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Abstract. In this paper, the Hankel transform of the generalized ¢-exponential polynomial of the
first form (g, r)-Whitney numbers of the second kind is established using the method of Cigler.
Consequently, the Hankel transform of the first form (g, r)-Dowling numbers is obtained as special
case.
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1. Introduction

The r-Dowling numbers D, ,(n) are defined in [6] as the sum of r-Whitney numbers
of the second W, »(n, k) [9, 11]. More precisely,

Dy r(n) = Z Winr(n, k),
k=0

n

where n is a nonnegative integer and the parameters m and r may be real or complex
numbers. These numbers are certain generalization of ordinary Bell numbers B,, [3], -
Bell numbers B,.(n) [10], and noncentral Bell numbers B,, , [7]. That is, when m = 1, the
r-Dowling numbers reduce to r-Bell numbers and noncentral Bell numbers. Furthermore,
when m = 1,7 = 0, these yield the ordinary Bell numbers.
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J. Layman [8] defined the Hankel transform of an integers sequence (a,) as a sequence
of the following determinants d,, of Hankel matrix of order n

ao al an . an
ai as as N o |

dn = |ag as a4 ceo Qp42| - (1)
an  OGp+l1 An42 ...  (2n

Aigner [1] derived the Hankel transform of the ordinary Bell numbers to be

det(Bitj)o<ij<n = | [ ¥! (2)
k=0

which is exactly the Hankel transform obtained by Mezo [10] for r-Bell numbers using
Layman’s Theorem [8] on the invariance of Hankel transform.

Using the method of Aiger [1] and Layman’s Theorem [8], the sequence of (r, 3)-Bell
numbers in [4, 12], denoted by {G,, 3}, has been shown to possess the following Hankel
transform (see [13])

H(Gnm,ﬁ) = H Bjj!-
§=0

It is worth mentioning that the (r, 3)-Bell numbers are equivalent to the r-Dowling num-
bers D, »(n), which are defined in [6] as

n

Diny(n) =Y Win(n, k)

k=0

where W, »(n, k) denotes the r~-Whitney numbers of the second kind introduced by Mezo
in [9]. In [13], the authors have also tried to derive the Hankel transform of the sequence
of g-analogue of (r, 5)-Bell numbers. In this attempt, they used the g-analogue defined in
[14]. But they failed to derive it.

Just recently, another definition of g-analogue of r-Whitney numbers of the second
Winr[n, k]g was introduced in [16, 17] by means of the following triangular recurrence
relation

Winrn, klg = qm(k71)+TWm7r[n — 1,k — 1]+ [mk +7]Wp »[n — 1, K], (3)

where n and k are nonnegative integers, the parameters m and r may be real of complex

numbers and
1, n=k and n>0

Wnrn, klg =
rln-Klg {0, n<k or nk<O0.

From this definition, two more forms of the g-analogue were defined in [16, 17] as

k
W [n kg o= g G W [, B, (4)
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Wonoln, g = a5 W5 0, K]y = G W [0, Kl (5)

where Wy, .[n, k], and Wmm[n, k], denote the second and third forms of the g-analogue,
respectively. Corresponding to these, three forms of g-analogues for r-Dowling numbers
(or (g, r)-Dowling numbers) were defined as follows:

V=S Wi Iy (6)
k=0
= W (7)
k=0
=Y Winln, klg- (8)
k=0

However, among the three forms of (g, r)-Dowling numbers, only the first form has not
been given a Hankel transform. The third form was thoroughly studied in [17] and its
Hankel transform was successfully derived, which is given by

H(Bnslnlg) = @030 0]ttt gt *) )

using the Hankel transform of g-exponential polynomials in [5], the Layman’s Theorem in
[8] and the Spivey-Steil Theorem in [19]. This method cannot be used to derive the Hankel
transform of the first and second forms of g-analogues for r-Dowling numbers. But the
method used by Cigler in [2] can be used to derive the Hankel transform for the second
form of the (g, r)-Dowling numbers. The said Hankel transform was derived in [15], which
is given by

