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The double Laplace transform expressed in terms of the
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Abstract. In this paper, the authors derive a formula for the double Laplace transform expressed
in terms of the Lerch Transcendent. The log term mixes the variables so that the integral is not
separable except for special values of k. The method of proof follows the method used by us
to evaluate single integrals. This transform is then used to derive definite integrals in terms of
fundamental constants, elementary and special functions. A summary of the results is produced in
the form of a table of definite integrals for easy referencing by readers. The majority of the results
in the work are new.
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1. Introduction

In this paper we derive the double Laplace transform given by

(1)

∫ ∞
0

∫ ∞
0

xp−1yn−p−1 logk
(
bx

y

)
e−(sx)n−(ty)ndxdy

where the parameters a, k s and t are general complex numbers, n > Re(p) and
Re(p) > 0. The transform will be used to derive special cases in terms of special functions
and fundamental constants. We then tabulate our results of these new integral formulae
with respect the parameters of the transform. The table of results is only a subset of the
actual domain and range for the transform as the number of variables are too many to
compose a full table in this work. The authors however, used their transform to tabulate in
their opinion, interesting integral forms and leave the readers to derive other forms if they
wish. We present a formal derivation for a definite integral in [8]. In this work we derive
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the double Laplace transform in terms of the Lerch Transcendent [5]. The derivations
follow the method used by us in [7]. This method involves using a form of the generalized
Cauchy’s integral formula given by

yk

k!
=

1

2πi

∫
C

ewy

wk+1
dw. (2)

We then multiply both sides by a function of x and y, then take a definite double
integral of both sides. This yields a definite integral in terms of a contour integral. Then
we multiply both sides of equation (2) by another function of x and y and take the infinite
sums of both sides such that the contour integral of both equations are the same.

2. Definite Integral of the Contour Integral

We use the method in [7]. The variable of integration in the contour integral is
α = p + w. The cut and contour are in the second quadrant of the complex z-plane.
The cut approaches the origin from the interior of the second quadrant and the contour
goes round the origin with zero radius and is on opposite sides of the cut. Using a general-

ization of Cauchy’s integral formula we form two equations by replacing y by log
(
ax
y

)
and

multiplying by xp−1yn−p−1e−x
n−yn then taking the definite integral with respect x ∈ [0,∞)

and y ∈ [0,∞) to get

(3)

1

k!

∫ ∞
0

∫ ∞
0

xp−1yn−p−1e−x
n−yn logk

(
ax

y

)
dxdy

=
1

2πi

∫ ∞
0

∫ ∞
0

∫
C
w−k−1xp−1yn−p−1e−x

n−yn
(
ax

y

)w
dwdxdy

=
1

2πi

∫
C

∫ ∞
0

∫ ∞
0

w−k−1xp−1yn−p−1e−x
n−yn

(
ax

y

)w
dxdydw

=
1

2πi

∫
C

πaww−k−1 csc
(
π(p+w)

n

)
n2

dw

from equation (3.326.2) in [9] and using the reflection formula for Gamma functions.
The condition on the left-hand side of equation (3) is Re(p) > 0 and Re(n) > Re(p). We
are able to switch the order of integration over α, x and y using Fubini’s theorem since
the integrand is of bounded measure over the space C× [0,∞)× [0,∞).

3. Infinite Sum of the Contour Integral

Using equation (2) and replacing y by log(a) + iπ(2y+1)
n then multiplying both sides by

−2iπe
iπp(2y+1)

n

n2 we get
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(4)
−
i(2π)k+1

(
i
n

)k
e

2iπpy
n

+ iπp
n

(
1
2(2y + 1)− in log(a)

2π

)k
n2k!

= − 1

2πi

∫
C

2iπw−k−1 exp
(
w
(

log(a) + iπ(2y+1)
n

)
+ iπp(2y+1)

n

)
n2

dw

We then take the infinite sum over y ∈ [0,∞) to get

(5)

(2π)k+1
(
i
n

)k−1
e
iπp
n Φ

(
e

2ipπ
n ,−k, π−in log(a)

2π

)
n3k!

= − 1

2πi

∞∑
y=0

∫
C

2iπw−k−1 exp
(
w
(

log(a) + iπ(2y+1)
n

)
+ iπp(2y+1)

n

)
n2

dw

= − 1

2πi

∫
C

∞∑
y=0

2iπw−k−1 exp
(
w
(

log(a) + iπ(2y+1)
n

)
+ iπp(2y+1)

n

)
n2

dw

=
1

2πi

∫
C

πaww−k−1 csc
(
π(p+w)

n

)
n2

dw

from equation (1.232.3) in [9] and Im(p+ w) < 0.

