1)) = b. The map {( f (0), g(0)), ( f (1), g(1)) . . . ( f (n−1), g(n−1))}
is a partial isomorphism of Na. By (2) this extends to a finite partial isomorphism θ of Na

whose domain includes f (i0), . . . , f (ik). Let g′ ∈ Ua be defined by

g′(i) =

¨
θ(i) if i ∈ dom(θ)
g(i) otherwise

By (3), Na, g′ |= φ(x i0
, . . . , x ik

). Observe that g′(0) = θ(0) = g(0) and similarly g′(n −
1) = g(n − 1), so g is identical to g′ over µ and it differs from g′ on only a finite set of

coordinates. Since φ(x i0
, . . . , x ik

) Da ∈ Nrµ(C ) we deduce Na, g |= φ(x i0
, . . . , x ik

), so g ∈
φ(x i0

, . . . , x ik
)Da . This proves that b(x0, x1 . . . xµ−1)

Da ⊆ φ(x i0
, . . . , x ik

)Da = πa(x), and so

ιa(b(x0, x1, . . . xn−1)
Da)≤ ιa(φ(x i0

, . . . , x ik
)Da)≤ x ∈ C \ {0}. Hence every non-zero element

x of NrnC is above a non-zero element ιa(b(x0, x1 . . . n1)
Da) (some a, b ∈ α) and these latter

elements are the atoms of NrnC . So NrnC is atomic and α∼= AtNrnC — the isomorphism is

b 7→ (b(x0, x1, . . . xn−1)
Da : a ∈ A).

In [36], we use such games to show that for n ≥ 3, there is a representable A ∈ CAn

with atom structure α such that ∀ can win the game F n+2(α). However ∃ has a winning

strategy in Hn(α), for any n < ω. It will follow that there a countable cylindric algebra A ′

such that A ′ ≡ A and ∃ has a winning strategy in H(A ′). So let K be any class such that

NrnCAω ⊆ K ⊆ ScNrnCAn+2. A ′ must belong to Nrn(RCAω), henceA ′ ∈ K . ButA 6∈ K and

A � A ′. Thus K is not elementary. From this it easily follows that the class of completely

representable cylindric algebras is not elementary, and that the class NrnCAn+k for any k ≥ 0

is not elementary either. Furthermore the constructions works for many variants of cylindric

algebras like Halmos’ polyadic equality algebras and Pinter’s substitution algebras.

Theorem 4. Let 3≤ n<ω. Then the following hold:

(i) Any K such that NrnCAω ⊆ K ⊆ ScNrnCAn+2 is not elementary.

(ii) The inclusions NrnCAω ⊆ ScNrnCAω ⊆ SNrnCAω are all proper

Proof. (i) is already mentioned. While for (ii), for the first inclusion [18], and for the

second [8].
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2. Other algebras

Now we turn our attention for other algebras for which the notion of neat reducts make

sense. SCn,CAn,QAn and QEAn abbreviate the classes of substitution, cylindric, quasipolyadic,

and quasipolyadic equality algebras, of dimension n, respectively. Such algebras are studied

in e.g. [45, 34, 21, 22, 24, 2, 15, 29, 33]. Dfn stands for the class of diagonal free cylindric

algebras. It is known, and indeed easy to show, that for 1 < n < m, the class NrnDfm of neat

n-reducts of Dfm is a variety. In fact, it is equal to Dfn [12][5.1.2]. In particular, it is an

elementary class. On the other hand, it is known [18] that for 1 < n < m the class NrnCAm

is not an elementary class. It is also known [29], [34] that NrnQAm and NrnQEAm are not

elementary classes. It is proved in Op.cit that such classes are not closed under ultraroots. So

what about reducts, i.e algebras “in between” Df and CA. By “in between” we mean a class

Km that is a reduct of CAm and an expansion of Dfm. A typical example is the class SCm [15].

We define another reduct rSCm (class of algebras of dimension m) which is a (proper) reduct

of SCm, which in turn is a reduct of CAm, QAm QEAm.

Definition 5. Let m be an ordinal. A ∈ rSCm, is defined to be an algebra

A = 〈A,+, .,−0,1,ci , s
j

i
〉i, j∈m

obeying the following axioms for x , y ∈ A and i, j, k, l < m:

(E0) 〈A,+, .,−, 0,1〉 is a boolean algebra

(E1) c j0= 0, x ≤ ci x, ci(xci y) = ci x .ci y, and cic j x = c jci x, and si
i
x = x

In other words the cis are complemented closure operators and ci,c j commute.

(E2) s
i
i
x = x

(E3) s
i
j

are boolean endomorphisms.

(E4) s
i
j
ci x = ci x

(E5) cis
i
j
x = si

j
x whenever i 6= j

(E6) s
i
j
ck x = cks

i
j
x, whenever k /∈ {i, j}

(E7) cis
j

i
x = c js

i
j
x

(E8) s
i
j
sk

i
ci x = sk

j
ci x

(E9) s
j

i
sl

k
x = sl

k
s

j

i
x when |{i, j, k, l}| = 4

Definition 6. (i) Let n < m be ordinals. Let B ∈ rSCm Then the neat n-reduct of B, in

symbols NrnB is the rSCn with universe N rnB = {b ∈ B : ci b = b for all n≤ i < m}, and

whose operations are those of the similarity type of SCm (evaluated in B and) restricted to

N rnB.

(ii) For a given class M ⊆ rSCm, we let NrnM denote the class obtained by forming the neat

n-reduct of algebras in M, that is

NrnM = {NrnB : B ∈M}.

