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1. Introduction
Γ -ring was introduced by N. Nobusawa in [13] as a generalization of classical rings.

Γ -rings have also viewed as the connection with the abelian additive groups of all linear
mappings between two finite dimensional spaces over a field. Classical example of Γ -ring
presented by Nobusawa was by taking an additive group M consisting of homomorphisms
of a module A to a module B and an additive group Γ consisting of homomorphisms of B
to A, and aαb the usual composite map, where a, b ∈ M and α ∈ Γ. Barnes introduced
radical theory of Γ-rings in [1]. Afterwards, numbers of researchers have been published
their research articles on Γ-rings. Similarly, Γ-nearrings were introduced by Satyanarayana
in [17]. Booth et al. provided different ways to construct equiprime Γ-nearrings [2]. Γ-
semirings were introduced by Rao in [14]. Prime and semi-prime ideals of of Γ-semirings
were discussed in [5, 6]. Moreover, Quasi-ideals in Γ-semiring were discussed in [7, 8].
The properties of ideals, prime ideals, semi-prime ideals and their generalization plays a
key role in structure of Γ-semirings. However, the properties of an ideal in semirings and
Γ-semirings are slightly changed from the properties of the usual ring ideals. Theory of
ideals in an ordered Γ-semiring have been introduced in [15]. Similarly, weakly prime and
weakly primary ideals in gamma seminearrings have been introduced in [9].
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A groupoid which satisfies the left invertive law i.e., (xy)z = (zy)x is said to be an LA-
groupoid. A groupoid satisfying the medial law i.e., (xy)(zt) = (xz)(yt) holds by groupoid
is called medial [3], whereas a groupoid which satisfying the paramedial law i.e., (st)(uv) =
(vt)(us) is a paramedial. LA-groupoid S always obeys medial law, whereas paramedial law
holds only by LA-groupoid S with left identity e [3]. LA-groupoid S having e as a left
identity holds p(qr) = q(pr) [12], a ∈ S is left (right) cancellative if al = am ⇒ l = m
(la = ma ⇒ l = m) ∀ l,m ∈ S. If every element is left and right cancellative then S
is cancellative and x ∈ S is cancellative if x is left and right cancellative. The notion
LA-groupoid to LA-group was extended by Kamran [16]. Similarly, if e is left identity
in LA-groupoid (i-e em = m ∀ m ∈ S) and ∀ m ∈ S ∃ m−1 ∈ S such that m−1m =
mm−1 = e, then S is called LA-group. LA-semirings are developed by the concepts of LA-
semigroup [10, 11]. LA-semiring and certain results on LA-semirings having two variables
are described in [4]. A nonempty set R with two binary operation "." and "+" such that
(i) (R,+) is LA-group (ii) (R, ·) is LA-groupoid, and non- associative structure w.r.t ′+′

and ′·′ satisfying left and right distributive laws is called LA-ring [20]. LA-ring was further
elaborated in [18]. Every x 6= 0 element of left almost ring R has multiplicative inverse
x−1 and having left identity e then LA-ring R is called LA-field. LA-ring < R, ⊕, . >
can be obtain by defining p ⊕ q = q − p and pq, for p, q, r ∈ R, is similar as in the ring.
The addition in LA-ring cannot assume to be commutative. If for p, q ∈ R, pq = 0 implies
p = 0 or q = 0 then LA-ring R is called LA-integral domain. If ∅ 6= S ⊆ R and S is
LA-ring under binary operation defined in R, then S is LA-subring. If RS ⊆ S, then S is
left ideal of R. Similarly we can define right and two-sided ideals. If PQ ∈ A =⇒ P ∈ A
or Q ∈ A then ideal A of R is called prime. Left primary and weakly left primary ideals
in Γ-LA-rings and their characterizations are presented in [19].
It is well known that an ideal I of a semiring R is called subtractive, if whenever a, a+b ∈ I,
bR, we have b ∈ I. Similarly, A left k-ideal I of a semiring S is a left ideal such that if a ∈
and x ∈ S and if either a+ x ∈ I. or x+ a ∈ I, then x ∈ I.
In this note, first we add few new theorems and examples in the theory of Γ-LA-rings
and then we introduce the notion of Γ-LA-semirings. In due course, we describe c-prime,
3-prime ideals and their relationships among themselves in Γ-LA-ring and Γ-LA-semirings.
Finally, we discuss left ideals, right ideals, and some results on bi-ideal, quasi ideals, almost
prime and weakly almost prime ideals in Γ-LA-semiring.

