
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 3, 2021, 816-828
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

An application of finite groups to Hopf algebras

Tahani Al-Mutairi1,2, M. M. Al-Shomrani1,∗

1 Department of Mathematics, Faculty of Science, King Abdulaziz University,
P.O.Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Qassim University, Buraydah, Saudi Arabia

Abstract. Kaplansky’s famous conjectures about generalizing results from groups to Hopf al-
gebras inspired many mathematicians to try to find solusions for them. Recently, Cohen and
Westreich in [8] and [10] have generalized the concepts of nilpotency and solvability of groups to
Hopf algebras under certain conditions and proved interesting results. In this article, we follow
their work and give a detailed example by considering a finite group G and an algebraically closed
field K. In more details, we construct the group Hopf algebra H = KG and examine its properties
to see what of the properties of the original finite group can be carried out in the case of H.
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1. Introduction

Finite group theory has been remarkably enriched in the last few decades by putting
more attention on the classification of finite simple groups. The most important structure
theorem for finite groups is the Jordan–Holder Theorem, which states that any finite
group is built up from finite simple groups. The importance of this structure is that the
properties of the subgroups of a given finite group G suggest substantial information about
the group G itself such as the nilpotence and the solvability of G, see [3], [1],[5],[4],[21],[16]
and [15]. In particular, having the property of simplicity of the group G can be deduced
by investigating its subgroups.

Finite group properties such as simplicity, solvability, nilpotency, supersolvability, etc.
have been an active area of reseach and been investigated by many mathematicians as
idivisual classes or under specific formations, see for example [14] and [26].
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In the present work we limit our attention on the concepts of solvability and nilpotency
of finite groups and semisimple Hopf algebras. Recall that a finite group G is said to
be solvable if it has a series of normal subgroups {e} = G0 C G1 C G2 C ...... C Gn = G
such that Gi/Gi−1 is abelian where 0 ≤ i ≤ n, (see [23]). In [26], Wang proved that G is
solvable if and only if M is c-normal in G for every maximal subgroup M of G. A group
G is called σ-primary if | G | is a σ-primary number. A group G is said to be σ-solvable
if every chief factor of G is σ-primary [2].

In 1870, Benjamin Pierce was the first who introduced the term nilpotent in the context
of his work on the classification of algebras. In algebras, an element x of a ring R is said
to be nilpotent if there exists some positive integer n such that xn = 0. In group theory, a
group G is said to be nilpotent if it has an invariant series {e} = G0EG1EG2E....EGn = G
such that Gi+1/Gi 6 Z(G/Gi) , (see [23]).

Generalizing the notions of nilpotency and solvability of groups to nilpotency and solv-
ability of semisimple Hopf algebras was shown to be available by giving several criteria for
Hopf algebras to be so, see [7],[8],[9],[10].

It was noticed that chains of normal left coideal subalgebras of a Hopf algebra H play
a similar role to chains of normal subgroups of a group. Consecuently, replacing normal
subgroups with normal left coideal subalgebras can give a satisfactory intrinsic definition
of nilpotent Hopf algebras.

Generalizing solvability is more difficult as there is no obvious analogue of Hopf quotients
of left coideal subalgebras L over N where N ⊂ L is a left coideal subalgebra normal in
L but not necessarily in H. Whatsoever, this definition is undesirable as it conflicts
with what is expected from group theory. Commutative or nilpotent Hopf algebras are
not always solvable in that sense [11]. In [10], it was suggested a concrete definition for
solvability of semisimple Hopf algebras named Hopf solvability. When H = KG, then Hopf
solvability is equivalent to G being a solvable group. It was proved that commutative or
nilpotent semisimple Hopf algebras are always solvable Hopf algebras.

In [8] and [10] Cohen and Westreich introduced the concepts of nilpotent and solvable
Hopf algebras under certain conditions and they proved many interesting related results.