Corcino et al. [18] have made a preliminary investigation for the first form (g, 7)-
Dowling numbers D,, »[n], by establishing an explicit formula expressed in terms of the
first form (g, r)-Whitney numbers of the second kind and (g, r)-Whitney-Lah numbers.
In this present paper, the Hankel transform for the sequence (D, »[n]q),-, will be estab-
lished using Cigler’s method [2]. However, a more general form of Dy, ,[n]s, denoted by
®,, [z, 7, m|,, is considered, which is defined in polynomial form as follows:

[z, r,m], Zernk (10)

such that, when z =1, ®,[1,7,m|q = Dy, r[n]q.
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2. Generalized ¢-Exponential Polynomials

We may call &, [z, r, m] q o be the generalized g-exponential polynomial of g-analogue
of r-Whitney numbers of the second kind. Note that we can rewrite (10) as

n—1
1 [z, 7,m], = Wonr[n — 1, k] 2*
k=0
n—1 A
P [qz,m,m], = Winr[n —1, k]qqu+m(2)+kxk. (11)
k=0

The following theorem contains a recursive relation for @, [z,r,m],.

Theorem 2.1. The generalized q-exponential polynomials ®,, [z, m]q of q-analogue of
r-Whitney numbers of the second kind satisfy the following relation

@[z, 7, m)g = [¢"x + (¢™ — 1)q"2*Dgm + [r]q + ¢"[m]q@Dgm] @1z, 7, m],. (12)

Proof. Using (3), equation (10) can be written as

S W e gt Yk 1], Wi o — 1K
=0 k=0

n—1
= Z qm(k+1)—m+er7T[n -1, k]quH + ([rlq + ¢"[m]qzDgm) ®n—1lz,7,mlq
=z Z Q"W rn — 1, k]2 + ([r]y + ¢ [m]gxDygn) @1z, 7, m],

=zq Z qume[n -1, k]cﬂk + ([rlq + ¢"[m]gzDgm) @1z, r,mq,
k=0

where D, denotes the g-derivative operator defined by

D fa) = LG =T (13)

Hence, using (11), we have

Oy [z, r,mlg = 2q" ®p_1[q"z, r,mlq + ([r]qg + ¢"[Mm]|qzDgn) ®p_1[z,r,m],. (14)

Note that (13) can be expressed as

fgr) = (¢ = DaDyf(x) + f(x)
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f(q"x) = (¢" = DaDygn f(x) + f(z)
flg"x) = ((¢" = DazDgm + 1) f(x).

This implies that
Q,_1[¢"x,r,mlg = (14 (¢™ — 1)xDgm) Pp—1[x, 7, m],.
Thus, equation (14) can further be written as

O, [z, r,mlg =2q¢" (1+ (¢" — 1)xDgm) ®p_1[z,7,m]q
+ ([rlg + ¢"[m]gzDgm) @1z, r,mlq
= [¢"z+ (¢" — 1)¢" & Dym
+[rlq + ¢"[mlgzDgm] @1 [z, 7, m]q,

which is exactly the desired relation.

Remark 2.2. Let D,, = [q"z + (¢™ — 1)q"x*Dgm + [r]g + ¢"[m]qzDgm]. Then, (12) can
be written as

O, [z,7,m)y = Dgu®r_1[x,7,m],. (15)

By repeated application of (15),

= Agmq)o[x,r,m]q
=D,
3. Hankel Transform of D,,,[n],

k-1

T—|r+jm —rk—m(*
Let ((2))pmp = Hoﬁij{nh) = ¢ G (@), ke
]:

The horizontal generating function of Wy, ,[n, k], is given by:

S W [0, kg (@) = 2"
k=0

where z = [t];. Define a linear functional G, 4 by

Grq ((())rmn) = a”
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and a linear operator V., by
Vig (({2))rmn) = 2.
Then

Vrg (2") = Z W el KlqVieg (@) rm )
k=0

= S Wi Kad™ OV () )
k=0

=S W, [ Klgg ™Rk
k=0

- (I)n{l'a r, m]q

Consider the polynomial

Ing(T,a,m,m) = Z(_a)kq(g) [Z] {(2))rm,n—k-
Then

Vi (gng(z,a,m,m)) = Z(—a)kq(g)

k:O
_ kgo(_a)kq(ﬁ) m qxn—k
= Pn,q(@, a).