4. The Lerch Function

We use (9.550) and (9.556) in [9] where Φ(z, s, v) is the Lerch function which is a
generalization of the Hurwitz Zeta and Polylogarithm functions. The Lerch function has
a series representation given by

Φ(z, s, v) =

∞∑
n=0

(v + n)−szn (6)

where |z|< 1, v 6= 0,−1, .. and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞
0

ts−1e−vt

1− ze−t
dt =

1

Γ(s)

∫ ∞
0

ts−1e−(v−1)t

et − z
dt (7)

where Re(v) > 0, or |z|≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1

5. Definite Integral in terms of the Lerch transcendent

Since the right-hand side of equation (3) is equal to equation (5) we may equate the
left hand sides along with making the the substitutions x = sx, y = ty and a = bs/t and
simplifying to get
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(8)

∫ ∞
0

∫ ∞
0

xp−1yn−p−1 logk
(
bx

y

)
e−(sx)n−(ty)ndxdy

=
(2π)k+1

(
i
n

)k−1
e
iπp
n s−ptp−n

n3
Φ

(
e

2ipπ
n ,−k,

π − in log
(
bt
s

)
2π

)

6. Derivation of Definite Integrals when s = t = 1

In this section we will derive various definite integrals referred to in [8] starting with
(45) on p 245 using equation (8) in terms of special functions, fundamental constants and
itemizing each as entries. Note in this section a = b.

6.1. Derivation of entry 45

Using equation (8) and setting a = 1 and k = 0 and simplifying we get

(9)

∫ ∞
0

∫ ∞
0

xp−1yn−p−1e−x
n−yndxdy =

π csc
(πp
n

)
n2

from entry (2) in Table below (64:12:7) in [6].

6.2. Derivation of new entry 46

Using equation (8) and setting a = 1 and k = 1 and simplifying we get

(10)

∫ ∞
0

∫ ∞
0

xp−1yn−p−1e−x
n−yn log

(
x

y

)
dxdy = −

π2 cot
(πp
n

)
csc
(πp
n

)
n3

from entry (3) in Table below (64:12:7) in [6].

6.3. Derivation of new entry 47

Using equation (8) and setting a = 1 and k = 2 and simplifying we get

(11)

∫ ∞
0

∫ ∞
0

xp−1yn−p−1e−x
n−yn log2

(
x

y

)
dxdy =

π3
(

cos
(

2πp
n

)
+ 3
)

csc3
(πp
n

)
2n4

from entry (4) in Table below (64:12:7) in [6].

6.4. Derivation of new entry 48 in terms of the Hurwitz zeta function

Using equation (8) and setting a = 1, p = 1 and n = 2 and simplifying we get

(12)

∫ ∞
0

∫ ∞
0

e−x
2−y2

logk
(
x

y

)
dxdy = 2k−1e

iπk
2 πk+1

(
ζ

(
−k, 1

4

)
− ζ

(
−k, 3

4

))
from equation (64:13:3)in [6].
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6.5. Derivation of new entry 49

Using equation (8) and setting k = −1, n = 2 and a = −1 rationalizing the denomi-
nator and simplifying we get∫ ∞

0

∫ ∞
0

πxp−1y1−pe−x
2−y2

log2
(
x
y

)
+ π2

dxdy =
1

4

(
4 sin

(πp
2

)
+π cos(πp)− 2 sin(πp) log

(
cot
(πp

4

)))
(13)

and

(14)

∫ ∞
0

∫ ∞
0

xp−1y1−pe−x
2−y2

log
(
x
y

)
log2

(
x
y

)
+ π2

dxdy = −1

4
π sin(πp) + cos

(πp
2

)
− 1

2
cos(πp) log

(
cot
(πp

4

))
from entry (1) in Table below (64:12:7)

6.6. Derivation of new entry 50 in terms of the Polylogarithm Function

Using equation (8) and replacing a by eπi/n and simplifying we get

∫ ∞
0

∫ ∞
0

xp−1yn−p−1e−x
n−yn logk

(
e
iπ
n x

y

)
dxdy =

(2π)k+1
(
i
n

)k−1
e−

iπp
n Li−k

(
e

2ipπ
n

)
n3

(15)

from equation (64:12:2) in [6].

6.7. Derivation of new entry 51 in terms of Catalan’s constant C

Using equation (8) and setting a = k = 1 and replacing p by n/2 and simplifying we
get

(16)

∫ ∞
0

∫ ∞
0

x
n
2
−1y

n
2
−1e−x

n−yn log

(
x

y

)
log

(
log

(
x

y

))
dxdy = −4iπC

n3

from equation (9.73) in [9].

6.8. Derivation of new entry 52

Using equation (8) and setting k = 3 and a = −1 and simplifying we get

∫ ∞
0

∫ ∞
0

xp−1yn−p−1e−x
n−yn log3

(
x

y

)
dxdy = −

π4
(

23 cos
(πp
n

)
+ cos

(
3πp
n

))
csc4

(πp
n

)
4n5

(17)
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6.9. Derivation of new entry 53 in terms of the Log-gamma Function

Using equation (8) and first replacing p by n/2 followed by taking the first partial
derivative with respect to k and then setting k = 0 and simplifying we get

(18)

∫ ∞
0

∫ ∞
0

x
n
2
−1y

n
2
−1e−x

n−yn log

(
log

(
ax

y

))
dxdy =

2π log

(
2
√
π
√

i
n

Γ
(

3
4
− in log(a)

4π

)
Γ
(
π−in log(a)

4π

)
)

n2

from equation (1.10.10) in [2].