The definition of neat reducts for SCm is the same.
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We now prove:

Theorem 5. Let 1< n and n+ 1< m≤ω. Then NrnrSCm and NrnSCm are not elementary.

We do not know whether NrnŁn+1 for Ł ∈ {SC, rSC} is elementary or not. But why is it of

interest to settle such questions on neat reducts. There are (at least) three possible answers to

this question. First there are aesthetic reasons. Motivated by intellectual curiosity, the inves-

tigation of such questions is likely to lead to nice mathematics. The second reason concerns

definability or classification. Now that we have the class of neat reducts in front of us, the

most pressing need is to try to classify it. Classifying is a kind of defining. Most mathematical

classification is by axioms (preferably first order) or, even better, equations (if the class in

question is a variety.) It is known (and indeed not difficult to show) that the class NrnCAm is

closed under products and homomorphic images for all n< m [45]. However, it is not closed

under forming (elementary) subalgebras [18], that is, it is not axiomatizable, a priori not a

variety. Studying neat reducts of reducts of CA’s and for that matter expansions [34], [29],

clarifies the properties of neat reducts. (This is similar to the situation with representabil-

ity [15] where axiomatizations of representable algebras are better understood by passing to

reducts or expansions.) Now we come to the third reason, where neat reducts are not treated

on its own but rather in its interaction with algebraic properties like representability, amalga-

mation and complete representations. This in turn is related to completeness, interpolation

and omittting types for variants of first order logic, be it reducts or expansions [24, 22], [33].

Indeed the old but venerable notion of neat reducts has turned to be central notion in the

theory of cylindric like algebras of relations, [23, 32, 30, 16].

We shall need the following Lemma on substitutions:

Lemma 4. For any k, l,u < n and A ∈ rSCn, set

us(k, l)x = su
k
sk

l s
l
u x .

Then

(i) If k, l,u and v are distinct, then

us(k, l)cucv x = us(l, k)cucv x

(ii) With the same condition in (i), we have

us(k, l)us(k, l)cucv x = cucv x .

The proof is tedious, but fairly straight forward. We use the axiomatization (E1 − E9).

Proof.

sl
us

u
k
sk

l
sl

ucucv x = (by E8) sl
us

u
k
sk

l
sv

us
l
vcvcu x

= (by E9 )sl
us

u
ks

v
us

k
l s

l
vcucv x (by E6) = sl

us
u
ks

v
us

k
l cus

l
vcv x

(by E6) = sl
us

u
ks

v
ucus

k
l s

l
vcv x = (by E8) sl

us
v
kcus

k
l s

l
vcucv x .
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Now

sl
us

v
kcus

k
l s

l
vcucv x( by E8 ) = sl

us
v
ks

k
l s

l
vcucv x

= ( by E9) sv
ks

l
us

k
l s

l
vcucv x = ( by E5 )sv

ks
l
us

k
l cls

l
vcucv x =

(by E8) sv
ks

k
ucls

l
vcucv x = (by E5 )sv

ks
k
us

l
vcucv x

(by E9) = sv
ks

l
vs

k
ucucv x = ( by E6 ) sv

ks
l
vcvs

k
ucu x = ( by E8 )sl

ks
k
ucucv x .

We have proved that

sl
us

u
k
sk

l s
l
ucucv x = sl

k
sk

ucucv x .

Now we apply su
l

to both sides, we obtain, the right hand side is equal to

su
l
sl

us
u
k
sk

l
sl

ucucv x = ( by E5 )su
l
sl

ucus
u
k
sk

l
sl

ucucv x

= (by E8) sl
l
cus

u
k
sk

l
sl

ucucv x = (by E5) su
k
sk

l
sl

ucucv x = us(k, l)cucv x

And by definition the left hand side is equal to us(l, k)cucv x . We have proved (i). We now

prove (ii). From (i) we have

us(k, l)us(k, l)cucv x =u s(l, k)us(k, l)cucv x

= ( by definition ) su
l
sl

k
sk

us
u
k
sk

l s
l
ucucv x = ( by E5 ) su

l
sl

k
sk

us
u
k
cks

k
l s

l
ucucv x

= (by E8 ) su
l s

l
ks

u
ucks

k
l s

l
ucucv x = ( by E2 ) su

l s
l
kcks

k
l s

l
ucucv x

= ( by E5 ) su
l s

l
ks

k
l s

l
ucucv x = (by E5 ) su

l s
l
ks

k
l cls

l
ucucv x

= ( by E8 ) su
l s

k
kcls

l
ucucv x = ( by E8 ) su

l s
l
ucucv x =

( by E8 ) sl
lcucv x = ( by E2 ) cucv x .

(i) and (ii) are sometimes called the merry-go-round identities [12]. Since our proof is

model theoretic, we recall some notions and concepts from Model Theory. A good reference

is [6]. (Our treatment will be self contained.)

3. Some Model-theoretic preparations

Definition 7. Let L be a signature. By an unnested atomic formula of signature L we mean an

atomic formula of one of the following forms:

x = y, c = y, F( x̄) = y and R( x̄)

where c is a constant, F is a function symbol and R is a relation symbol.

Definition 8. Let L and K be signatures, A a K structure B an L structure and n a positive

integer. An n dimensional interpretation Γ of B in A is defined to consist of

(1) a formula ∂Γ(x0, . . . xn−1) of signature K,
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(2) for each unnested atomic formula φΓ( ȳ0, . . . ȳm−1) a formula φΓ( x̄0, . . . x̄m−1) of signature

K in which the x i ’s are disjoint n tuples of distinct variables,

(3) a surjective map fΓ : ∂Γ(
nA)→ dom(B), such that for all unnested atomic formula φ of L

and āi ∈ ∂Γ(
nA)

B |= φ( fΓ ā0, . . . fΓam−1)←→ A |= φ(ā0, . . . ¯am−1).

