EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 14, No. 2, 2021, 351-357 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Results on C_2 -paracompactness

Hala Alzumi^{1,2}, Lutfi Kalantan¹, Maha Mohammed Saeed^{1,*}

¹ Department of Mathematics, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia

² Department of Mathematics, Jeddah University, Jeddah, Saudi Arabia

Abstract. A *C*-paracompact is a topological space X associated with a paracompact space Y and a bijective function $f: X \longrightarrow Y$ satisfying that $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$. Furthermore, X is called C_2 -paracompact if Y is T_2 paracompact. In this article, we discuss the above concepts and answer the problem of Arhangel'skii. Moreover, we prove that the sigma product $\Sigma(0)$ can not be condensed onto a T_2 paracompact space.

2020 Mathematics Subject Classifications: 54C10, 54D20

Key Words and Phrases: Normal, paracompact, sigma product, C-paracompact, C_2 -paracompact, C-normal, sigma product, open invariant, Alexandroff duplicate

1. Introduction and preliminaries

In the present work, we give some new results about C-paracompactness and C_2 paracompactness [8] and answer a problem of Arhangel'skii. Also, we prove that the sigma product $\Sigma(0)$ can not be condensed onto a T_2 paracompact space. Throughout this paper, $\langle x, y \rangle$ denotes an ordered pair, \mathbb{N} denotes the set of positive integers, \mathbb{Q} denotes the rational numbers, \mathbb{P} denotes the irrational numbers, and \mathbb{R} denotes the set of real numbers. T_2 denotes the Hausdorff property. A T_4 space is a T_1 normal space and a Tychonoff space $(T_{3\frac{1}{2}})$ is a T_1 completely regular space. We do not assume Hausdorffness in the definition of compactness, countable compactness, local compactness, and paracompactness. So, a space is paracompact if any open cover has a locally finite open refinement. The regularity of Lindelöfness's definition is not assumed. The interior and the closure of a subset A of a space X, are denoted by intA and \overline{A} , respectively. An ordinal γ consists of all ordinal α that satisfying $\alpha < \gamma$. The first infinite ordinal is ω_0 , the first uncountable ordinal is ω_1 , and the successor cardinal of ω_1 is ω_2 .

We begin by recalling the following definition, see [8].

Email addresses: hala.100@hotmail.com (H. Alzumi),

lkalantan@kau.edu.sa (L. Kalantan), mmmohammed@kau.edu.sa (M. M. Saeed)

http://www.ejpam.com

© 2021 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v14i2.3941

H. Alzumi, L. Kalantan and M. Mohammed Saeed / Eur. J. Pure Appl. Math, 14 (2) (2021), 351-357 352

Definition 1. (Arhangel'skii, 2016.)

A topological space X is called C-paracompact if there exist a paracompact space Y and a bijective function $f : X \longrightarrow Y$ such that the restriction $f \upharpoonright_A : A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$. A topological space X is called C_2 -paracompact if there exist a Hausdorff paracompact space Y and a bijective function $f : X \longrightarrow Y$ such that the restriction $f \upharpoonright_A : A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$.

In [8, Theorem 2.2], the following theorem was proved.

Theorem 1. If X is Fréchet and C-paracompact (C_2 -paracompact), then any function witnesses its C-paracompactness (C_2 -paracompactness) is continuous.

2. Results and Examples

Since the paracompactness is not multiplicative, it seems that both C-paracompactness and C_2 -paracompactness are not multiplicative, but we still could not find a counterexample. We introduce here a case where C-paracompactness and C_2 -paracompactness are multiplicative.

Theorem 2. If X is C-paracompact (C_2 -paracompact) and Z is a compact T_2 space, then $X \times Z$ is C-paracompact (C_2 -paracompact).

Proof. Let Y be a paracompact $(T_2 \text{ paracompact})$ space and $f: X \longrightarrow Y$ be a bijective function such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$. Consider the product space $Y \times Z$ which is paracompact $(T_2 \text{ paracompact})$, because the product of any paracompact space with a compact space is paracompact, see [4, 5.1.36]. Define $g: X \times Z \longrightarrow Y \times Z$ by $g(\langle x, i \rangle) = \langle f(x), i \rangle$. Then g is a bijective function and $g = f \times id_Z$, where id_Z is the identity function on Z. Let C be any compact subspace of $X \times Z$. Then $C \subseteq p_1(C) \times p_2(C)$, where p_1 and p_2 are the usual projection functions. $p_1(C)$ is a compact subspace of X and $p_2(C)$ is a compact subspace of Z, thus $p_1(C) \times p_2(C)$ is a compact subspace of $X \times Z$. Now, $f \upharpoonright_{p_1(C)}: p_1(C) \longrightarrow f(p_1(C))$ is a homeomorphism and $id_Z \upharpoonright_{p_2(C)}: p_2(C) \longrightarrow p_2(C)$ is a homeomorphism. Thus $(f \times id_Z) \upharpoonright_{(p_1(C) \times p_2(C))}: p_1(C) \times p_2(C) \longrightarrow f(p_1(C)) \times p_2(C)$ is a homeomorphism. We conclude that $g \upharpoonright_C: C \longrightarrow g(C)$ is a homeomorphism because