6.10. Derivation of new entry 54

Using equation (8) and first replacing p by n/2 followed by taking the first partial
derivative with respect to a and then setting k = 2 and a = 1 and simplifying we get

(19)

∫ ∞
0

∫ ∞
0

x
n
2
−1y

n
2
−1e−x

n−yn log

(
x

y

)
dxdy = 0

where n ∈ C.

6.11. Derivation of new entry 55 in terms of Euler’s constant

Using equation (8) and setting p = 1/2, a = −1 and n = 1 followed by taking the first
partial derivative with respect to k and then setting k = −1 and simplifying we get

(20)

∫ ∞
0

∫ ∞
0

e−x−y log
(

log
(
−x
y

))
√
x
√
y log

(
−x
y

) dxdy =
1

2
log(2)

(
2iγ + π − i log

(
8π2
))

from equation (9.73) in [9].

6.12. Derivation of new entry 56 in terms of the derivative of the Hurwitz
zeta Function

Using equation (8) and setting p = 1, a = 1 and n = 2 followed by taking the first
partial derivative with respect to k and then setting k = 2 and simplifying we get

(21)

∫ ∞
0

∫ ∞
0

e−x
2−y2

log2

(
x

y

)
log

(
log

(
x

y

))
dxdy

=
1

32
π3

(
64

(
ζ ′
(
−2,

1

4

)
− ζ ′

(
−2,

3

4

))
+ iπ + log

(
4π2
))

from equation (64:10:1) in [6].
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6.13. Derivation of new entry 57 in terms of the Hurwitz zeta Function

Using equation (8) and setting k = 1/2, a = p = 1 and n = 2 and simplifying we get

(22)

∫ ∞
0

∫ ∞
0

e−x
2−y2

√
log

(
x

y

)
dxdy =

(
1

2
+
i

2

)
π3/2

(
ζ

(
−1

2

1

4

)
− ζ

(
−1

2
,
3

4

))
from equation (64:13:3) in [6].

6.14. Derivation of new entry 58 in terms of log(2), ζ(3), Glaisher’s con-
stant A and π

Using equation (8) and setting p = 1/2, n = 1 and a = −1 and simplifying we get

(23)

∫ ∞
0

∫ ∞
0

e−x−y logk
(
−x
y

)
√
x
√
y

dxdy = −ik
(

2k+1 − 1
)

(2π)k+1ζ(−k)

from entry (3) in Table below (64:12:7), equation (64:13:4) and entry (2) in Table
below (64:7) in [6].

Next we apply L’Hopital’s rule to the right-hand side of equation (23) as k → −1 and
simplifying we get

(24)

∫ ∞
0

∫ ∞
0

e−x−y

√
x
√
y
(

log2
(
x
y

)
+ π2

)dxdy =
log(2)

π

Next using equation (23) and taking the first partial derivative with respect to k and
setting k = 2 and simplifying we get

(25)

∫ ∞
0

∫ ∞
0

e−x−y log2
(
−x
y

)
log
(

log
(
−x
y

))
√
x
√
y

dxdy = 14πζ(3)

Next using equation (23) and taking the first partial derivative with respect to k and
setting k = 1 and simplifying we get

(26)

∫ ∞
0

∫ ∞
0

e−x−y log
(
−x
y

)
log
(

log
(
−x
y

))
√
x
√
y

dxdy = iπ2 log

(
4i

3
√

2eπ

A12

)

6.15. Derivation of new entry 59 in terms of digamma function

Using equation (8) and setting p = n/2, k = −1 and a = eai and simplifying we get

(27)

∫ ∞
0

∫ ∞
0

x
n
2
−1y

n
2
−1e−x

n−yn

a2 + log2
(
x
y

) dxdy =
ψ(0)

(
an+3π

4π

)
− ψ(0)

(
an+π

4π

)
2an
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7. Derivation of Definite Integrals when s 6= t

The main related functions of the Lerch function and transcendent are the Hurwitz
zeta function ζ(s, a) from equation (64:12:1) in [6], Jonquiére’s function φ(z, s) from equa-
tion (64:12:2) in [6], and the Dirichlet L-functions L(s, χ) from entry (3) in Table below
(64:12:7) in [6]. In this section we will derive definite integrals in terms of these special
functions along with a few other examples.

7.1. Derivation entry 60 in terms of the Hurwitz zeta function ζ(k, z)

Using equation (8) and replacing n by 2p and simplifying we get

(28)

∫ ∞
0

∫ ∞
0

xp−1yp−1 logk
(
bx

y

)
e−(sx)2p−(ty)2p

dxdy

=

2k−1πk+1
(
i
p

)k
s−pt−p

(
ζ

(
−k, π−2ip log( bts )

4π

)
− ζ

(
−k, 3

4 −
ip log( bts )

2π

))
p2

from equation (64:13:3) in [6].

