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Double integrals of logarithm and exponential function
expressed in terms of the Lerch function
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Abstract. This paper contains new explicit computations of some integrals containing elementary
functions, such as powers, logarithms and exponentials. In this work the authors use their contour
integral method to derive a double integral connected to the modified Bessel function of the second
kind Kν(z) and express it in terms of the Lerch function. A table of integral pairs is given for
interested readers. The majority of the results in this work are new.
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1. Significance Statement

Double integrals play a significant role in the area of mathematics, namely in the evalu-
ation of moment of inertia, centre of mass, volumes of solids of revolution, averages and in
error analysis of integrals, discrete transforms [3] and the evaluation of special functions.
Regarding the evaluation of the double integral of special functions, research has been
done in the evaluation of double integrals involving the Bessel function [9] and the Bessel
function of the second kind [4, 7].

One of the aims of this present work is to expand on the research in the area of the
double integral of special functions by deriving and evaluating the Laplace transform of
kernels involving the modified Bessel function. For certain values of the parameters the
integrand of this derived integral formula involved the modified Bessel function of the
second kind Kn(z).
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2. Introduction

In 1986 A.P. Prudnikov et al. [6] produced volume 1 of their five volume collection
on Integrals and Series. In this work, the authors used their contour integral method and
applied it to an interesting integral in the book of Prudnikov et al. [6] and expressed
its closed form in terms of the Lerch function. This integral formula was then used to
provide formal derivations in terms of new formulae in the form of a summary Table (1)
of integrals. The Lerch function being a special function has the fundamental property of
analytic continuation, which enables us to widen the range of evaluation for the parame-
ters involved in our definite integral.

The definite integral derived in this manuscript is given by∫ ∞

0

∫ ∞

0
xmy−m−1e

−px−qy−x2

4y logk
(
ax

y

)
dxdy (1)

where the parameters k, a, p and q are general complex numbers and
−1 < Re(m) ≤ −1/2,−1 < Im(m) < −1/2. This work is important because the authors
were unable to find similar derivations in current literature. The derivation of the definite
integral follows the method used by us in [8] which involves Cauchy’s integral formula.
The generalized Cauchy’s integral formula is given by

yk

Γ(k + 1)
=

1

2πi

∫
C

ewy

wk+1
dw (2)

where C is in general an open contour in the complex plane where the bilinear concomi-
tant has the same value at the end points of the contour. This method involves using a
form of equation (2) then multiply both sides by a function, then take a definite integral
of both sides. This yields a definite integral in terms of a contour integral. A second
contour integral is derived by multiplying equation (2) by a function and performing some
substitutions so that the contour integrals are the same.

3. Definite integral of the contour integral

We use the method in [8]. The cut and contour are in the second quadrant of the
complex z-plane where z = w + m. The cut approaches the origin from the interior
of the second quadrant and the contour goes round the origin with zero radius and is
on opposite sides of the cut. Using equation (2) we replace y by log(axy ) then multiply

by xmy−m−1e
−px−qy−x2

4y . Next we take the double infinite integral over x ∈ [0,∞) and
y ∈ [0,∞) to get
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(3)

1

Γ(k + 1)

∫ ∞

0

∫ ∞

0
xmy−m−1e

−px−qy−x2

4y logk
(
ax

y

)
dxdy

=
1

2πi

∫ ∞

0

∫ ∞

0

∫
C
aww−k−1xm+wy−m−w−1e

−px−qy−x2

4y dwdxdy

=
1

2πi

∫
C

∫ ∞

0

∫ ∞

0
aww−k−1xm+wy−m−w−1e

−px−qy−x2

4y dxdydw

=
1

2πi

∫
C

πaww−k−12m+w+1q
m+w

2 csc(π(m+ w)) sinh
(
(m+ w) cosh−1

(
p√
q

))
√

p2 − q
dw

from equation (3.1.3.48) in [6] where |Re(m+w)|< 1. We are able to switch the order
of integration over z, x and y using Fubini’s theorem since the integrand is of bounded
measure over the space C × [0,∞)× [0,∞).