 $g \upharpoonright_C = ((f \times id_Z) \upharpoonright_{(p_1(C) \times p_2(C))}) \upharpoonright_C .$

Corollary 1. If X is C_2 -paracompact (C-paracompact), then so is $X \times I$, where I is the closed unit interval [0, 1] considered with its usual Euclidean metric topology.

We still do not know an answer of the converse of the above theorem which is the following statement: If $X \times I$ is C_2 -paracompact, is then X C_2 -paracompact? Observe that if X is C_2 -paracompact and Y is T_4 , then the natural projection $p: X \times Y \longrightarrow Y$

H. Alzumi, L. Kalantan and M. Mohammed Saeed / Eur. J. Pure Appl. Math, 14 (2) (2021), 351-357 353

may not be closed. For example, ω_1 is C_2 -paracompact being T_2 locally compact [8] and $\omega_1 + 1$ is T_2 compact, hence T_4 , but $p : \omega_1 \times (\omega_1 + 1) \longrightarrow \omega_1 + 1$ is not closed, see [4, 3.10.16].

Referring to Theorem 1, we introduce here another case when a product of two C_2 -paracompact spaces will be C_2 -paracompact.

Theorem 3. If X and Z are C_2 -paracompact spaces such that X is Fréchet and countably compact, then $X \times Z$ is C_2 -paracompact.

Proof. Let Y and Y' be T_2 paracompact spaces, $f: X \longrightarrow Y$ and $f': Z \longrightarrow Y'$ be bijective function such that the restriction of each of them on any compact subspace is a homeomorphism. Define $g: X \times Z \longrightarrow Y \times Y'$ by $g(\langle x, z \rangle) = \langle f(x), f'(z) \rangle$, i.e., $g = f \times f'$. Then g is bijective. Now, X is Fréchet gives that f is continuous, see Theorem 1. Since X is countably compact and f continuous surjective, then Y is countably compact. Hence Y is compact because any T_2 countably compact paracompact is compact [4, 5.1.20]. Since a product of a T_2 paracompact space with a T_2 compact space is T_2 paracompact [4, 5.1.36], then $Y \times Y'$ is T_2 paracompact. Now, similar argument as in the proof of Theorem 2 shows that the restriction of g on any compact subspace C of $X \times Z$ will be a homeomorphism.

Recall that a topological space (X, τ) is called *lower compact* if there exists a coarser topology τ' on X such that (X, τ') is T₂-compact, [8]. It was proved in [8, 2.21] that "if X is C₂-paracompact countably compact Fréchet, then X is lower compact". It turns out that lower compactness is enough in Theorem 3.

Theorem 4. If X is lower compact and Z is C_2 -paracompact, then $X \times Z$ is C_2 -paracompact.

Proof. Let τ denote the topology on X. Let τ' be a T_2 compact topology on X coarser than τ . Pick a T_2 paracompact space Y' and a bijective function $f': Z \longrightarrow Y'$ such that the restriction of f' on any compact subspace is a homeomorphism. Define $g: X \times Z \longrightarrow X \times Y'$ by $g(\langle x, z \rangle) = \langle x, f'(z) \rangle$, i.e., $g = id_X \times f'$, where X in the codomain is considered with the topology τ' . Observe that the restriction of the identity function $id_X: (X, \tau) \longrightarrow (X, \tau')$ on any compact subspace A in (X, τ) is a homeomorphism, see [4, 3.1.13]. Also, the codomain of $g, X \times Y'$ is T_2 paracompact being a product of a T_2 compact space (X, τ') , with a T_2 paracompact space Y', [4, 5.1.36]. Now, similar argument as in the proof of Theorem 2 shows that the restriction of g on any compact subspace C of $X \times Z$ will be a homeomorphism.

Here is an example showing that the Fréchet property is essential in Theorem 1.