7.2. Derivation of entry 61 in terms of the Polylogarithm function Li−k

Using equation (8) and replacing b by e
iπ
n s
t and simplifying we get

(29)

∫ ∞
0

∫ ∞
0

xp−1yn−p−1e−(sx)n−(ty)n logk

(
e
iπ
n sx

ty

)
dxdy

=
(2π)k+1

(
i
n

)k−1
e−

iπp
n s−ptp−nLi−k

(
e

2ipπ
n

)
n3

from equation (64:12:2) in [6].

7.3. Derivation of entry 62 in terms of the Hypergeometric function

2F1(1, v; v + 1; z)

The relationship between the Lerch function and the Hypergeometric function is given
by

(30)Φ(z, 1, v) =
2F1(1, v; v + 1; z)

v
, |z|< 1

Using equation (8) and setting k = −1 and simplifying we get
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(31)

∫ ∞
0

∫ ∞
0

xp−1yn−p−1e−(sx)n−(ty)n

log
(
bx
y

) dxdy

= −
e
iπp
n s−ptp−nΦ

(
e

2ipπ
n , 1,

π−in log( bts )
2π

)
n

= −
2πe

iπp
n s−ptp−n 2F1

(
1,

π−in log( bts )
2π ; 3

2 −
in log( bts )

2π ; e
2ipπ
n

)
n
(
π − in log

(
bt
s

))
from equation (1.11.10) in [2], where Im(p/n) > 0.

7.4. Derivation of entry 63 in terms of the Harmonic number function Hn

Using equation (8) and replacing n by 2p and setting k = −1 and simplifying we get

(32)

∫ ∞
0

∫ ∞
0

xp−1yp−1e−(sx)2p−(ty)2p

log
(
bx
y

) dxdy =

is−pt−p

(
H−2ip log( bts )−3π

4π

−H
−

2ip log( bts )+π

4π

)
4p

from equations (1.8.6) and (1.11.10) in [2].

7.5. Derivation of entry 64 in terms of the zeta function of Riemann ζ(s)
and Hurwitz zeta ζ(s, a)

Using equation (28) and replacing b by e
3iπ
2p s
t and simplifying we get

(33)

∫ ∞
0

∫ ∞
0

xp−1yp−1e−(sx)2p−(ty)2p
logk

(
e

3iπ
2p sx

ty

)
dxdy

=
2k−1πk+1

(
i
p

)k
s−pt−p

(
ζ(−k)− ζ

(
−k, 3

2

))
p2

from equations (1.10.1) and (1.12.1) in [2].

7.6. Derivation of entry 65 in terms of the zeta function of Riemann ζ(s)

Using equation (28) and replacing n by 2p and b by e
iπ
2p s
t and simplifying we get

(34)

∫ ∞
0

∫ ∞
0

xp−1yp−1e−(sx)2p−(ty)2p
logk

(
e
iπ
2p sx

ty

)
dxdy

= − 1

2p2

(
2k+1 − 1

)
πk+1

(
i

p

)k
ζ(−k)s−pt−p
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from equations (1.12.1) in [2].

8. Derivation of definite integrals with log
(
x
y

)
in the denominator

We will form two equations and take their difference. Firstly, using equation (8) we
replace p by p+ q to form the first equation. For the second, again using equation (8) we
replace p by p − q. Next we take the difference of these two equations setting k = −1,
b = 1 and simplifying to get

(35)

∫ ∞
0

∫ ∞
0

xp−q−1
(
y2q − x2q

)
yn−p−q−1e−(sx)n−(ty)n

log
(
x
y

) dxdy

=
s−p−qt−n+p−q

n

(
t2qe

iπ(p+q)
n Φ

(
e

2iπ(p+q)
n , 1,

π − in log
(
t
s

)
2π

)

− s2qe
iπ(p−q)

n Φ

(
e

2iπ(p−q)
n , 1,

π − in log
(
t
s

)
2π

))

from entry (1) in Table below (64:12:7) and equations (58:4:4) and (58:12:2) in [6].

8.1. Derivation of entry 66 in terms of the logarithmic function

Using equation (35) and setting s = 1, t = 1, p = 1/2, q = 1/3, n = 1 and simplifying
we get

(36)

∫ ∞
0

∫ ∞
0

e−x−y
(
x2/3 − y2/3

)
x5/6y5/6 log

(
x
y

) dxdy = log
(

7 + 4
√

3
)

from Table (18-1) in [6].

8.2. Derivation of entry 67 in terms of the hyperbolic cotangent function

Using equation (35) and setting s = 1, t = 1, p = 1/2, q = 1/3, n = 2 and simplifying
we get

(37)

∫ ∞
0

∫ ∞
0

6
√
ye−x

2−y2 (
x2/3 − y2/3

)
x5/6 log

(
x
y

) dxdy = coth−1
(√

2
)

from Table (18-1) in [6].
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8.3. Derivation of entry 68 in terms of the hyperbolic cotangent function

Using equation (35) and setting s = 1, t = 1, p = 1/2, q = 1/4, n = 1 and simplifying
we get

(38)

∫ ∞
0

∫ ∞
0

e−x−y
(√
x−√y

)
x3/4y3/4 log

(
x
y

) dxdy = 2 coth−1
(√

2
)

from Table (18-1) in [6].