In this article, we construct the group Hopf algebra H = KG, for a finite group G and
an algebraically closed field K, and examine its properties to see what of the properties
of the original finite group can be carried out in the case of H.
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2. Preliminaries

Recall that if H is a bialgebra. A subset N ⊆ H is a sub-bialgebra of H if N is a
sub-algebra i.e ( 1H ∈ N and for all a, b ∈ N we have ab ∈ N) and N is a sub-coalgebra
i.e (∆(N) ⊂ N ⊗N). If H is Hopf algebra with antipode S and S(N) ⊆ N then N is said
to be a Hopf subalgebra. Also, it is called a left coideal subalgebras if it is subalgebras
and ∆(N) ⊆ H ⊗N (see[17] and [22]).

The following definitions and results are needed for our work.

Definition 1. [17] The center of an algebra H is the set Z ⊆ H of elements that commute
with the whole algebra, i.e

Z = {z ∈ H| zh = hz ∀ h ∈ H}.

Definition 2. [22] Let H be any Hopf algebra. The left adjoint action of H on itself is
given by

(adlh)(g) =
∑

h1gS(h2), ∀ h, g ∈ H

The right adjoint action of H on itself is given by

(adrh)(g) =
∑

S(h1)gh2, ∀ h, g ∈ H

A Hopf subalgebra N of H is said to be normal if (adlH)(N) ⊆ N and (adrH)(N) ⊆ N .

Definition 3. [6] A left coideal subalgebra of H is called normal if N is closed under the
left adjoint action of H on itself. Similarly, a right coideal subalgebra of H is called normal
if N is closed under the right adjoint action of H on itself.

H is called simple if it contains no proper normal Hopf subalgebras [13] .

Theorem 1. [20] A group algebra KG of an arbitrary group G over a filed K is simple
if and only if G has no non-trivial finite normal subgroup.

Definition 4. [22] Let H be a Hopf algebra. A left integral in H is an element Λ ∈ H
such that hΛ = ε(h)Λ, for all h ∈ H; Similarly, a right integral in H is an element Λ ∈ H
such that Λh = ε(h)Λ, for all h ∈ H.

Definition 5. [19] An element h ∈ H is said to be cocommutative if
∑
h1 ⊗ h2 =∑

h2 ⊗ h1.

Lemma 1. [10]
Let N be a left coideal subalgebra of H with an integral ΛN . Then:

(i) N is a Hopf subalgebra if and only if ΛN is cocommutative.

(ii) N is normal in H if and only if ΛN ∈ Z(H).
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In the next two theorems we present Maschke’s Theorem in the group algebras case
and in the general finite dimensional Hopf algebras case.

Theorem 2. [18] A group algebra of a finite group is semisimple if and only if the char-
acteristic of the field does not divide the order of the group.

Theorem 3. [24] A finite dimensional Hopf algebra H is semisimple as an algebra if and
only if ε(Λ) 6= 0.

In [11], the left adjoint action of H on itself was denoted by .
ad

that is, for all a, h ∈ H,

h .
ad
a =

∑
h1aS(h2)

Definition 6. [10] Let H be a semisimple Hopf algebra. A chain of left coideal subalgebras
of H, N0 ⊂ N1 ⊂ . . . ⊂ Nt is a solvable series if, for all 0 ≤ i ≤ t− 1,

(i) ΛNi ∈ Z(Ni+1) , the center of Ni+1, where ΛNi is the integral of Ni.

(ii) For all a, b ∈ Ni+1,

(a .
ad
b)ΛNi = 〈ε, a〉 bΛNi .

The Hopf algebra H is said to be solvable if it has a solvable series so that N0 = K and
Nt = H.

Remark 1. [10] Commutative Hopf algebras are solvable by the definition with K ⊂ H
as a solvable series.

Lemma 2. [10] If N is a left coideal subalgebra of H, then the following hold:

(i) HΛN
∼= H�HN+ as left H-modules via π|HΛN

, where π is the natural H-module
projection from H to H�HN+, where N+ = N ∩ ker(ε).