The formula ∂Γ is the domain formula of Γ; the formula ∂Γ and φT for all unnested atomic

formula φ are the defining formulas of Γ. If Γ is an interpretation of an L structure B in a

K structure A , then there are certain sequences of signature K which must be true in A just

becuase Γ is an interpretation, regardless of what A and B are. These sentences say:

(i) Let =Γ be φΓ when φ is y0 = y1. Then =Γ is an equivalence relation.

(ii) for each unnested atomic formula φ of L, if A |= φΓ(ā0, . . . ¯an−1) where ā0, . . . ¯an−1 ∈
∂ n
Γ A, then also A |= φΓ( b̄0 . . . ¯bn−1) where each b̄i is an element of ∂Γ(

nA) which is = Γ

equivalent to āi.

(iii) if φ(y0) is a formula of L of the form c = y0, then there is an ā in ∂Γ(
nA)such that for

all b̄ in ∂Γ(
nA), A |= φΓ b̄ if b̄ is =Γ equivalent to ā.

(iv) a clause like (iii) for each function symbol.

For a signature L, L∞ω denotes the extension of the first order language of L by infinitary

conjunctions and disjunctions. The following Lemma is more general than what we need

(however the proof is the same):

Lemma 5. Let A be a K structure, B an L structure and Γ an n interpretation of B in A. Then

for every formula φ( ȳ) of the language L∞ω there is a formula φΓ(x) of the language K∞ω such

that

B |= φ( fΓ ā)←→ A |= φΓ(ā)

Proof. Every formula of L∞ω is equivalent to a formula in which all atomic subformulas

are nested. We prove the theorem by induction on complexity of formulas, and Definition 6

takes care for the atomic formulas. For compound formulas, we define:

(¬φ)Γ = ¬(φΓ),

(
∧
φi)Γ =
∧
(φi)Γ and likewise with

∨

(∃yφ)Γ = ∃x0 . . . xn−1(∂Γ(x0, . . . , xn−1)∧φΓ).

We need to show that elementary equivalence is preserved by taking products. For this

purpose we devise a game between ∀ (male) and ∃(female). We imagine that ∀wants to prove

that A is different from B while ∃ tries to show that A is the same as B. So their conversation

has the form of a game. Player ∀ wins if he manages to find a difference between A and B



T. Ahmed / Eur. J. Pure Appl. Math, 3 (2010), 853-880 866

before the play is over; otherwise ∃ wins. The game is played in µ≤ω steps. At the ith step of

a play, player ∀ takes one of the structures A, B and chooses an element this structure; then ∃
chooses an atom of the other structure. So between them they choose an element ai of A and

an element bi of B. Apart from the fact that player ∃ must choose from the other structure

from player ∀ at each step, both players have complete freedom to choose as they please; in

particular, either player can choose an element which was chosen at an earlier step. Player ∃
is allowed to see and remember all previous moves in the play. (As the game theorists would

say, this is a game of perfect information.) At the end of the play sequences ā = (ai : i < µ)

and b̄ = (bi : i < µ) have been chosen. The pair (ā, b̄) is known as the play. We count the

play (ā, b̄) as a win for player ∃, and we say that ∃ wins the play, if for every unnested atomic

formula φ of L

A |= φ(ā)←→B |= φ( b̄)

Let us denote this game by EFµ(A,B). (It is an instance of an Ehrenfeuch-Fraisse game.) The

more A is like B, the better chance player ∃ has of winning these games. For example if player

∃ knows about an isomorphism i : A→B then she can be sure of winning every time. All she

has to do to follow the rule is: Choose i(a) whenever player ∀ has just chosen an element a

of A and i−1(b) whenever player ∀ has just chosen b from B. We write A ∼k B if ∃ can win

EFk(A,B).

Lemma 6. Let L be a first order language with finite signature. Then for any two L structures A

and B the following are equivalent

(i) A ≡B

(ii) A ∼k B for all k <ω.

Proof. [Sketch] A and B agree on all unnested sentences of finite quantifier rank, so

(i) implies (ii). The other direction follows from the fact that every first order sentence is

equivalent to an unnested sentence of finite quantifier rank.

A strategy for a player in a game is a set of rules which tell the player exactly how to move,

depending on what has happened earlier in the play. We say that the player uses the strategy

σ in a play if each of his or her moves obeys the rules of σ. We say that σ is a winning strategy

if the player wins every play in which he or she uses σ. We now have

Lemma 7. Let B1, B2 and B be boolean algebras. Assume that B1 ≡ B2, then B1 ×B ≡
B2 ×B.