8.4. Derivation of entry 69 in terms of the logarithmic function

Using equation (35) and setting s = 1, t = 1, p = 1/2, q = −1/3, n = 1 and simplifying
we get

(39)

∫ ∞
0

∫ ∞
0

e−x−y
(
y2/3 − x2/3

)
x5/6y5/6 log

(
x
y

) dxdy = −2 log
(

2 +
√

3
)

from Table (18-1) in [6].

8.5. Derivation of entry 70 in terms of the logarithmic function

Using equation (35) and setting s = 1, t = 1, p = 1/2, q = 1/4, n = 3 and simplifying
we get

(40)

∫ ∞
0

∫ ∞
0

y5/4e−x
3−y3 (√

x−√y
)

x3/4 log
(
x
y

) dxdy = −1

6
log
(

5− 2
√

6
)

8.6. Derivation of entry 71 in terms of the hyperbolic tangent function

Using equation (35) and setting s = 1, t = 1, p = 1/4, q = i/3, n = 1 and simplifying
we get

(41)

∫ ∞
0

∫ ∞
0

e−x−y
(
x2/3 − y2/3

)
x13/12y7/12 log

(
x
y

) dxdy = 2 tanh−1

(√
3

2

)

from Table (18-1) in [6].

8.7. Derivation of entry 72 in terms of the hypergeometric function

Using equation (35) and setting s = 1, t = 1, p = 1/4, q = 1/3, n = 3/2 and simplifying
we get



R. Reynolds, A. Stauffer / Eur. J. Pure Appl. Math, 14 (3) (2021), 618-637 629

(42)

∫ ∞
0

∫ ∞
0

e−x
3/2−y3/2 (

x2/3 − y2/3
)

x5/6 3
√
y log

(
x
y

) dxdy

= −4

3

(
(−1)5/9

2F1

(
1

2
, 1;

3

2
; e−

8iπ
9

)
− 9
√
−1 2F1

(
1

2
, 1;

3

2
; e

2iπ
9

))
from equations (58:4:4) and (58:12:2) in [6].

9. The general case of the difference of the double Laplace transform

We will form two equations and take their difference. Firstly, using equation (8) we
replace p by p+ q to form the first equation. For the second, again using equation (8) we
replace p by p− q. Next we take the difference of these two equations and simplifying to
get

(43)

∫ ∞
0

∫ ∞
0

xp−q−1
(
y2q − x2q

)
yn−p−q−1 logk

(
bx

y

)
e−(sx)n−(ty)ndxdy

=
(2π)k+1

(
i
n

)k−1
s−p−qt−n+p−q

n3

(
s2qe

iπ(p−q)
n Φ

(
e

2iπ(p−q)
n ,−k,

π − in log
(
bt
s

)
2π

)

− t2qe
iπ(p+q)

n Φ

(
e

2iπ(p+q)
n ,−k,

π − in log
(
bt
s

)
2π

))

9.1. Derivation of entry 73 in terms of the Lerch transcendent

Using equation (43) and setting s = 1, t = 1, n = 1, p = 1/2, q = 1/3, b = 1, k = −1/2
and simplifying we get

(44)

∫ ∞
0

∫ ∞
0

e−x−y
(
x2/3 − y2/3

)
x5/6y5/6

√
log
(
x
y

) dxdy
=

(
1

2
+
i

2

)√
π

((√
3− i

)
Φ

(
1

2
− i
√

3

2
,
1

2
,
1

2

)
+
(√

3+ i
)

Φ

(
1

2
+
i
√

3

2
,
1

2
,
1

2

))

9.2. Derivation of entry 74 in terms of the Lerch transcendent

Using equation (43) and setting s = 1, t = 1, p = 1/2, q = 1/3, n = 1, k = 1/2, b = 1
and simplifying we get
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∫ ∞
0

∫ ∞
0

e−x−y
(
x2/3 − y2/3

)√
log
(
x
y

)
x5/6y5/6

dxdy

= (1 + i)π3/2

((
1 + i

√
3
)

Φ

(
1

2
− i
√

3

2
,−1

2
,
1

2

)
+ i
(√

3 + i
)

Φ

(
1

2
+
i
√

3

2
,−1

2
,
1

2

))
(45)

9.3. Derivation of entry 75 in terms of the Lerch transcendent

Using equation (43) and setting s = 1, t = 1, p = 1/2, q = 1/3, n = 2, k = 2, b = 2 and
simplifying we get∫ ∞

0

∫ ∞
0

6
√
ye−x

2−y2 (
x2/3 − y2/3

)
log2

(
2x
y

)
x5/6

dxdy = −
π
(
39π2 + 4 log2(2)− 20π log(2)

)
4
√

2
(46)

from (64:12:4) in [6].