(ii) HΛN
∼= H�HN+ as right H-modules and

(iii) If N is also normal in H, then π|HΛN
is an algebra isomorphism as well.

Definition 7. [8] A semisimple Hopf algebra H is nilpotent if the ascending central series

K ⊆ Z1 ⊆ Z2 ⊆ ....

satisfies Zm = H for some m > 1. The smallest such m is called the index of nilpotency
of H.

Remark 2. [8] Let H = KG, G be finite group. Then Z̃(H) = KZG, where ZG is the
center of the group G and Z̃(H) = {h ∈ H;

∑
h1⊗h2xSh3 = h⊗x for all x ∈ H} is the

Hopf center of H.
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Proposition 1. [10] A semisimple Hopf algebra H is nilpotent if and only if it has a
series of normal left coideal subalgebras

K = N0 ⊂ N1 ⊂ . . . ⊂ Nt = H

such that
Ni+1ΛNi ⊂ Z(HΛNi),

for all 1 ≤ i ≤ t, where Z(HΛNi) is the center of HΛNi.

Proof. We assume that H is nilpotent with K = Z0 ⊂ Z1 ⊂ . . . ⊂ Zt = H. Let ΛZi

be the integral of Zi. By Lemma 1.4, πi is an algebra isomorphism between HΛZi and Hi.
As πi(Zi+1) ⊂ Z̃(Hi) ⊂ Z(Hi), we get Zi+1ΛZi is central in HΛZi .

Conversely, we assume that K = N0 ⊂ N1 ⊂ . . . ⊂ Nt = H satisfies the condition
in Definition 1. Let K ⊆ Z1 ⊆ ... be an ascending central series for H. Then by the
assumption we get N1 ⊂ Z(H). As N1 is a normal left coideal subagebra of H, we have
N1 ⊂ Z̃(H) = Z1. If Ni ⊂ Zi, then by induction we show that Ni+1 ⊂ Zi+1. By the
definition of Zi, we have πi(Ni) ⊆ πi(Zi) = K. As by the assumption Ni+1ΛNi ⊂ Z(HΛi)
and as πi(ΛNi) = 1, we get

πi(Ni+1) = πi(Ni+1ΛNi) ⊂ πi(Z(HΛNi)) = Z(πi(H)) = Z(Hi).

But πi(Ni+1) is a normal left coideal subalgebra of Hi contained in its center, hence
πi(Ni+1) ⊂ Z̃(Hi). This leads to πi+1(Ni+1) = K and thus Ni+1 ⊆ Zi+1. As Nt = H we
get Zt = H. Therefore, H is nilpotent.

Corollary 1. [10] Semisimple nilpotent Hopf algebras are solvable.

Proof. We assume that H has a series as in Definition 1. As each Ni is normal in H,
we obtain ΛNi ∈ Z(H), which satisfies (i) in Definition 6 of solvability. Next, as ΛNi is
a central idemoptent of H, it follows by assumption that

∑
a1b(Sa2)ΛNi = 〈ε, a〉bΛNi for

all a ∈ H, b ∈ Ni+11. This leads to (ii) of the definition of solvability.

3. From finite groups to Hopf algebras

3.1. The finite group C3

We first consider the finite group G = C3 = 〈x|x3 = 1〉 = {1, x, x2} and recall some of
its properties. This group has no proper subgroup in particular it has no proper normal
subgroup. So it is a simple group. Furthermore, since | C3 |= 3, it is a cyclic group, hence
it is abelian and consequently solvable and nilpotent.