Proof. It suffices to show that if k < ω and B1 ∼k B2 then B1 ×B ∼k B2 ×B. Assume

henceforth that B1 ∼k B2. Then ∃ has a winning strategy σ for the game EFk(B1,B2). Let

the two players play the game EFk(B1 ×B,B2 ×B). ∃ guides her choices by the side game

EFk(B1,B2). Whenever ∀ offers an element, say the element a ∈ B1 × B, player ∃ first splits

it into a product a = (g,h) with g ∈ B1 and h ∈ B. Then she pretends that ∀ has chosen g

in the side game. She uses her strategy σ to choose a reply g′ of g in the side game. Her

reply to the element a will be the element b = (g′,h) ∈ B2 × B. At the end of the game



T. Ahmed / Eur. J. Pure Appl. Math, 3 (2010), 853-880 867

let the play be ((g0,h0), . . . (gk−1,hk−1); (g
′
0,h′0), . . . (g

′
k−1

,h′
k−1
)). Player ∃ has won the side

game. Now the unnested atomic formulas of boolean algebras are of the form x = y, 1 = x ,

0= x , x0 ∧ x1 = y, x0 ∨ x1 = y and −x = y. So for i, j, l < k we have

gi = g j iff g′i = g′j

1= gi iff 1= g′i

0= gi iff 0= g′i

gi ∧ g j = gl iff g′i ∧ g′j = g′l

gi ∨ gi = gl iff g′i ∧ g′j = g′
l

−gi = g j iff − g′i = g′j .

By the cartesian product for boolean algebras , this implies that for all i, j, l < k we also have

(gi,hi) = (g j,h j) iff (g′i ,hi) = (g
′
j,hi)

1= (gi,hi) iff 1= (g′i ,hi)

same for 0

0= (gi,hi) iff 0= (g′i ,hi)

(gi ∧ hi , g j ∧ h j) = (gl ,hl) iff (g′i ∧ hi, g′j ∧ h j) = (g
′
l ,hl)

(gi ∨ hi , g j ∨ h j) = (gl ,hl) iff (g′i ∨ hi, g′j ∨ h j) = (g
′
l ,hl)

−(gi,hi) = (g j,h j) iff − (g′i ,hi) = (g
′
j,h j).

So ∃ wins the game, which proves the lemma..

Definition 9. (1) Let L be a signature and D an L structure. The age of D is the class K of all

finitely generated structures that can be embedded in D.

(2) A class K is the age of D if the structures in K are up to isomorphism, exactly the finitely

generated substructures of D.

(3) Let K be a class of structures.

(4) K has the Hereditary Property, HP for short. if whenever A ∈ K and B is a finitely

generated substructure of A then B is isomorphic to some structure in K.

(5) K has the Joint Embedding Property, J EP for short if whenever A,B ∈ K then there is a

C ∈ K such that both A and B are embeddable in C.

(6) K has Amalgamation Property, or AP for short if A,B,C ∈ K and e : A→ B, f : A→ C
are embeddings, then there are D in K and embeddings g : B→ D and h : C → D such

that g ◦ e = h ◦ f .
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(7) A structure D is weakly homogeneous if it has the the following property if A, B are

finitely generated substructures of D, A⊆ B and f : A→D is an embedding, then there is

an embedding g : B→D which extends f .

(8) We call a structure D homogeneous if every isomorphism between finitely generated sub-

structures extends to an automorphism of D.

Note that if D is homogeneous, then it is weakly homogeneous. We recall from [6] Thm

7.1.2, a theorem of Fraisse that puts the above pieces together.

Theorem 6. Let L be a countable signature and let K be a non-empty finite or countable set

of finitely generated L-structures which has HP, J EP and AP. Then there is an L structure D,

unique up to isomorphism, such that

(1) D has cardinality ≤ω

(2) K is the age of D, and

(3) D is homogeneous.

Following Hodges [6] we also refer to D is as Fraisse limit of the class K. Our next theorem,

gives a sufficient condition for when the Fraisse limit D of a class K of finitely generated

structures, has quantifier elimination. Recall that an L-structure M has quantifier elimination if

every L formula φ( x̄) is equivalent in M to a boolean combination of quantifier free formulas,

equivalently atomic formulas. A theory T is ω- categorical if all countable models of T are

isomorphic.

Lemma 8. Suppose that the signature L is finite and has no function symbols. Suppose that K is

a countable set of finite L structures with HP, J EP and AP. Let M be the Fraisse limit of K. Let

T be the first order theory Th(M) of M. Then

(i) T is ω-categorial.

(ii) M has quantifier elimination

Proof. The proof is taken from [6]. We include it for the sake of completeness. We note

that the following hold: If A is any finite L structure with n generators ā, then there is a

quantifier free formula ψA,ā(x0 . . . xn−1) such that for any L structure B and n-tuple b̄ of

elements of B,

(1) B |= φ[ b̄] if and only if there is an isomorphism from A to 〈b〉B which takes ā to b̄.

In fact ψA,ā is a conjunction of literals satisfied by ā in A.

Also or each n<ω there are only finitely many isomorphism types of structures in K with

n generators.

Let U0 be the set of all sentences of the form

(∀ x̄)(ψA,ā( x̄) =⇒ ∃yψB,āb( x̄ , y)) (4)
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where B is a structure in K generated by a tuple ā b of distinct elements, and A is the sub-

structure generated by ā. let U1 be the set of sentences of the form

(∀x)
∨
ψA,ā( x̄) (5)

where the disjunction is over all pairs A, ā such that A ∈ K and ā is a tuple of the same length

as x̄ which generates A. Then this is a finite disjunction. Let U = U0 ∪U1. Then M is a model

of U . Suppose that D is any countable model of U . Then the sentences (1) say that if

(4) A, B are finitely generated substructures of D A⊆ B, B comes from A by adding one

more generator, and f : A → D is an embedding , then there is an embedding g : B → D

which extends f . Using induction on the number of generators, imply that every structure in

K is embeddable in D; so together with (3) this implies that the age of D is exactly K. Using

(2) an induction on the size of dom(B) \ dom(A), tells us that D is weakly homogeneous, so

D is isomorphic to M. Hence U is ω categorical and U is a set of axioms for T . Suppose now

that φ( x̄) is a formula of L, and let X be the set of all tuples ā in M such that M |= φ(ā).
If ā is in X , and b̄ is a tuple of elements such that there is an isomorphism e : 〈āM 〉 → 〈 b̄M 〉
taking ā→ b̄, then e extends to an automorphism of M, so that b̄ is in X too. It follows that

φ is equivalent modulo T to the disjunction of all the formulas ψ〈ā〉,ā( x̄) with ā ∈ X .This is

a finite disjunction of quantifier free formulas. Finally if φ is a sentence of L then since T is

complete, φ is equivalent to either ⊤ or ⊥.