9.4. Derivation of entry 76 in terms of the Lerch transcendent

Using equation (43) and setting s = 1, t = 1, p = 1/2, q = 1/3, n = 1, b = 1 followed by
taking the first partial derivative with respect to k then setting k = 0 and simplifying we
get

(47)

∫ ∞
0

∫ ∞
0

e−x−y
(
x2/3 − y2/3

)
log
(

log
(
x
y

))
x5/6y5/6

dxdy

= π

((
−1− i

√
3
)

Φ′

(
1

2
− i
√

3

2
, 0,

1

2

)
+
(

1− i
√

3
)

Φ′

(
1

2
+
i
√

3

2
, 0,

1

2

))

9.5. Derivation of entry 77 in terms of the Lerch transcendent

Using equation (43) and setting s = 1, t = 1, p = 1/2, q = 1/3, n = 1, b = 1 followed by
taking the first partial derivative with respect to k then setting k = 1 and simplifying we
get

(48)

∫ ∞
0

∫ ∞
0

e−x−y
(
x2/3 − y2/3

)
log
(
x
y

)
log
(

log
(
x
y

))
x5/6y5/6

dxdy

= 2π2

((√
3− i

)
Φ′

(
1

2
− i
√

3

2
,−1,

1

2

)
+
(√

3 + i
)

Φ′

(
1

2
+
i
√

3

2
,−1,

1

2

)

+
√

3 log(4) + 2
√

3 log(iπ)

)
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9.6. Derivation of entry 78 in terms of the Lerch transcendent

Using equation (43) and setting s = t, p = 1/2, q = 1/3, n = 1, b = 1, k = 1 followed by
taking the integral with respect to t ∈ [1, 2] and simplifying we get

(49)

∫ ∞
0

∫ ∞
0

e−2(x+y) (ex+y − 1)
(

3
√
x− 3
√
y
)

log
(
x
y

)
x5/6y5/6

(
x2/3 − 3

√
x 3
√
y + y2/3

) dxdy =
√

3π2 log(16)

from entry (3) in Table below (64:12:7) in [6].

9.7. Derivation of entry 79 in terms of the Lerch transcendent

Using equation (43) and setting s = 1/3, t = 1/2, p = 1/2, q = 1/3, n = 1, b = 1, k =
1/2 and simplifying we get

(50)

∫ ∞
0

∫ ∞
0

e
1
6

(−2x−3y)
(
x2/3 − y2/3

)√
log
(
x
y

)
x5/6y5/6

dxdy

= (2−2i) 6
√
−6π3/2

(
(−3)2/3Φ

(
1

2
− i
√

3

2
,−1

2
,
π − i log

(
3
2

)
2π

)
−22/3Φ

(
1

2
+
i
√

3

2
,−1

2
,
π − i log

(
3
2

)
2π

))

9.8. Derivation of entry 80 in terms of the Lerch transcendent

Using equation (43) and setting s = 1/3, t = 1/2, p = 1/2, q = 1/3, n = 1, b = 1, k =
−1/2 and simplifying we get

(51)

∫ ∞
0

∫ ∞
0

e
1
6

(−2x−3y)
(
x2/3 − y2/3

)
x5/6y5/6

√
log
(
x
y

) dxdy

= (1+i) 6
√
−6
√
π

(
22/3Φ

(
1

2
+
i
√

3

2
,
1

2
,
π − i log

(
3
2

)
2π

)
−(−3)2/3Φ

(
1

2
− i
√

3

2
,
1

2
,
π − i log

(
3
2

)
2π

))

10. Some special cases of the double Laplace transform involving the
nested logarithm function

In this section we will use a special case the double Laplace transform to derive definite
integrals involving the special functions. We proceed by using equation (43) and replacing
p by 2q and setting n = s = t = 1 and simplifying to get

(52)

∫ ∞
0

∫ ∞
0

xq−1y−3qe−x−y
(
y2q − x2q

)
logk

(
bx

y

)
dxdy

= (2iπ)k+1eiπq
(
e2iπqΦ

(
e6iπq,−k, π − i log(b)

2π

)
− Φ

(
e2iπq,−k, π − i log(b)

2π

))
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10.1. Derivation of entry 81 involving the Log-gamma function

Using equation (52) setting b = 1 and q = 1/6 followed by taking the first partial
derivative by k then setting k = 0 and simplifying to get

(53)

∫ ∞
0

∫ ∞
0

e−x−y
(

3
√
y − 3
√
x
)

log
(

log
(
x
y

))
x5/6√y

dxdy

=
1

2
π

(
4(−1)2/3Φ′

(
3
√
−1, 0,

1

2

)
+ iπ + log

(
81π2Γ

(
−3

4

)4
Γ
(
−1

4

)4
))

from equation (1.10.10) in [2].