3.2. The group algebra H = RC3

The group algebra. Let G be a (multiplicative) group, and KG the associated group
algebra. This is a K-vector space with basis {g|g ∈ G}. So its elements are of the form∑

g∈G rg g where (rg)g∈G a family of elements from K [12].
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KG is an algebra with multiplication given by µ(g ⊗ h) = gh and a unit map given by
λ(r) = r1 for all g, h ∈ G and r ∈ K [25]. KG is a coalgebra with comultiplication given
by ∆(g) = g ⊗ g and a counit map given by ε(g) = 1 for all g ∈ G. Moreover, KG is a
Hopf algebra with an antipode map given by S(g) = g−1 for all g ∈ G [9].

We now construct a group algebra H = RC3 considering the finite group C3 with basis
{1, x, x2} where R is the field of real numbers. In the following table the product map
µ : H ⊗H 7−→ H which is defined by µ(g1 ⊗ g2) = g1g2 is applied and calculated for all
g1, g2 ∈ G:

µ(g1 ⊗ g2) 1 x x2

1 1 x x2

x x x2 1

x2 x2 1 x

Table 1: µ(g1 ⊗ g2).

The unit map λ : R 7−→ H is defined by λ(r) = 1. The maps µ and λ satisfy the required
conditions that are:

(i) The associative property:

µ(I ⊗ µ)(g ⊗ (g1 ⊗ g2)) = µ(µ⊗ I)((g ⊗ g1)⊗ g2),

for all g, g1, g2 ∈ G. For example,

if g = x, g1 = x and g2 = x, then µ(I ⊗ µ)(g ⊗ (g1 ⊗ g2)) = µ(x ⊗ x2) = 1. On the
other hand, µ(µ⊗ I)((g ⊗ g1)⊗ g2) = µ(x2 ⊗ x) = 1.
Also, if g = x, g1 = x and g2 = x2, then µ(I ⊗ µ)(g ⊗ (g1 ⊗ g2)) = µ(x⊗ 1) = x. On
the other hand, µ(µ⊗ I)((g ⊗ g1)⊗ g2) = µ(x2 ⊗ x2) = x.
By using the same way, all the different choices of elements were checked and we
present all of them in the following table:
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g g1 g1 µ
(
(I⊗µ)g⊗(g1⊗g2)

)
µ
(
(µ⊗I)(g⊗g1)⊗g2

)
1 1 1 1 1

1 1 x x x

1 1 x2 x2 x2

1 x 1 x x

1 x2 1 x2 x2

x2 x2 1 x x

x2 x2 x x2 x2

x2 x2 x2 1 1

x2 1 x2 x2 x2

x2 x x2 x2 x2

x x 1 x2 x2

x x x 1 1

x x x2 x x

x 1 x x2 x2

x x2 x x x

Table 2: The associative property

(ii) The unit property:
µ(I ⊗ λ)(g ⊗ r) = µ(λ⊗ I)(r ⊗ g),

for all g ∈ G and r ∈ R which we do as follows knowing λ(r) = 1: If g = 1, then
µ(I ⊗ λ)(1⊗ r) = µ(1⊗ 1) = 1. On the other hand, µ(λ⊗ I)(r ⊗ 1) = µ(1⊗ 1) = 1.
If g = x, then µ(I ⊗λ)(x⊗ r) = µ(x⊗ 1) = x. On the other hand, µ(λ⊗ I)(r⊗x) =
µ(1⊗x) = x. If g = x2, then µ(I ⊗λ)(x2⊗ r) = µ(x2⊗ 1) = x2. On the other hand,
µ(λ⊗ I)(r ⊗ x2) = µ(1⊗ x2) = x2.

Thus, (H, µ, λ) is an R-algebra.