This implies that V};]lpmq(a;, a) = gngq(x,a,r,m). Now,
_ -1
Vr,qxgn,q (.CI?, a,T, m) = Vr,qxvr,q Pnq (J:‘, CL).
Applying the operator to p, 4(z,a), we get

Vi qTgn,qg(x,a,m,m) = ‘thxV?«:;lpn,q(xv a)
= qu"pn,q(xv a)+ (¢™ — 1)qr$2qupn,q(l‘» a) + [T}qpmq(a’v a)
+ q"[m]qxDgmpnq(z, a).

Note that
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n

_ kznzo(_a)kq(g) [n —]: 1] L=k kzo(_a)kq(’;)qnﬂ—k [k ﬁ 1] 1=k
")

+ (_a)n—l—lq(";l) . (_a)n—I—lq(

n+1 n—1
wpn,q(x, a) = Z(_a)kq(’;) [n;— 1} S Z (‘a)k"_lq(k;l)qn_k B{j Lk

k=0 k=—1

— (—a) (")

n—1 S
k+1 kP
= pn-i—l,q(fl;, a) — k;)(—a)k+lq( 2 )+n k _k_ T k

— (—a)+1g("3)

& 1y, [n] e
= pi1g(z,a) — kZ_O(_a)kqu( 2 1) +n—k i sk
— Puria(,a) +ag" 3 (~a)q() m ot

k=0

= Pnti1,q(z,a) + aq"ppq(x, a).

S0, ¢"xpng(x,a) = ¢"pry1q(x,a) + aq”‘*‘rpn,q(;r,a). With Dgpp ¢(x,a) = [n]gpn—14(x, a),
we have

Dympng(r,a) = [n]gmpn-1,4(z, a).
Hence,

mn

(¢" = 1)¢"2* Dgmpnq(z,a) = (¢" — 1)¢" 2 [n]gmpn-1,4(z,a) = (¢™ — 1)q"2*pn_1,4(z, a)

and
q"[m]qx Dgmpn ¢(x,a) = ¢"[m]gz[n]gmpn-1,4(7, a)

Thus,

Vi q®Gn.q(T,a,m,m) = ‘/;761*73‘/;111771,(1(377 a)

= q" Puy1q(z,a) + aqn+rpn,q($7 a) + [r]gpnq(z, a)
+(¢"™" = 1)qT932pn71,q($a a) +q"[mlqz[n]gmpn—1,4(z, a)

= q" (Pn+1,4(7,0) + ¢"appg(z,a)) + ¢ Prt1,4(z,0) + aqn+rpn,q(xv a) + [r]gpnq(z, )
+ (™" = 1)q Par1q(z, @) + (¢"a+ " a)png(x,a) + ¢ 2’ pp-1,a(z, a)]
+ q"[mlg[n]gm (Pnq(z, a) + qn_lapn—l,q(x: a)

=q" 2+ (" = 1)pnt14(,a)
+ (" a+ag™" + [y + (¢ = D" (¢"a + ¢" a) + ¢ [m]g[n] g )pn.g (2, a)
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+ (™ = 1)g"¢*"2a® + ¢"[m]g[nlgmq" " a)pn—1 (2, a)
Applying the operator Vn_ql : Dnyg(z,a) = gng(z,a,7,m), then

$gn7q($, a,r, m) = qr(2 + (qmn - 1))gn+1,q($v a,r, m)
+(2¢"a+[rlg+ (@™ = Dq" (¢"a+ ¢"'a) + ¢"[m]g[nlgm ) gn.q(z, a7, m)