4. The Lerch function

We use (9.550) and (9.556) in [2] where Φ(z, s, v) is the Lerch function which is a
generalization of the Hurwitz zeta ζ(s, v) and Polylogarithm functions Lin(z). The Lerch
function has a series representation given by

Φ(z, s, v) =
∞∑
n=0

(v + n)−szn (4)

where |z|< 1, v ̸= 0,−1, .. and is continued analytically by its integral representation given
by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t
dt =

1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, and either |z|≤ 1, z ̸= 1,Re(s) > 0, or z = 1,Re(s) > 1.

5. Infinite sum of the contour integral

In this section we will again use Cauchy’s integral formula (2) and taking the infinite
sum to derive equivalent sum representations for the contour integrals. We proceed using
equation (2) to form two equations and take their difference. Firstly, replace y → y + x
and multiply both sides by emx and secondly, replace x → −x in the first equation to get
the second equation and subtract to get

(6)
emx(x+ y)k − e−mx(y − x)k

2Γ(k + 1)
=

1

2πi

∫
C
w−k−1ewy sinh(x(m+ w))dw

Next we replace y → log(a) + log(q)
2 + iπ(2y + 1) + log(2) and multiply both sides by

eiπm(2y+1) and take the infinite sum over y ∈ [0,∞) to get
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(7)

2k−1πke−mx+ 1
2
iπ(k+2m)

Γ(k + 1)

(
e2mxΦ

(
e2imπ,−k,−2ix+ 2i log(2a) + i log(q)− 2π

4π

)
− Φ

(
e2imπ,−k,

2ix− 2i log(2a)− i log(q) + 2π

4π

))
=

1

2πi

∞∑
y=0

∫
C
2waww−k−1qw/2eiπ(2y+1)(m+w) sinh(x(m+ w))dw

=
1

2πi

∫
C

∞∑
y=0

2waww−k−1qw/2eiπ(2y+1)(m+w) sinh(x(m+ w))dw

=
1

2πi

∫
C
i2w−1aww−k−1qw/2 csc(π(m+ w)) sinh(x(m+ w))dw

from equation (1.232.3) in [2] where Im(m + w) > 0. Next we multiply by − iπ2m+2qm/2√
p2−q

and replace x → cosh−1
(

p√
q

)
simplifying to get

s̄

e
2m cosh−1

(
p√
q

)
Φ

e2imπ,−k,−
2i cosh−1

(
p√
q

)
+ 2i log(2a) + i log(q)− 2π

4π


− Φ

e2imπ,−k,
2i cosh−1

(
p√
q

)
− 2i log(2a)− i log(q) + 2π

4π


=

1

2πi

∫
C

πaww−k−12m+w+1q
m
2
+w

2 csc(π(m+ w)) sinh
(
(m+ w) cosh−1

(
p√
q

))
√
p2 − q

dw

(8)

where s̄ = − iπk+12k+m+1qm/2e
−m cosh−1

(
p√
q

)
+1

2 iπ(k+2m)

Γ(k+1)
√

p2−q
.
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6. Double integral in terms of the Lerch function

Theorem 1. For a, p, q ∈ C, Im(k) ≤ 0,−1 < Re(m) ≤ −1/2,−1 < Im(m) < −1/2,

(9 )

∫ ∞

0

∫ ∞

0
xmy−m−1e

−px−qy−x2

4y logk
(
ax

y

)
dxdy

= r̄

e
2m cosh−1

(
p√
q

)
Φ

e2imπ,−k,−
2i cosh−1

(
p√
q

)
+ 2i log(2a) + i log(q)− 2π

4π


− Φ

e2imπ,−k,
2i cosh−1

(
p√
q

)
− 2i log(2a)− i log(q) + 2π

4π



where r̄ = Γ(k + 1)s̄ = − iπk+12k+m+1qm/2e
−m cosh−1

(
p√
q

)
+1

2 iπ(k+2m)

√
p2−q

Proof. Since the right-hand sides of equations (3) and (8) are equal we can equate the
left-hand sides and simplify the gamma function to get the stated result.