10.2. Derivation of entry 82 involving the Stieltjes constant (γn)

Using equation (52) setting b = 1 and q = 1/6 followed by taking the first partial
derivative by k and simplifying to get

∫ ∞
0

∫ ∞
0

e−x−y
(

3
√
y − 3
√
x
)

log
(

log
(
x
y

))
logk

(
x
y

)
x5/6√y

dxdy

= 2ke
iπk
2 πk+1

(
2

(
(−1)2/3Φ′

(
3
√
−1,−k, 1

2

)
+ 2k

(
ζ ′
(
−k, 1

4

)
− ζ ′

(
−k, 3

4

)))
+ 6
√
−1(π−2i log(2π))Φ

(
3
√
−1,−k, 1

2

)
− i2k(π−2i log(4π))

(
ζ

(
−k, 1

4

)
− ζ

(
−k, 3

4

)))
(54)

Next we apply L’Hopitals rule to the right-hand side as k → −1 and simplifying to get

(55)

∫ ∞
0

∫ ∞
0

e−x−y
(

3
√
y − 3
√
x
)

log
(

log
(
x
y

))
x5/6√y log

(
x
y

) dxdy

=−1

2
i

(
2(−1)2/3Φ′

(
3
√
−1, 1,

1

2

)
+2 6
√
−1 2F1

(
1

2
, 1;

3

2
; 3
√
−1

)
(π−2i log(2π))

− γ1

(
1

4

)
+ γ1

(
3

4

)
+

1

2
(2 log(4π) + iπ)

(
ψ(0)

(
1

4

)
− ψ(0)

(
3

4

)))
Next we simplify the right-hand side in terms of the Stieltjes constant (γn) and sim-

plifying to get
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(56)

∫ ∞
0

∫ ∞
0

e−x−y
(

3
√
y − 3
√
x
)

log
(

log
(
x
y

))
x5/6√y log

(
x
y

) dxdy

=
1

4

(
4 6
√
−1Φ′

(
3
√
−1, 1,

1

2

)
+ 2iγ1

(
1

4

)
− 2iγ1

(
3

4

)
− π2 + 2iπ log(4π)− 4iπ tanh−1

(
6
√
−1
)
− 8 log(2π) tanh−1

(
6
√
−1
))

from equation (7.6) in [1].

10.3. Derivation of entry 83 involving the Catalan’s constant (C)

Using equation (52) setting b = 1 and q = 1/6 followed by taking the first partial
derivative by k and setting k = 1 and simplifying to get

(57)

∫ ∞
0

∫ ∞
0

e−x−y
(

3
√
y − 3
√
x
)

log
(
x
y

)
log
(

log
(
x
y

))
x5/6√y

dxdy

= π

(
π

(
−2
(√

3 + i
)

Φ′
(

3
√
−1,−1,

1

2

)
− i
√

3π − 2
√

3 log(2π)

)
+ 4iC

)
from (9.73) in [9].

10.4. Derivation of entry 84 involving the Polylogarithm function

Using equation (52) setting b = −1 and q = 1/6 followed by taking the first partial
derivative by k and setting k = 1 and simplifying to get

(58)

∫ ∞
0

∫ ∞
0

e−x−y
(

3
√
y − 3
√
x
)

logk
(
−x
y

)
x5/6√y

dxdy

= ik+2(2π)k+1
((

1− 2k+1
)
ζ(−k)− e−

2iπ
3 Li−k

(
e
iπ
3

))
Next we use L’Hopital’s rule on the right hand-side as k → −1 and simplifying to get

(59)

∫ ∞
0

∫ ∞
0

e−x−y
(

3
√
y − 3
√
x
)

x5/6√y log
(
x
y

) dxdy =
1

2
i

(
π − 4 tan−1

(
1

2
− i
√

3

2

))
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11. A general case of definite integrals involving log
(
x
y

)
in the

denominator

In this section we will derive the double Laplace transform and derive a few examples
illustrating this form. This form was derived by Gröbner and Hofreiter [3] and Bierens de
Haan [4]. Using equation (52) and setting k = −1, b = s = t = 1 and simplifying we get

(60)

∫ ∞
0

∫ ∞
0

e−x
n−ynxp−q−1

(
y2q − x2q

)
yn−p−q−1

log
(
x
y

) dxdy

=
2

n

(
tanh−1

(
e
iπ(p−iq)

n

)
− tanh−1

(
e
iπ(p+iq)

n

))
=

1

n
log
(

tan
(πp

2n
− πq

2n

)
cot
(πp

2n
+
πq

2n

))
11.1. Derivation of entry 85 involving the logarithm, cotangent and tan-

gent functions

Using equation (60) setting p = 1, q = 1/2, n = 2 and simplifying to get

(61)

∫ ∞
0

∫ ∞
0

e−x
2−y2

(x− y)
√
x
√
y log

(
x
y

) dxdy = log
(

cot
(π

8

))

11.2. Derivation of entry 86 involving the logarithm, cotangent and tan-
gent functions

Using equation (60) setting p = 1, q = 1/3, n = 2 and simplifying to get

(62)

∫ ∞
0

∫ ∞
0

e−x
2−y2 (

x2/3 − y2/3
)

3
√
x 3
√
y log

(
x
y

) dxdy =
log(3)