+((¢™" = 1)q"¢*"%a® + ¢"[mlglnlgmq" " a)gn-1,4(, a,m,m)

We set

hpg(z,a,7,m) = qm(g)””gn,q(x, a,r,m).
That is,

Gng(x,a,m,m) = qu(g)fmhn,q(x, a,r,m).
Then,

xq_m(g)—’"nhn,q(x, a,r,m) =q"(2+ (¢"" — 1))q_m(ngl)_r(wl)hn+1,q(x7 a,r,m)
+ (20" a+ [r]g + (@™ = D" (¢"a + ¢ a) + ¢ [mlg[nlgm )™ &) Ty, o (@, a, 7, m)
+ (g™ = D > 262 + ¢ [mg[nlgmq" " a)g 2 )T D, (2 a,r,m)

xhpq(x,a,m,m) =q¢" (24 (¢™" —1))g ™" "hpt1,4(x,a,7,m)
+ (2¢" a4 [rlg + (¢™" — 1)q"(¢"a + " ta) + q"[m)g[nlgm)hn q(z, a,r,m)

+ (@™ = 1)q"*" 20 + ¢ [m]g[n)gmq™ @) g™ " I hey g g (2, a, 7, m)

:L'hn’q(% a,m, m) = (2 + (qmn - 1))q_mnhn+1,Q($v a,r, m)
+ (20" a+ [y + (™" = )" (¢"a + ¢"a) + ¢ [mlg[n]gm ) hin g (z, a, 7, m)
+ ((qmn - 1)qrq2n_202 +q" [m]q[n]qmqn_la)qm(n_lHrhnfl,q(ﬂ% a,r, m) (16)

It is clear that

Grq(hpg(z,a,r,m)) = Grgq (qm(g)+rngn7q(x,a,r, m))

k=0

_ qm(g)+rn i(_a)kq(g) |:Z:| an—k;
k=0 q

= qm(g)+rnpn7q(a, a)
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which implies

and

9o,q(x,a,r,m)

||
MO
|—|
I—I
_Q
/\
8
~
~
<
3
T
B

b
Il
o

It follows that o
hog(z,a,r,m) = qm(2)+ogqu(a:, a,r,m) =1

and
Grq (hog(z,a,m,m)) = Gpqe(1) = 1.

Clearly, G, 4 ([z]ghn,q(x,a,7,m)) = 0 and from (16),

whn,CI(xv a,T, m) = g(”)hn+1,q(x7 a,T, m) + f(n>hn,q(wv a,r, m) + C(n)hn_Lq(x, a,r, m)

where
o) = 2+ (g™ = 1)~
f(n) = (24" a+ [r]g + (™ = 1)q"(¢"a + ¢"'a) + ¢"[m]q[n]gm)
c(n) = ((¢" — 1)q"¢*"2a® + ¢"[m]y[n]gmg" " a)g™ DT
Then,

x2hn7q(x, a,r,m) = xxhy 4(z,a,r,m)
=2 [g(n)hnt14(x, a,7,m) + f(n)hyq(z,a,r,m) + c(n)hp—1,4(x,a,r,m)]
= g(n)xhpi1,4(x,a,m,m) + f(n)zh,q(z,a,r,m)
+ c(n)zhn—14(z,a,r,m)
= g(n)g(n+ Dhnioq(x,a,m,m) + g(n) f(n + hns1,4(z, a,r,m)
+ g(n)e(n + 1)hyg(x, a,m,m) + g(n) f(n)hnt1,4(x, a,r,m)
+ ()b g(, a,m,m) + f(n)e(n)hn14(x, a,r,m)
+c(n)g(n = Dhng(z,a,r,m) +c(n) f(n — Dhn-14(x,a,7,m)
+c(n)e(n — 1)hp—24(z,a,7,m)
=g(n)g(n + Dhnioq(x,a,r,m)
+[9(n)f(n+1) + g(n) f(n)] hns14(x, a,7,m)
+ [g(n)e(n +1) + f2(n) + c(n)g(n —1)] hng(z, a,r,m)
+ [f(n)e(n) + c(n) f(n = 1)] hn—1,4(z, a,r,m)
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+c(n)e(n — 1)hp—2 4(x, a,m,m).
Applying the linear functional G, 4 to [z ] hng(z,a,7,m) gives,