Main Results

In this section we will present evaluations of equation (9) when k is a positive integer
and when k is otherwise. When k is a positive integer the kernel reduces to the Laplace
transform of the modified Bessel function of the second kind Kν(z). Examples of these
evaluations are

7. Derivation of entry 3.1.3.48 in [6]

Theorem 2. For p, q ∈ C,−1 < Re(m) ≤ −1/2,−1 < Im(m) < −1/2,

(10 )

∫ ∞

0

∫ ∞

0
xmy−m−1e

−px−qy−x2

4y dxdy =
π2m+1qm/2 csc(πm) sinh

(
m cosh−1

(
p√
q

))
√
p2 − q

Proof. Use equation (9) and set k = 0 and simplify using entry (2) in table below
(64:12:7) in [5].

8. Derivation of new entry 3.1.3.59 in [6]

In this example we look at a double integral where the kernel involves the modified
Bessel function of the second kind Kν(z) and its first partial derivative ∂

∂νKν(z) and
express it in terms of elementary functions.
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Theorem 3. For p, q ∈ C,−1 < Re(m) ≤ −1/2,−1 < Im(m) < −1/2,∫ ∞

0

∫ ∞

0
xmy−m−1 log

(
ax

y

)
e
−px−qy−x2

4y dxdy

= −π2mqm/2 csc(πm)√
p2 − q

(
(−2 log(a) + 2π cot(πm)− log(4q)) sinh

(
m cosh−1

(
p
√
q

))
− 2 cosh−1

(
p
√
q

)
cosh

(
m cosh−1

(
p
√
q

)))
(11 )

Proof. Use equation (9) and set k = 1 and simplify using entry (1) in table below
(64:12:7) in [5] and equation (11.125) in [1].

9. Derivation of new entry 3.1.3.60 in [6]

In this example we look at the Laplace transform of the first partial derivative with
respect to ν of the modified Bessel function of the second kind Kν(x) where ν = −1/2, x =
x/2. Details about this function are listed in equation (51:4:1) in [5] and equation (11.123a)
in [1].

Proposition 1.

(12 )

∫ ∞

0

∫ ∞

0

e
−x2+4xy+y2

4y log
(
x
y

)
√
x
√
y

dxdy = −2
√
2π cosh−1(2)

Proof. Use equation (9) and set m = −1/2, a = 1 and simplify in terms of the Hurwitz
zeta function using entry (4) in table below (64:12:7) in [5]. Next set k = p = 1, q = 1/4
and simplify using entry (2) in table below (64:4:1) in [5].

10. Derivation of new entry 3.1.3.61 in [6]

Proposition 2.

(13 )

∫ ∞

0

∫ ∞

0

e
−x2+4xy+y2

4y log2
(
x
y

)
√
x
√
y

dxdy

= 2

√
2

3
π
(
π2 + (cosh−1(2))2

)
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Proof. Use equation (9) and set m = −1/2, a = 1 and simplify in terms of the Hurwitz
zeta function using entry (4) in table below (64:12:7) in [5]. Next set k = 2, p = 1, q = 1/4
and simplify using entry (3) in table below (64:4:1) in [5].

11. Derivation of new entry 3.1.3.62 in [6]

Proposition 3. For Re(k) > 0, Im(k) < 0,

(14 )

∫ ∞

0

∫ ∞

0

e
−x2+xy+y2

4y (x− y) logk
(
x
y

)
√
xy3/2

dxdy

= i22k+3e
iπk
2 πk+1

(
ζ

(
−k,

1

6

)
+ ζ

(
−k,

5

6

)
+
(
1− 3−k

)
ζ(−k)

)
Proof. Use equation (9) and set a = 1,m = −1/2, q = p and simplify in terms of the

Hurwitz zeta functions using entry (4) in table below (64:12:7) in [5]. Next set p = 1/4
and simplify using entry (2) in table below (64:7) in [5].

12. Derivation of new entry 3.1.3.63 in [6]

Proposition 4.

(15 )

∫ ∞

0

∫ ∞

0

e
−x2+xy+y2

4y (x− y) log
(
x
y

)
log
(
log
(
x
y

))
√
xy3/2

dxdy

=
4

9
π2

(
6 + 3πi+ log

(
21433π6

A72

))
Proof. Use equation (14) and take the first partial derivative with respect to k then

set k = 1 and simplify in terms of Glaisher’s constant A, using equations (A11) and (A12)
in [10].
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13. Derivation of new entry 3.1.3.64 in [6]

Proposition 5.