Next, to show that (H,∆, ε) is an R-coalgebra, we define the coproduct map ∆ : H 7−→
H⊗H by ∆(g) = g⊗ g and the counit map ε : H 7−→ R by ε(g) = 1, for all g ∈ G. ∆ and
ε that satisfy the following required conditions:

(i) The coassociative property: (I ⊗ ∆)∆(g) = (∆ ⊗ I)∆(g) for all g ∈ G. Indeed if
g = 1, then (I ⊗ ∆)∆(1) = (I ⊗ ∆)(1 ⊗ 1) = 1 ⊗ 1 ⊗ 1. Also, (∆ ⊗ I)∆(1) =
(∆⊗ I)(1⊗ 1) = 1⊗ 1⊗ 1. If g = x, then (I ⊗∆)∆(x) = (I ⊗∆)(x⊗x) = x⊗x⊗x.
Also, (∆ ⊗ I)∆(x) = (∆ ⊗ I)(x ⊗ x) = x ⊗ x ⊗ x. If g = x2, then (I ⊗∆)∆(x2) =
(I⊗∆)(x2⊗x2) = x2⊗x2⊗x2. Also, (∆⊗I)∆(x2) = (∆⊗I)(x2⊗x2) = x2⊗x2⊗x2.

(ii) The counit property :(ε ⊗ I)∆(g) = 1 ⊗ g and (I ⊗ ε)∆(g) = g ⊗ 1 for all g ∈ G.
Indeed, if g = 1, then (ε ⊗ I)∆(1) = (ε ⊗ I)(1 ⊗ 1) = 1 ⊗ 1 and (I ⊗ ε)∆(1) =
(I ⊗ ε)(1 ⊗ 1) = 1 ⊗ 1. If g = x, then (ε ⊗ I)∆(x) = (ε ⊗ I)(x ⊗ x) = 1 ⊗ x and
(I⊗ε)∆(x) = (I⊗ε)(x⊗x) = x⊗1. If g = x2, then (ε⊗I)∆(x2) = (ε⊗I)(x2⊗x2) =
1⊗ x2 and (I ⊗ ε)∆(x2) = (I ⊗ ε)(x2 ⊗ x2) = x2 ⊗ 1.
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So, (H,∆, ε) is an R-coalgebra.

Now, to show that (H, µ, λ,∆, ε) is an R-bialgebra, as we have already shown that
(H, µ, λ) is an R-algebra and (H,∆, ε) is an R-coalgebra, we only need to show that ∆
and ε are algebra morphisms, that is for g, g1 ∈ G we have

∆(µ(g ⊗ g1) = ∆(g) ·∆(g1),

and
ε(µ(g ⊗ g1)) = ε(g)ε(g1),

where the multiplication · on H⊗H is just the usual multiplication on the tensor products

(g ⊗ g1) · (g′ ⊗ g′1) = µ(g ⊗ g′)⊗ µ(g1 ⊗ g
′
1).

We check this properties as follows: If g = x and g1 = 1, then

∆(µ(x⊗ 1)) = ∆(x) = x⊗ x.

On the other hand,
∆(x) ·∆(1) = (x⊗ x) · (1⊗ 1) = x⊗ x.

So, ∆(µ(x⊗ 1)) = ∆(x) ·∆(1). Also,

ε(µ(x⊗ 1)) = ε(x) = 1.

On the other hand,
ε(x)ε(1) = (1) (1) = 1.

So, ε(µ(x⊗ 1)) = ε(x)ε(1). If g = x and g1 = x, then

∆(µ(x⊗ x)) = ∆(x2) = x2 ⊗ x2.

On the other hand,

∆(x) ·∆(x) = (x⊗ x) · (x⊗ x) = x2 ⊗ x2.

So, ∆(µ(x⊗ x)) = ∆(x) ·∆(x). Also,

ε(µ(x⊗ x)) = ε(x2) = 1.

On the other hand,
ε(x)ε(x) = (1) (1) = 1.

So, ε(µ(x⊗ x)) = ε(x)ε(x). If g = x and g1 = x2, then

∆(µ(x⊗ x2)) = ∆(1) = 1⊗ 1.
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On the other hand,

∆(x) ·∆(x2) = (x⊗ x) · (x2 ⊗ x2) = 1⊗ 1.

So, ∆(µ(x⊗ x2)) = ∆(x) ·∆(x2). Also,

ε(µ(x⊗ x2)) = ε(1) = 1.