Grq (a:zhmq(ac, a,r, m)) =0

Grg (xka,w(a:7 a,r, m)) =0
for k < n. For k =n,

2" hyq(z,a,r,m) :g(n)x"_lhn+17q($, a,r,m) + f(n)x”_lhn,q(x, a,r,m)

+ c(n)x”flhn_m(az, a,r,m).
Then,

Grq (2"hp g(x,a,7,m))

g(n)Gyrq ( 1hn+1,q(:c,a, T, m)) + f(n)G,q4 (m”_lhn,q(x,a,r, m))
+¢(n)Gyq (z "y 14(x,a,r m))
c(n)Grq ( “1p, 14(z,a,r, m))
c(n)e(n —1)G, ( - hn,g,q(m,a, T, m))
(n)e(n — 1e(n — 2)Grq (x”*:)'hn_g’q(x, a,r, m))

c\n

C(n)c(n —De(n—2)...c(1)Grg (20 4(z, a,r,m))
ch o
[N G

=1

—_

Since a"hy 4(z,a,7,m) is a sequence of orthogonal polynomials with respect to linear
functional G g4,

dng = Grg (2" hpg(z,a,7,m)) = H (1)

(g™ — 1)q"¢*2a* + ¢"[m]g[ilgmg'a)g™ = DFT

o
—~

~.
~—

Il
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n—1 i
=TT § TT [ = 0020+ gy )™
i=0 | j=1
n—1 7
=TI S IT Jaa™0 742 ((a™ = 1)¢¥2a+ [l lilgma’ )]
i=0 | j=1
:n—lqgrzqm(1+2+3+ +(i—1)) ZH 2; 2a+[m}q[j]qmqj—1)}
i=0
n—1
= [T aa™ aH )a* %+ [mlg[flgne’ )]
i=0
—q 2r(0+14+2+3+ +(n D)+m[(3)+()++("3")] 0+ 1424+ (n—1)
n—1 1
T I [(@™ = 1)g%2a+ [m]glilgme® )]
=0 j=1
_ B+ f[H — %2 + [l [l

,n n[w <1—q (59)°)
= g2r(&)+m+1)( f[ H — @71 - q)a)] .
i=0 j=1

This result is stated formally in the following theorem.

Theorem 3.1. The Hankel transform of ®,[x,r,m|, corresponding to the Oth Hankel
determinant is given by

nlz

H (®x,r,m]g) = ¢ O+ DE) GG TT T [Imdly (1 - A —)a)] . (17)
=0 j=1
Note that when m =1, (17) yields
n—1
H (@[, 7,1]y) = ¢ ) +2)al) TT M - g)as o)
i=0
where
i—1 '
(w5q) =[] (1 - ¢'=).
j=0

This is exactly the result obtained by Cigler [2].
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As a direct consequence of Theorem 3.1, we have the following corollary, which contains
the main result of this paper.

Corollary 3.2. The Hankel transform of the sequence (Dy, r[n]q) " is given by

H Dy g[n]g) = g2 ()04 H (1= q)a; )i [ [[mly-
=0 j=1

Theorem 3.3. The Hankel transform of ®,[x,r,m], corresponding to the 1st Hankel
determinant is given by

n—1

dnq(n, 1) = 2 G0 T (1 - )as ), H
=0 J=1
n k1 ‘
S (1) altg®) m I bt
k=0 4 j=0 q

Proof. From Gram-Schmidt orthogonalization process, we obtain

dnq(1,1) = dng(n,0)(=1)"Pnq(0)

where py, 4(0) is a sequence of orthogonal polynomials i.e.,

natoaoron) = 3 (-0 o] (@hms = oot

k=0

which implies

Since,
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Then,

which implies

Hence,
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