Notation . S3 denotes the set of all permutations of 3. X Y denotes the set of functions

from X to Y . For u, v ∈ 33, i < 3 we write ui for u(i) < 3, and we write u≡i v if u and v agree

off i, i.e if u j = v j for all j ∈ 3r {i}. For a symbol R of the signature of M we write RM for the

interpretation of R in M.

Lemma 9. Let L be a signature consisting of the unary relation symbols P0, P1, P2 and uncount-

ably many 3-ary predicate symbols. For u ∈ 33, let χu be the formula
∧

i<3 Pui
(x i). Then there

exists an L-structure M with the following properties:

(1) M has quantifier elimination, i.e. every L-formula is equivalent in M to a boolean combi-

nation of atomic formulas.

(2) The sets PM
i for i < 3 partition M,

(3) M |= ∀x0 x1 x2(R(x0, x1 x2)−→
∨

u∈S3
χu), for all R ∈ L,

(4) M |= ∃x0 x1 x2(χu ∧ R(x0, x1, x2) ∧ ¬S(x0, x1, x2)) for all distinct ternary R,S ∈ L, and

u ∈ S3,

(5) For u ∈ S3, i < 3, M |= ∀x0 x1 x2(∃x iχu←→
∨

v∈33,v≡iu
χv),

(6) For u ∈ S3 and any L-formula φ(x0, x1, x2), if M |= ∃x0 x1 x2(χu ∧φ) then

M |= ∀x0 x1 x2(∃x iχu←→∃x i(χu ∧φ)) for all i < 3.
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Proof. Throughout the proof, we use the notation x̄ , ā for finite sequences, or tuples

〈x0, · · · xm−1〉, 〈a0, · · · am−1〉. Given a structure M and a tuple ā, we often write, with a slight

abuse of notation, ā ∈ M instead of ā ∈ mM , where m is the arity of the tuple ā. The arity of

tuples will be clear from context. Let L be the relational signature containing unary relation

symbols P0, . . . , P3 and a 4-ary relation symbol X . Let K be the class of all finite L -structures

D satsfying

The Pi ’s are disjoint : ∀x
∨

i< j<4

(Pi(x)∧
∧

j 6=i

¬Pj(x)). (6)

∀x0 · · · x3(X (x0, · · · , x3)−→ P3(x3)∧
∨
u∈s3

χu). (7)

Then K contains countably many isomorphism types, because for each n ∈ω, there are count-

ably many isomorphism types of finite L structures (satifying (6) and (7)) having cardinality

≤ n. Also it is easy to check that K is closed under substructures and that K has the AP. From

the latter it follows that it has the J EP, since K contains the one element structure that is

embeddable in any structure in K. ∗ Then there is a countably infinite homogeneous L -

structure N with age K. N has quantifier elimination, and obviously, so does any elementary

extension of N. K contains structures with arbitrarily large P3-part, so PN

3 is infinite. Let N∗

be an elementary extension of N such that |PN
∗

3 | = |L|, and fix a bijection ∗ from the set of

ternary relation symbols of L to PN
∗

3 . Define an L-structure M with domain PN
∗

0 ∪ PN
∗

1 ∪ PN
∗

2 ,

by: PM
i
= PN

∗

i
for i < 3 and for ternary R ∈ L,

M |= R(a0, a1, a2) iff N∗ |= X (a0, a1, a2,R∗).

If φ( x̄) is any L-formula, let φ∗( x̄ , R̄) be the L -formula with parameters R̄ from N
∗ ob-

tained from φ by replacing each atomic subformula R(x , y, z) by X (x , y, z,R∗) and relativizing

quantifiers to ¬P3, that is replacing (∃x)φ(x) and (∀x)φ(x) by (∃x)(¬P3(x) → φ(x)) and

(∀x)(¬P3(x) → φ(x)), respectively. A straightforward induction on complexity of formulas

gives that for ā ∈M

M |= φ(ā) iff N∗ |= φ∗(ā, R̄).

We show that M is as required. For quantifier elimination, if φ( x̄) is an L-formula , then

φ∗( x̄ , R̄∗) is equivalent in N
∗ to a quantifier free L -formula ψ( x̄ , R̄∗). Then replacing ψ’s

atomic subformulas X (x , y, z,R∗) by R(x , y, z), replacing all X (t0, · · · t3) not of this form by ⊥
, replacing subformulas P3(x) by ⊥, and Pi(R

∗) by ⊥ if i < 3 and ⊤ if i = 3, gives a quantifier

free L -formula ψ equivalent in M to φ.

For (2), let

σ = ∀x(¬P3(x)−→
∨
i<3

(Pi(x)∧
∧

j 6=i

¬Pj(x))).

Then K |= σ, so N |= σ and N
∗ |= σ. It follows from the definition that M satisfies (2); (3) is

similar.