Example 1. Consider ω_2 , the successor cardinal number of the cardinal number ω_1 . Let $[\omega_2]^{\leq \omega_1} = \{E \subset \omega_2 : |E| \leq \omega_1\}$. Let $i \notin \omega_2$ and put $X = \{i\} \cup \omega_2$. For each $\alpha \in \omega_2$, let $\{\alpha\}$ be open and an open neighborhood of i is of the form $U = \{i\} \cup (\omega_2 \setminus E)$ where

H. Alzumi, L. Kalantan and M. Mohammed Saeed / Eur. J. Pure Appl. Math, 14 (2) (2021), 351-357 354

 $E \in [\omega_2]^{\leq \omega_1}$. Then X is not Fréchet because $i \in \overline{\omega_2}$ and the only convergent sequence is the eventually constant sequence. (So, X is not even of countable tightness.)

Observe that X is T_2 paracompact. BUT we will not treat X in this way. A subspace A of X is compact if and only if A is finite. So, by [8, Theorem 2.7], X is C_2 -paracompact and X = Y with the discrete topology and the identity function witness the C_2 -paracompactness of X and clearly the identity function can not be continuous because X is not discrete.

Observe that X in Example 1 is not of countable tightness as $i \in \overline{\omega_2}$ but there is no countable subset A of ω_2 satisfies $i \in \overline{A}$. Here is an example showing that the countable tightness property is not enough in Theorem 1.

Example 2. For each $i \in \mathbb{N}$, let $X_i = \{a_i\} \cup \{a_{i,j} : j \in \mathbb{N}\}$ be such that $X_n \cap X_m = \emptyset$ for each $n, m \in \mathbb{N}$ with $n \neq m$. Let $a \notin \bigcup_{i \in \mathbb{N}} X_i$ and put $X = \{a\} \cup (\bigcup_{i \in \mathbb{N}} X_i)$. Generate a topology on X by the following neighborhood system: For each $i, j \in \mathbb{N}$, let $\mathcal{B}(a_{i,j}) =$ $\{\{a_{i,j}\}\}$. For each $i \in \mathbb{N}$, let $\mathcal{B}(a_i) = \{a_i\} \cup \{a_{i,j} : j \geq k, where k \in \mathbb{N}\}$. For members of $\mathcal{B}(a)$ we take all sets obtained from X by removing a finite numbers of X_i 's and a finite number of points of $a_{i,j}$ in all the remaining X_i 's. So, if $U \in \mathcal{B}(a)$, then U is of the form $U = \{a\} \cup (\bigcup_{i \in [\mathbb{N} \setminus E]} X'_i)$ where E is a finite subset of \mathbb{N} and $X'_i = X_i \setminus E_i$ where E_i is a finite subset of $\{a_{i,j} : j \in \mathbb{N}\}$. It is well-known that X is zero-dimensional normal space which is not Fréchet [4, 1.6.19]. Let $Z = X \setminus \{a_i : i \in \mathbb{N}\}$. Then Z as a subspace of X is not sequential [4, 1.6.20]. But since Z is countable, then it is of countable tightness. Now, a subspace C of Z is compact if and only if C is finite. Since Z is also T_1 , then by [8, Theorem 2.7], Y = Z with the discrete topology and the identity function witness the C_2 -paracompactness of Z and since Z is not discrete, then the identity function is not continuous.

Let X be any set containing more than one element. Fix an element $p \in X$. The topology $\tau = \{\emptyset\} \cup \{W \subseteq X : p \in W\}$ is called the particular point topology on X, see [9].

Theorem 5. Let (X, τ) be a Fréchet σ -compact non-compact space such that τ is coarser than a particular point topology τ_p on X, where $p \in X$, then (X, τ) can not be C-paracompact.

Proof. Suppose that (X, τ) is *C*-paracompact. Pick a paracompact space *Y* and a bijective function $f: X \longrightarrow Y$ such that the restriction $f \upharpoonright_A : A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$. Since *X* is Fréchet, then *f* is continuous, see Theorem 1. So, for any non-empty open subset *W* of *Y* we have that $f^{-1}(W)$ is open in *X*, hence $p \in f^{-1}(W)$ which gives that $f(p) \in W$.