On the other hand,
ε(x)ε(x2) = (1) (1) = 1.

So, ε(µ(x⊗ x2)) = ε(x)ε(x2). If g = 1 and g1 = 1, then

∆(µ(1⊗ 1)) = ∆(1) = 1⊗ 1.

On the other hand,
∆(1) ·∆(1) = (1⊗ 1) · (1⊗ 1) = 1⊗ 1.

So, ∆(µ(1⊗ 1)) = ∆(1) ·∆(1). Also,

ε(µ(1⊗ 1)) = ε(1) = 1.

On the other hand,
ε(1)ε(1) = (1) (1) = 1.

So, ε(µ(1⊗ 1)) = ε(1)ε(1). If g = 1 and g1 = x, then

∆(µ(1⊗ x)) = ∆(x) = x⊗ x.

On the other hand,
∆(1) ·∆(x) = (1⊗ 1) · (x⊗ x) = x⊗ x.

So, ∆(µ(1⊗ x)) = ∆(1) ·∆(x). Also,

ε(µ(1⊗ x)) = ε(x) = 1.

On the other hand,
ε(1)ε(x) = (1) (1) = 1.

So, ε(µ(1⊗ x) = ε(1)ε(x) If g = 1 and g1 = x2, then

∆(µ(1⊗ x2)) = ∆(x2) = x2 ⊗ x2.

On the other hand,

∆(1) ·∆(x2) = (1⊗ 1) · (x2 ⊗ x2) = x2 ⊗ x2.

So, ∆(µ(1⊗ x2)) = ∆(1) ·∆(x2). Also,

ε(µ(1⊗ x2)) = ε(x2) = 1.



T. Al-Mutairi, M. M. Al-Shomrani / Eur. J. Pure Appl. Math, 14 (3) (2021), 816-828 825

On the other hand,
ε(1)ε(x2) = (1) (1) = 1.

So, ε(µ(1⊗ x2) = ε(1)ε(x2). If g = x2 and g1 = 1, then

∆(µ(x2 ⊗ 1)) = ∆(x2) = x2 ⊗ x2.

On the other hand,

∆(x2) ·∆(1) = (x2 ⊗ x2) · (1⊗ 1) = x2 ⊗ x2.

So, ∆(µ(x2 ⊗ 1)) = ∆(x2) ·∆(1). Also,

ε(µ(x2 ⊗ 1)) = ε(x2) = 1.

On the other hand,
ε(x2)ε(1) = (1) (1) = 1.

So, ε(µ(x2 ⊗ 1) = ε(x2)ε(1). If g = x2 and g1 = x, then

∆(µ(x2 ⊗ x)) = ∆(1) = 1⊗ 1.

On the other hand,

∆(x2) ·∆(x) = (x2 ⊗ x2) · (x⊗ x) = 1⊗ 1.

So, ∆(µ(x2 ⊗ x)) = ∆(x2) ·∆(x). Also,

ε(µ(x2 ⊗ x)) = ε(1) = 1.

On the other hand,
ε(x2)ε(x) = (1) (1) = 1.

So, ε(µ(x2 ⊗ x) = ε(x2)ε(x). If g = x2 and g1 = x2, then

∆(µ(x2 ⊗ x2)) = ∆(x) = x⊗ x.

On the other hand,

∆(x2) ·∆(x2) = (x2 ⊗ x2) · (x2 ⊗ x2) = x⊗ x.

So, ∆(µ(x2 ⊗ x2)) = ∆(x2) ·∆(x2). Also,

ε(µ(x2 ⊗ x2)) = ε(x) = 1.

On the other hand,
ε(x2)ε(x2) = (1) (1) = 1.