∗It is not always true that AP implies J EP; think of fields.
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For (4), let u ∈ S3 and let r, s ∈ PM
3 be distinct. Take a finite L -structure D with points

ai ∈ PD

ui
(i < 3) and distinct r ′, s′ ∈ PD

3 with

D |= X (a0, a1, a2, r ′)∧¬X (a0, a1, a2, s′).

Then D ∈ K, so D embeds into N. By homogeneity, we can assume that the embedding takes

r ′ to r and s′ to s. Therefore

N |= ∃ x̄(χu ∧ X ( x̄ , r)∧¬X ( x̄ , s)),

where x̄ = 〈x0, x1, x2〉. Since r, s were arbitrary and N
∗ is an elementary extension of N, we

get that

N
∗ |= ∀yz(P3(y)∧ P3(z)∧ y 6= z −→ ∃ x̄(χu ∧ X ( x̄ , y)∧¬(X ( x̄, z))).

The result for M now follows.

Note that it follows from (3,4) that PM
i
6= ; for each i < 3. So it is clear that

M |= ∀x0 x1 x2(∃x iχu←→
∨

v∈33,v≡i u

χv);

giving (5).

Finally consider (6). Clearly, it is enough to show that for any L -formula φ( x̄) with

parameters r̄ ∈ PM
3 ,u ∈ S3, i < 3, we have

N |= ∃ x̄(χu ∧φ) −→∀ x̄(∃x i(χu −→ ∃x i(χu ∧φ)).

For simplicity of notation assume i = 2. Let ā, b̄ ∈N with

N |= (χu ∧φ)(ā) and N |= ∃x2(χu( b̄)).

We require

N |= ∃x2(χu ∧φ)( b̄).

It follows from the assumptions that

N |= Pu0
(a0)∧ Pu1

(a1)∧ a0 6= a1, and N |= Pu0
(b0)∧ Pu1

(b1)∧ b0 6= b1.

These are the only relations on a0ar r̄ and on b0 b1 r̄ (cf. property (3) of Lemma 13), so

θ− = {(a0, b0)(a1, b1)(rl , rl) : l < |r̄|}

is a partial isomorphism of N. By homogeneity, it is induced by an automorphism θ of N. Let

c = θ(ā) = (b0, b1,θ(a2)). Then N |= (χu∧φ)(c̄). Since c̄ ≡2 b̄, we have N |= ∃x2(χu∧φ)( b̄)
as required.

Now we explain the idea behind the construction of such an M, and in the process give an

outline of the proof that the class of neat reducts is not elementary, that paves the way for a

smooth (formal) proof of our main Theorem. Throughout fix M as in Lemma 9.
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We will go through the conditions one by one. Condition 1 of quantifier elimination says

that the set of atomic formulas

J = {R(y0, y1, y2) : {y0, y1.y2} = {x0, x1, x2} and R ∈ L is a ternary relation}

⋃
{Pi(x j) : i, j < 3} ∪ {x i = x j : i, j < 3}

is an elimination set for M, meaning that every formula φ ∈ L is equivalent in M to a boolean

combination of formulas in J . This implies that the cylindric set algebra based on M using

only the first three variables is a neat reduct. In more detail, for φ ∈ L, let φM be the set of

all assignments satisfying φ in M i.e.

φM = {s ∈ ωM : M |= φ[s]}.

Csn denotes the class of cylindric set algebras of dimension n. Let Aω be the Csω with domain

{φM : φ ∈ L}

and operations (well-) defined by (cf.[12])†

φM.ψM = φM ∩ψM = (φ ∧ψ)M;

−φM = (¬φ)M;

and for i, j <ω

di j = (x i = x j)
M;

and

ci(φ
M) = (∃x iφ)

M.

Now write L3 for the set of all L-formulas using only the first three variables. Then a moment’s

reflection will show that condition 1 says that the Cs3 A with domain

{φM : φ ∈ L3}

is the same as the (possibly bigger) Cs3 with domain

{φM : φ ∈ L and φ contains x0, x1, x2 as free variables},

with the operation defined, for both, as for Aω. But the latter, as easily checked, is isomorphic

to Nr3Aω, so condition 1 guarantees that A ∈Nr3CAω. The rest of the conditions are designed

to extract an elementary subalgebra of A such that its rSC reduct is not in Nr3(rSC5). But let

us first understand the (abstract) structure of A based on M. Condition (2), says that

{χM
u : u ∈ 33}

†In [12], sec 4.3, cf. Definition 4.3.4 Aω would be denoted by C f M
3

, which is the set algebra based on M. In this

connection we note that A is a regular locally finite Csω.
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is a partition of 3M , the unit of A. That is

⋃

u∈33

(χu)
M = 3M ,

and for distinct u, v ∈ 33 we have

(χu)
M ∩ (χv)

M = ;.

Conditions (3) and (4) single out the χM
u ’s that are indexed by permutations u ∈ S3. Note that

for any such u, if 〈a0, a1, a2〉 ∈ χ
M
u , then the ai ’s are distinct because ai ∈ Pui

for i < 3 and by

(2) these are disjoint. Condition (3) says that for any ternary R( x̄) ∈ L, R( x̄)M ⊆
⋃

u∈S3
(χu)

M

with u ∈ S3, so this means that if 〈a0, a1, a2〉 ∈ R( x̄)M, then the ai ’s must be distinct, too.