2

11.3. Derivation of entry 87 involving the logarithm, cotangent and tan-
gent functions

Using equation (60) setting p = 1/2, q = 1/6, n = 3 and simplifying to get

(63)

∫ ∞
0

∫ ∞
0

y4/3e−x
3−y3 ( 3

√
x− 3
√
y
)

x2/3 log
(
x
y

) dxdy =
1

3
log
(

tan
(π

9

)
cot
( π

18

))

11.4. Derivation of entry 88 involving the hyperbolic, cotangent and tan-
gent functions

Using equation (52) setting k = −1, b = 1, replacing s by t and simplifying to get
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(64)

∫ ∞
0

∫ ∞
0

xq−1yn−3q−1
(
y2q − x2q

)
e−(tx)n−(ty)n

log
(
x
y

) dxdy

= −2t−n

n

(
tanh−1

(
e
iπq
n

)
− tanh−1

(
e

3iπq
n

))
Next setting t = 8, n = 3/2, q = 1/4, comparing real and imaginary parts simplifying

we get

(65)

∫ ∞
0

∫ ∞
0

e−16
√

2(x3/2+y3/2) (√y −√x)
x3/4 4
√
y log

(
x
y

) dxdy

=
i
(
π − 4 cot−1

(
1
2 + i

√
3

2

))
48
√

2

= −
log
(
2 +
√

3
)

24
√

2
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12. Table of Definite Integrals

In this section we create a table to summarize our results in sections (6), (7) and (8).
A table of integrals is a more compact way of showcasing our results and makes the list
of integral formulae easier to digest from the readers’ perspective.

Table 1: Table of definite integrals

f(x, y)
∫∞

0

∫∞
0 f(x, y)dxdy

xp−1yn−p−1e−x
n−yn π csc(πpn )

n2

xp−1yn−p−1e−x
n−yn log

(
x
y

)
−π2 cot(πpn ) csc(πpn )

n3

xp−1yn−p−1e−x
n−yn log2

(
x
y

)
π3(cos( 2πp

n )+3) csc3(πpn )
2n4

e−x
2−y2

logk
(
x
y

)
2k−1e

iπk
2 πk+1

(
ζ
(
−k, 1

4

)
− ζ

(
−k, 3

4

))
πxp−1y1−pe−x

2−y2

log2
(
x
y

)
+π2

1
4

(
4 sin

(πp
2

)
+ π cos(πp)− 2 sin(πp) log

(
cot
(πp

4

)))
xp−1y1−pe−x

2−y2
log
(
x
y

)
log2

(
x
y

)
+π2

−1
4π sin(πp) + cos

(πp
2

)
− 1

2 cos(πp) log
(
cot
(πp

4

))
xp−1yn−p−1e−x

n−yn logk
(
e
iπ
n x
y

)
(2π)k+1( in)

k−1
e−

iπp
n Li−k

(
e

2ipπ
n

)
n3

x
n
2
−1y

n
2
−1e−x

n−yn log
(
x
y

)
log
(

log
(
x
y

))
−4iπC

n3

xp−1yn−p−1e−x
n−yn log3

(
x
y

)
−π4(23 cos(πpn )+cos( 3πp

n )) csc4(πpn )
4n5

x
n
2
−1y

n
2
−1e−x

n−yn log
(

log
(
ax
y

)) 2π log

 2
√
π
√

i
nΓ

(
3
4−

in log(a)
4π

)
Γ

(
π−in log(a)

4π

)


n2

x
n
2
−1y

n
2
−1e−x

n−yn log
(
x
y

)
0

e−x−y log
(

log
(
−x
y

))
√
x
√
y log

(
−x
y

) 1
2 log(2)

(
2iγ + π − i log

(
8π2
))

e−x
2−y2

log2
(
x
y

)
log
(

log
(
x
y

))
1
32π

3
(
64
(
ζ ′
(
−2, 1

4

)
− ζ ′

(
−2, 3

4

))
+ iπ + log

(
4π2
))

e−x−y logk
(
−x
y

)
√
x
√
y

−ik
(
2k+1 − 1

)
(2π)k+1ζ(−k)

e−x−y
√
x
√
y
(

log2
(
x
y

)
+π2

) log(2)
π

e−x−y(x2/3−y2/3)
x5/6y5/6 log

(
x
y

) log
(
7 + 4

√
3
)

6
√
ye−x2−y2

(x2/3−y2/3)
x5/6 log

(
x
y

) coth−1
(√

2
)
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13. Conclusion

In this work the authors used their contour integral method to derive a double inte-
gral in terms of the Lerch function. By deriving such an integral transform the authors
produced new closed form solutions for double integral formula not present in current lit-
erature. This formulae derived in this work showcases a new mathematical method which
could be used derive other integral formulae. The authors will be using this method for
future work to produce more tables of definite integrals.
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[3] Wolfgang Gröbner and Nikolaus Hofreiter. Integraltafel: Teil 2: Bestimmte Integrale.
Springer-Verlag, 12 2013.

[4] David Bierens de Haan. Nouvelles tables d’intégrales définies. P. Engels, 1867.
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