So, ε(µ(x2 ⊗ x2) = ε(x2)ε(x2). Thus, (H, µ, λ,∆, ε) is an R-bialgebra.
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Finally, to show that (H, µ, λ,∆, ε, S) is an R-Hopf algebra, we define the antipode map
S : H 7−→ H, for all g ∈ G, by S(g) = g−1 and we check that S satisfies the antipode
property, i.e. µ(I ⊗ S)∆(g) = µ(S ⊗ I)∆(g) for all g ∈ G which we do as follows: If
g = 1, then µ(I ⊗ S)∆(1) = µ(I ⊗ S)(1 ⊗ 1) = 1. On the other hand, µ(S ⊗ I)∆(1) =
µ(S ⊗ I)(1 ⊗ 1) = 1. If g = x, then µ(I ⊗ S)∆(x) = µ(I ⊗ S)(x ⊗ x) = µ(x ⊗ x2) = 1.
On the other hand, µ(S ⊗ I)∆(x) = µ(S ⊗ I)(x ⊗ x) = µ(x2 ⊗ x) = 1. If g = x2, then
µ(I ⊗ S)∆(x) = µ(I ⊗ S)(x2 ⊗ x2) = µ(x2 ⊗ x) = 1. On the other hand, µ(S ⊗ I)∆(x2) =
µ(S ⊗ I)(x2 ⊗ x2) = µ(x⊗ x2) = 1. Therefore, (H, µ, λ,∆, ε, S) is an R-Hopf algebra.

3.3. Commutativity and cocommutativity of the Hopf algebra H

It is easy to verify that each element in H commutes with all the other element of H.
So H is commutative as an algebra. Thus, H is a commutative Hopf Algebra.

Now, to check the cocommutativity of H we need to show that it is cocommutative as
a coalgebra, i.e. τ(∆(g)) = ∆(g) for all g ∈ C3 which we do as follows: If g = 1, then

τ(∆(1)) = τ(1⊗ 1) = 1⊗ 1 = ∆(1).

If g = x, then
τ(∆(x)) = τ(x⊗ x) = x⊗ x = ∆(x).

If g = x2, then
τ(∆(x2)) = τ(x2 ⊗ x2) = x2 ⊗ x2 = ∆(x2).

Therefore, H is a cocommutative Hopf algebra.

3.4. The Normal Hopf subalgebras of H

Since C3 is simple, it follows that H has no proper subalgebras. Moreover, Since
the only Hopf subalgebras of H are the trivial ones, thus H has no proper normal Hopf
subalgebra. Therefore, H is simple.

3.5. Semi-simplicity of the Hopf algebra H

To check the semi-simplicity of the Hopf algebra H we need first to recall that the center
of a Hopf algebra H is defined by

Z(H) = {h ∈ H;hh1 = h1h for all h1 ∈ H}.

In our example, since each element in H commutes with all the element of H, then Z(H) =
H.

In our example |C3| = 3 is not divisible by the characteristic of the field R which is zero.
So, by theorem 2, H is semisimple Hopf algebra.
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3.6. Nilpotency and solvability of the Hopf algebra H

In this subsection we discuss whether H is a nilpotent or a solvable Hopf algebra.
Since H is commutative Hopf algebra with R ⊂ H as a solvable series, it follows that H
is solvable by using Remark 1. Furthermore, since H has central series R ⊆ Z1, where
Z1 = Z̃(H), hence by using Remark 2 we get Z̃(H) = RZC3 = RC3. Thus, Z1 = RC3.
Therefore, by Definition 7, H is nilpotent.

4. Conclusion

We noticed from our example that all the properties of the original finite group C3 have
been carried out in the case of its group Hopf algebra H = RC3 such as commutativity,
simplicity, nilpotency and solvability. In general, for a finite group G, the normal Hopf
subalgebras of KG are of the form KGi where Gi is a normal subgroup of G and K is
an algebraically closed field of characteristic zero. In particular, KG is simple as a Hopf
algebra if and only if G is a simple group. Furthermore, if KG is simple, then it has no a
proper quotient Hopf algebra [13].
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