Condition (4) says that below every such (χu)
M with u ∈ S3, there are uncountably many

pairwise distinct non-empty elements, namely, the R( x̄)M∩(χu)
M, for ternary R ∈ L. Condition

(5) tells us how the (χu)
M’s behave with respect to cylindrifications. It simply says that for

u ∈ S3 and i < 3 we have

ci(χu)
M =
⋃

v∈33,v≡iu

(χv)
M.

A moment’s reflection will reveal that this follows from (3) and (4.) Finally, condition (6)

says that elements below χM
u are big, as far as cylindrifications are concerned, that is for any

φ such that

(φ ∩ χu)
M 6= ;

and any i < 3, we have

ci(φ
M ∩χM

u ) = ci(χ
M
u ) =
⋃

v∈33,v≡iu

(χv)
M.

Summarizing the above, let 1u denote χM
u . Then by condition (2), we have {1u : u ∈ 33} is a

partition of the unit of A. If u ∈ S3, then below every 1u, there are uncountably many pairwise

distinct non empty elements, namely the R( x̄)M’s intersected with 1u. (conditions (3), (4)).

Such elements are big as far as the cylindrifications are concerned, that is for i < 3 we have

(by conditions (5), (6))

ci(R( x̄)
M ∩ 1u) = ci(1u) =

⋃
v≡iu

1u.

Having explained the idea behind the conditions of Lemma 13 we explain how we will go

about extracting an elementary subalgebra of A that is not a neat reduct.

For u ∈ 33, let Au stand for the relativisation of A to 1u i.e.

Au = {x ∈ A : x ≤ 1u}.

Au is the domain of a boolean set algebra which we denote by Au. Then for u ∈ S3, Au is

uncountable. Because {1u : u ∈ 33} is a partition of the unit of A, it follows that the boolean
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reduct of A is isomorphic to the boolean product,
∏

u∈33 Au. Moreover we can expand the

language of boolean algebras by diagonal elements and the constants 1u in such a way that

the cylindric algebra A becomes interpretable in this product. Then we are able to extract

an elementary subalgebra B of A by an infinite cardinality twist, that first order logic does

not see. B is simply obtained from A by keeping only many countably elements below 1I d ,

where Id is the identity function on 3, and throwing away the rest of the elements below 1I d .

In the product, this corresponds to replacing the component AI d by an arbitrary elementary

countable boolean subalgebra BI d of AI d and giving the resulting algebra the interpretation

given to the the boolean product
∏

u∈33 Au. This will not be witnessed by first order logic,

but will enforce that the resulting structure B, which is of course a CA3, is not a neat reduct.

In fact, B will not be even in Nr3CA4 and its rSC reduct is not in Nr3rSC5. The idea is that

had B been a neat reduct then using a substitution term definable in extra dimensions, will

give uncountably many elements in the component BI d , which contradicts that the latter, by

construction, is countable. Now we implement the details of the above sketch.

Proof. [main result] Fix L and M as in Lemma 9. Let Aω, A be as specified above. That is

Aω = {φ
M : φ ∈ L} and A= {φM : φ ∈ L3}. Then A∼=Nr3Aω, the isomorphism is given by

φM 7→ φM.

Quantifier elimination in M guarantees that this map is onto. For u ∈ 33, let Au denote the

relativisation of A to χM
u i.e

Au = {x ∈ A : x ≤ χM
u }.

Au is a boolean algebra. Also Au is uncountable for every u ∈ S3 because by property (4) of

Lemma 9 the sets (χu ∧ R(x0, x1, x2))
M, for R ∈ L are distinct elements of Au. Define a map

f : A→
∏

u∈33(Au), by

f (a) = 〈a.χu〉u∈33.

We will expand the language of the boolean algebra
∏

u∈33 Au in such a way that the cylindric

algebra A becomes interpretable in the expanded structure. For this we need.

Definition 10. Let ¶ denote the following structure for the signature of boolean algebras ex-

panded by constant symbols 1u for u ∈ 33 and di j for i, j ∈ 3:

(1) The boolean part of ¶ is the boolean algebra
∏

u∈33 Au,

(2) 1¶
u = f (χM

u ) = 〈0, · · ·0,1,0, · · · 〉 (with the 1 in the uth place) for each u ∈ 33,

(3) d¶
i j
= f (dAi j) for i, j < 3.

We now show that A is interpretable in ¶. For this it is enough to show that f is one to

one and that Rng( f ) (Range of f ) and the f -images of the graphs of the cylindric algebra

functions in A are definable in ¶. Since the χM
u partition the unit of A, each a ∈ A has

a unique expression in the form
∑

u∈33(a.χM
u ), and it follows that f is boolean isomorphism:

bool(A)→
∏

u∈33 Au. So the f -images of the graphs of the boolean functions on A are trivially
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definable. f is bijective so Rng( f ) is definable, by x = x . For the diagonals, f (dAi j) is definable

by x = di j. Finally we consider cylindrifications. For S ⊆ 33, i < 3, let tS be the closed term

∑
{1v : v ∈ 33, v ≡i u for some u ∈ S}.

Let

ηi(x , y) =
∧

S⊆33

(
∧
u∈S

x .1u 6= 0∧
∧

u∈33rS

x .1u = 0−→ y = tS).

We claim that for all a ∈ A, b ∈ P, we have

¶ |= ηi( f (a), b) iff b = f (cAi a).