(16 )
∫ ∞

0

∫ ∞

0

e
−x2+xy+y2

4y
(

4
√
y − 4

√
x
)

x3/4
√
y log

(
x
y

) dxdy = 4 log
(
4− 2

√
3
)

Proof. Use equation (9) and replace m → t to form a second equation and take their
difference. Next set m = −1/2, t = −3/4, a = 1, q = p and simplify the right-hand side in
terms of the Hurwitz zeta function using entry (4) in table below (64:12:7) in [5]. Next
apply L’Hopital’s rule to the right-hand side as k → −1 and simplify using entry (1) in
table below (64:12:7) and equation (64:4:1) in [5].

14. Derivation of new entry 3.1.3.65 in [6]

Proposition 6. For −1 < Re(m) ≤ −1/2,−1 < Im(m) < −1/2,−1 < Re(t) ≤
−1/2,−1 < Im(t) < −1/2,

(17 )

∫ ∞

0

∫ ∞

0

e
−x2+xy+y2

4y y−m−t−1
(
ymxt − xmyt

)
log
(
x
y

) dxdy

= 2i
√
3

(
2e

2iπm
3 2F1

(
1

3
, 1;

4

3
; e2imπ

)
− e

4iπm
3 2F1

(
2

3
, 1;

5

3
; e2imπ

)
− 2e

2iπt
3 2F1

(
1

3
, 1;

4

3
; e2iπt

)
+ e

4iπt
3 2F1

(
2

3
, 1;

5

3
; e2iπt

))
Proof. Use equation (9) and set k = −1, a = 1, p = q = 1/4 and simplify using (9.559)

in [2].

15. Derivation of new entry 3.1.3.66 in [6]

Proposition 7.

(18 )
∫ ∞

0

∫ ∞

0

e
−x2+xy+y2

4y
(

6
√
y − 6

√
x
)

x2/3
√
y log

(
x
y

) dxdy = log

(
sec4

(
π
9

)
4
(
sin
(
π
36

)
+ cos

(
π
36

))4
)
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Proof. Use equation (17) and set m = −1/2, t = −2/3 and simplify using (9.559) in
[2].

16. Derivation of new entry 3.1.3.67 in [6]

Proposition 8.

(19 )

∫ ∞

0

∫ ∞

0

e
−x2+xy+y2

4y
(

12
√
y − 12

√
x
)

x3/4 3
√
y log

(
x
y

) dxdy = 2

(
log

(
7

4
−
√
3

)

+ 2 log
(
csc
( π

18

)))
Proof. Use equation (17) and set m = −2/3, t = −3/4 and simplify using (9.559) in

[2].

17. Derivation of new entry 3.1.3.68 in [6]

Proposition 9.

(20 )
∫ ∞

0

∫ ∞

0

e
−x2+xy+y2

4y
(

6
√
y − 6

√
x
)

√
xy2/3 log

(
x
y

) dxdy = 2 log

(
1 + cos

(
π
9

)
4− 4 sin

(
π
18

))

Proof. Use equation (17) and set m = −1/3, t = −1/2 and simplify using (9.559) in
[2].

18. Derivation of new entry 3.1.3.69 in [6]

Proposition 10.

(21 )
∫ ∞

0

∫ ∞

0

e
−x2+xy+y2

4y
(

4
√
y − 4

√
x
)

x3/4
√
y log

(
x
y

) dxdy = 4 log
(
4− 2

√
3
)

Proof. Use equation (17) and set m = −1/2, t = −3/4 and simplify using (9.559) in
[2].
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19. Derivation of new entry 3.1.3.70 in [6]

In this section we will look at the limiting case of equation (9) when p = q and apply
L’Hopitals’ rule as q → 1 and express the integral in terms of the Hypergeometric function
section (9.1) and equation (9.559) in [2].