Now, write $X = \bigcup_{n \in \mathbb{N}} X_n$ where X_n is compact for each $n \in \mathbb{N}$ and $X_n \subset X_{n+1}$ for each $n \in \mathbb{N}$, i.e., the X_n 's are increasing. Since X is not compact, there exists an open cover $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ such that for any finite subset F of Λ there exists an element $x \in X$ such that $x \notin \bigcup_{\alpha \in F} U_\alpha$. Now, \mathcal{U} is an open cover for X_1 and X_1 is compact. Let F_1 be a finite subset of Λ such that $X_1 \subseteq \bigcup_{\alpha \in F_1} U_\alpha = V_1$. Pick $a_2 \in X \setminus V_1$ and let $i_2 \in \mathbb{N}$ be the minimal so that $a_2 \in X_{i_2}$, i.e., if $j < i_2$, then $a_2 \notin X_j$. Now, \mathcal{U} is an open cover for

H. Alzumi, L. Kalantan and M. Mohammed Saeed / Eur. J. Pure Appl. Math, 14 (2) (2021), 351-357 355

 X_{i_2} and X_{i_2} is compact. Let F_2 be a finite subset of Λ such that $X_{i_2} \subseteq \bigcup_{\alpha \in F_2} U_\alpha = V_2$. If $m \in \mathbb{N}$ so that $a_m \in X$, $i_m \in \mathbb{N}$, F_m finite subset of Λ , and V_m are chosen, then Pick $a_{m+1} \in X \setminus V_m$ and let $i_{m+1} \in \mathbb{N}$ be the minimal so that $a_{m+1} \in X_{i_{m+1}}$. Continue, \mathcal{U} is an open cover for $X_{i_{m+1}}$ and $X_{i_{m+1}}$ is compact. Let F_{m+1} be a finite subset of Λ such that $X_{i_{m+1}} \subseteq \bigcup_{\alpha \in F_{m+1}} U_\alpha = V_{m+1}$. So, we have constructed two countably infinite families of X_{i_m} 's, V_m 's such that $X_{i_m} \subset X_{i_{m+1}}$ and $X_{i_{m+1}} \setminus V_m \neq \emptyset$ for each $m \in \mathbb{N}$ as $a_{m+1} \in X_{i_{m+1}} \setminus V_m$.

Now, for each $m \in \mathbb{N}$, $f \upharpoonright_{X_{i_m}} \colon X_{i_m} \longrightarrow f(X_{i_m})$ is a homeomorphism, where $i_1 = 1$. We have $V_m \cap X_{i_{m+1}}$ is open in $X_{i_{m+1}}$ for each $m \in \mathbb{N}$, thus $f(V_m \cap X_{i_{m+1}})$ is open in $f(X_{i_{m+1}})$ for each $m \in \mathbb{N}$. Hence, for each $m \in \mathbb{N}$ there exists an open subset W_m of Y such that $W_m \cap f(X_{i_{m+1}}) = f(V_m \cap X_{i_{m+1}})$. Observe that $f(a_{m+1}) \notin W_m$ for each $m \in \mathbb{N}$. Since the family $\{V_m : m \in \mathbb{N}\}$ is an open cover for X, then we have that the family $\{W_m : m \in \mathbb{N}\}$ is an open cover for Y consisting of distinct proper subsets of Y. Since each non-empty open subset of Y must contain the element f(p), then the open cover $\{W_m : m \in \mathbb{N}\}$ of Y has no locally finite open refinement, which is a contradiction. Therefore, (X, τ) is not C-paracompact.

Non-compactness assumption is essential in Theorem 5, for example, consider on \mathbb{R} the topology $\tau = \{\emptyset, \mathbb{R}, \{p\}\}$, where $p \in \mathbb{R}$.

The following example answers three kinds of invariants. We used two well-known spaces, the Alexandroff duplicate space and the closed extension space. Recall that for any T_1 space X, let $X' = X \times \{1\}$. Let $A(X) = X \cup X'$. For simplicity, for an element $x \in X$, we denote the element $\langle x, 1 \rangle$ in X' by x' and for a subset $B \subseteq X$ let $B' = \{x' : x \in B\} = B \times \{1\} \subseteq X'$. For each $x' \in X'$, let $\mathcal{B}(x') = \{\{x'\}\}$. For each $x \in X$, let $\mathcal{B}(x) = \{U \cup (U' \setminus \{x'\}) : U \text{ is open in } X \text{ with } x \in U\}$. Let τ denote the unique topology on A(X) which has $\{\mathcal{B}(x) : x \in X\} \cup \{\mathcal{B}(x') : x' \in X'\}$ as its neighborhood system. A(X) with this topology is called the Alexandroff Duplicate of X [3]. In [8], it was shown that " if X is C_2 -paracompact, then so is its Alexandroff duplicate A(X).".