To see this, let f (a) = 〈au〉u∈33, say. So in A we have a =
∑

u au. Let u be given; au has the

form (χi ∧φ)
M for some φ ∈ L3, so cA

i (au) = (∃x i(χu ∧φ))
M. By property 6 of Lemma 9, if

au 6= 0, this is (∃x iχu)
M ; by property 5, this is (

∨
v∈33,v≡iu

χv)
M. Let S = {u ∈ 33 : au 6= 0}. By

normality and additivity of cylindrifications we have,

cA
i (a) =
∑

u∈33

cA
i au =
∑
u∈S

cA
i au =
∑
u∈S

(
∑

v∈33,v≡iu

χM
v )

=
∑
{χM

v : v ∈ 33, v ≡i u for some u ∈ S}.

So ¶ |= f (cA
i

a) = tS . Hence ¶ |= ηi( f (a), f (cA
i

a)). Conversely, if ¶ |= ηi( f (a), b), we require

b = f (cia). Now S is the unique subset of 33 such that

¶ |=
∧
u∈S

f (a).1u 6= 0∧
∧

u∈33rS

f (a).1u = 0.

So we obtain

b = tS = f (cA
i a).

We have proved that ¶ is interpretable in A. Furthermore it is easy to see that the inter-

pretation is one dimensional and quantifier free. Next we extract an algebra B elementary

equivalent to A that is not a neat reduct i.e. not in Nr3CA4. Also RdrSCB /∈ Nr3rSC5. Let

Id ∈ 33 be the identity map on 3. Choose any countable boolean elementary subalgebra of

AI d , BI d say. Thus BI d � AI d . By lemma 9

Q = ((BI d ×
∏

u∈33rI d

Au), 1u, di j)u∈33,i, j<3 ≡

(
∏

u∈33

Au)), 1u,di j)u∈33,i, j<3 = P.

(Note that the Id th coordinate of each constant is 0 or 1, so the constants do lie in Q.) Let

B be the result of applying the interpretation given above to Q. Then B ≡ A as cylindric

algebras. Now we show that B cannot be a neat reduct, in fact we show that B /∈ Nr3CAβ
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for any β > 3, while RdrSCB /∈ Nr3rSCβ for β > 4. We settle first the cylindric case. Assume

for contradiction that B = Nr3D for some D ∈ CAβ ; with β > 3. Note that D may not be

representable. It is only here that we deal with possibly non-representable algebras. Now

χM
u ∈ B for each u ∈ 33. Identifying functions with sequences we let v = 〈1,0,2〉 ∈ 33. Let

t(x) be the CA2 term s0
1c1 x .s1

0c0 x , where s
j

i
(x) = ci(di j .x), for i 6= j. Then we claim that

tB(χM
v ) = χ

M
I d

. For the sake of brevity, denote χM
v by 110 and χM

I d
by 101. Then, by definition,

we have

tB(101) = c0(d01.c1110).c1(d01.c0110).

Computing we get

c0(d01.c1110) = c0(d01.(
∑
{1u : u≡1 110})

= c0(d01.1112) = 101 + 1112.

Here 1112 denotes χ〈1,1,2〉. Note that we are using that the evaluation of the term c1110 in B

is equal to its value in A. This is so, because B inherits the interpretation given to
∏

Au. A

similar computation gives

c1(d01.c0101) = 1002 + 101,

where 1002 denotes χ〈0,0,2〉. Therefore as claimed

tB(110) = 101.

Now let 3s(0,1) be the unary substitution term as defined in [11] 1.5.12, that is

3s(0,1)x = s3
0s

0
1s

1
3(x).

Then for any β > 3 we have

CAβ |= 3s(0,1)c3 x ≤ t(c3 x).

Indeed by [11] 1.5.12, 1.5.8 and 1.5.10 (ii), we get

3s(0,1)c3x ≤ 3s(0,1)c1c3 x = s3
0s

0
1s

1
3c1c3 x = s3

0s
0
1c1c3 x

= s3
0s

0
1c3c1 x = s3

0c3s
0
1c1 x = c3s

0
1c1 x = s1

0c1c3 x .

Similarly

3s(0,1)c3x ≤ s0
1c0c3 x

Therefore

3s(0,1)c3 x ≤ t(c3 x).

It thus follows that

D |= 3s(0,1)(χM
u ) ≤ s0

1c1(χ
M
u ).s

1
0c0(χ

M
u ) = χ

M
I d .

Now 3s(0,1) preserves ≤ and is one to one Nr3D. By [11], 1.5.12 and 1.5.1, we have:

3s(0,1)c3 x = sn
0s

0
1s

1
3c3 x = c3(d30 ∩ c0(d01 ∩ c1(d01 ∩ c1(d13 ∩ c3 x))).
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By [11], 1.3.8, 0< x , implies 0< di j ∩ c j x , for all i, j ∈ β .

We have shown that if x > 0 ∈ N r3D, then 3s(0,1)x > 0, i.e that 3s(0,1), being a boolean

endomorphism, is one to one. Since Bv = Av it follows (by condition (4) in Lemma 13) that

Bv = {b ∈ B : b ≤ χM
v } is uncountable. Since 3s(0,1) is one to one, it follows that 3s(0,1)Bu

is also uncountable. But by the above we have

3s(0,1)Bu ⊆ BI d = {b ∈ B : b ≤ χB
I d},

and so BI d is also uncountable. But by construction, we have BI d = {b ∈ B : b ≤ χM
I d
} is

countable. This contradiction shows that B /∈Nr3CAβ for any β > 3. The rSC is the same by

using the axiomatization (E1 − E9) and noting that 3s(0,1) is a permutation of Nr3D when

D ∈ rSC5. Same reasoning for SCm.

Finally we should mention that the proof presented herein is substantially different than

the proofs in [21], [18], [34], [29], since it uses genuine model theoretic arguments.
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