Proposition 11. For −1 < Re(m) ≤ −1/2,−1 < Im(m) < −1/2,−1 < Re(t) ≤
−1/2,−1 < Im(t) < −1/2,

(22 )

∫ ∞

0

∫ ∞

0

e
− (x+2y)2

4y y−m−t−1
(
ymxt − xmyt

)
log
(
x
y

) dxdy

=
2meiπm

π

(
2πmΦ

(
e2imπ, 1,

π − i log(2)

2π

)
+ iΦ

(
e2imπ, 2,

π − i log(2)

2π

))
− 2teiπt

(
2πtΦ

(
e2iπt, 1,

π − i log(2)

2π

)
+ iΦ

(
e2iπt, 2,

π − i log(2)

2π

))
Proof. Use equation (9) and set p = q and apply L’Hopital’s’ rule as q → 1 to the

right-hand side and simplify. Next form a second integral by replacing m → t and take
their difference.
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20. Summary table of results

f(x, y)
∫∞
0

∫∞
0 f(x, y)dxdy

xmy−m−1e
−px−qy−x2

4y
π2m+1qm/2 csc(πm) sinh

(
m cosh−1

(
p√
q

))
√

p2−q

e
−x2+4xy+y2

4y log2
(

x
y

)
√
x
√
y

2
√

2
3π
(
π2 + cosh−1(2)2

)
e
−x2+xy+y2

4y (x−y) logk
(

x
y

)
√
xy3/2

i22k+3e
iπk
2 πk+1

(
ζ
(
−k, 16

)
+ ζ

(
−k, 56

)
+
(
1− 3−k

)
ζ(−k)

)
e
−x2+xy+y2

4y (x−y) log
(

x
y

)
log

(
log

(
x
y

))
√
xy3/2

4
9π

2
(
6 + 3πi+ log

(
21433π6

A72

))
e
−x2+xy+y2

4y
(

4
√
y− 4

√
x
)

x3/4√y log
(

x
y

) 4 log
(
4− 2

√
3
)

e
−x2+xy+y2

4y
(

6
√
y− 6

√
x
)

x2/3√y log
(

x
y

) log

(
sec4(π

9 )
4(sin( π

36)+cos( π
36))

4

)
e
−x2+xy+y2

4y
(

12
√
y− 12

√
x
)

x3/4 3
√
y log

(
x
y

) 2
(
log
(
7
4 −

√
3
)
+ 2 log

(
csc
(
π
18

)))
e
−x2+xy+y2

4y
(

6
√
y− 6

√
x
)

√
xy2/3 log

(
x
y

) 2 log

(
1+cos(π

9 )
4−4 sin( π

18)

)
e
−x2+xy+y2

4y
(

4
√
y− 4

√
x
)

x3/4√y log
(

x
y

) 4 log
(
4− 2

√
3
)

Table 1: Table of definite integrals

21. Discussion

In this work the authors derived a double integral formula in terms of the Lerch func-
tion. This integral formula was then used to derive special cases in terms of fundamental
constants and special functions. A Table (1) of integrals featuring some of the integral
results was presented for the benefit of interested readers. We used Wolfram Mathematica
to numerically verify the formulas for various ranges of the parameters for real and imagi-
nary values. We will use our contour integral method to derive other double integrals and
produce more tables of integrals in our future work.



REFERENCES 1211

References

[1] George B. Arfken and Hans J. Weber. Mathematical Methods For Physicists Inter-
national Student Edition. Elsevier, 07 2005.

[2] I. S. Gradshteyn, I. M. Ryzhik, Alan Jeffrey, and Daniel Zwillinger. Table of Integrals,
Series, and Products. Academic Press; 6th edition (Aug. 24 2000), 08 2000.

[3] Abdul Jerri. Integral and Discrete Transforms with Applications and Error Analysis.
Chapman & Hall/CRC Pure and Applied Mathematics, 06 1992.

[4] T. M. Macrobert. Integrals involving a modified bessel function of the second kind
and an e-function. Proceedings of the Glasgow Mathematical Association, 2:93–96, 10
1954.

[5] Keith B. Oldham, Jan Myland, and Jerome Spanier. An Atlas of Functions: with
Equator, the Atlas Function Calculator. Springer Science & Business Media, 07 2010.
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