Example 3. Consider the Alexandroff duplicate space $A(\mathbb{R})$ of \mathbb{R} with its usual metric topology. It is C_2 -paracompact, see [8, Theorem 28]. Now, let $i = \sqrt{-1} \notin \mathbb{R}$ and put $X = \mathbb{R} \cup \{i\}$. Let τ be the closed extension topology on X generated from \mathbb{R} with its usual metric topology and i. So, $\tau = \{\emptyset\} \cup \{W \cup \{i\} : W \subseteq \mathbb{R}; W \text{ is open in the usual metric topology }\}.$

 (X, τ) is not C-paracompact because it is Fréchet, being first countable, non-compact, and coarser than the particular point topology on X where the particular point is i, see Theorem 5. Define $g: A(\mathbb{R}) \longrightarrow X$ by

$$g(x) = \begin{cases} i & ; if \ x \in \mathbb{R}' \\ x & ; if \ x \in \mathbb{R} \end{cases}$$

g is an open surjection function. Thus C-paracompactness and C_2 -paracompactness are neither invariant, open invariant, nor quotient invariant.

REFERENCES

Now we show that C-paracompactness and C_2 -paracompactness are both not hereditary. Recall that a space X is called C-normal if there exist a normal space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f \upharpoonright_A : A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$ [1]. It is clear that any C_2 -paracompact space is C-normal [8].

Example 4. Consider 2^{ω_1} , where $2 = \{0, 1\}$ with the discrete topology. Consider the subspace of 2^{ω_1} consisting of all points with at most countably many non-zero coordinates, i.e., the sigma product $\Sigma(0)$. Put $X = 2^{\omega_1} \times \Sigma(0)$. Raushan Buzyakova proved that X can not be mapped onto a normal space Y by a bijective continuous function [2]. In [7], M. Saeed proved that X is not C-normal, hence X is not C_2 -paracompact. Since X is a Tychonoff non-compact space, any compactification of X is C_2 -paracompact while X is not.

We still do not know if C-paracompactness (C_2 -paracompactness) is hereditary with respect to closed subspaces or not.

Now, here is our first main result. Arhangel'ski stated the following problem, see [8]: "Is there a T_4 space which is not C_2 -paracompact?". We will answer this problem in positive.

Example 5. Consider the sigma product $\Sigma(0)$ as a subspace of 2^{ω_1} , where $2 = \{0, 1\}$ with the discrete topology, see Example 4. We have that $\Sigma(0)$ is T_4 [5, Theorem 7.4], countably compact [6, Theorem 6.10], Fréchet [4, 3.10.D], hence it is a k-space [4, 3.10.D]. Also $\Sigma(0)$ is not paracompact because it is contained a copy of ω_1 as a closed subspace [5, Theorem 7.2]. Suppose that $\Sigma(0)$ is C_2 -paracompact. By Theorem 2, $X = 2^{\omega_1} \times \Sigma(0)$ is C_2 -paracompact. This contradicts M. Saeed's result [7] and Buzyakova's result [2] because any T_2 paracompact space is normal.

Here is our second main result. Recall that a function $f: X \longrightarrow Y$ is called *condensation* if it is bijective and continuous. The sigma product $\Sigma(0)$ is a k-space [4, 3.10.D]. Considering the theorem "a function f of a k-space X to a topological space Y is continuous if and only if for every compact space $C \subseteq X$ the restriction $f \upharpoonright_C : C \longrightarrow Y$ is continuous", [4, 3.3.21], we conclude the following:

Corollary 2. The sigma product $\Sigma(0)$ can not be condensed onto any T_2 paracompact space.

Open Problem: Is C_2 -paracompactness multiplicative ?

References

[1] Samirah Alzahrani and Lutfi Kalantan. C-normal topological property. *Filomat*, 31:407–411, 2 2017.

- [2] R Z Buzyakova. An example of a product of two normal groups that can not be condensed onto a normal space. Univ. Math. Bull, 52:42–42, 3.
- [3] R Engelking. On the double circumference of alexandroff. Bull Acad Pol Sci Ser Astron Math Phys, 16:629–634, 8.
- [4] R Engelking. General Topology. PWN, 1977.
- [5] T C Przymusiński Kunen K. Handbook of Set Theoretic Topology. Amsterdam, 1984.
- [6] W W Comfort Kunen K. Handbook of Set Theoretic Topology. Amsterdam, 1984.
- [7] Maha Saeed. Countable normality, 2018.
- [8] Maha Mohammed Saeed, Lutfi Kalantan, and Hala Alzumi. C-paracompactness and c 2-paracompactness.
- [9] L Steen and J A Seebach. Counterexamples in Topology. Dover Publications, 1995.