2. Main Results and Discussions

2.1. Some applications of prime ideals in Γ-La-ring

In this section, we introduce different types of prime ideals in Γ-LA-rings along with
their applications. We begin by recalling definition of Γ-LA-ring and then we add few new
results and examples in the theory of Γ-LA-ring.

Definition 1. [19] Let (R,+) and (Γ ,+) be the two LA-groups and there exists a mapping
R×Γ ×R→ R by (a, α, b)→ aαb, for all a, b ∈ R and α ∈ Γ is called a gamma LA-ring,
if it satifies the following conditions.
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1. aα(b+ c) = aαb+ aαc
2. (a+ b)αc = aαc+ bαc
3. a(α+ β)b = aαb+ aβb
4. (aαb)βc = (cαb)βa,∀ a, .b, c ∈ R ,α, β ∈ Γ

Example 1. Let R = {a1, a2, a3, a4, a5, a6, a7, a8} be a set with two binary operations ”+”
and ”.” given in the Tables set 1 be the LA-ring and Γ = {s1, s2, s3} with binary operation⊕

is LA-group.

Tables Set 1
+ a1 a2 a3 a4 a5 a6 a7 a8
a1 a1 a2 a3 a4 a5 a6 a7 a8
a2 a3 a1 a4 a2 a7 a5 a8 a6
a3 a2 a4 a1 a3 a6 a8 a5 a7
a4 a4 a3 a2 a1 a8 a7 a6 a5
a5 a5 a6 a7 a8 a1 a2 a3 a4
a6 a7 a5 a8 a6 a3 a1 a4 a2
a7 a6 a8 a5 a7 a2 a4 a1 a3
a8 a8 a7 a6 a5 a4 a3 a2 a1

· a1 a2 a3 a4 a5 a6 a7 a8
a1 a1 a1 a1 a1 a1 a1 a1 a1
a2 a1 a5 a5 a1 a1 a5 a5 a1
a3 a1 a5 a5 a1 a1 a5 a5 a1
a4 a1 a1 a1 a1 a1 a1 a1 a1
a5 a1 a4 a4 a1 a1 a4 a4 a1
a6 a1 a8 a8 a1 a1 a8 a8 a1
a7 a1 a8 a8 a1 a1 a8 a8 a1
a8 a1 a4 a4 a1 a1 a4 a4 a1

⊕
s1 s2 s3

s1 s1 s2 s3
s2 s3 s1 s2
s3 s2 s3 s1

Then, clearly R is Γ -LA-ring under operation xγy = xy where x, y ∈ R andγ ∈ Γ .

Example 2. Let R = {k, l,m, n, o, p, q, r} with two binary operations ” + ” and ”.” given
in Tables set 2 be the LA-ring and Γ = {s, t, u, v, w} with binary operation

⊕
is LA-group.

Tables Set 2

+ k l m n o p q r
k m k n l q r o p
l n m l k r q p o
m k l m n o p q r
n l n k m p o r q
o q r o p m k n l
p r q p o n m l k
q o p q r k l m n
r p o r q l n k m

· k l m n o p q r
k k k k k k k k k
l k m k m k k m m
m k o k o k k o o
n k p k p k k p p
o k k k k k k k k
p k o k o k k o o
q k m k m k k m m
r k p k p k k p p
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s t u v w

s s t u v w
t w s t u v
u v w s t u
v u v w s t
w t u v w s

Then R is Γ -LA-ring under operation xγy = x+ γ + y where x, y ∈ R and γ ∈ Γ

Definition 2. An ideal I is said to be a c-prime ideal of a Γ-LA-ring R, if x, y ∈ R, γ ∈ Γ
and xγy ∈ I =⇒ x ∈ I or y ∈ I.

Definition 3. An ideal I is said to be a 3-prime ideal of a Γ-LA-ring R if x, y ∈ R, β ∈ Γ
and xβsβy ∈ I for all s ∈ R implies x ∈ I or y ∈ I.

We present few relationships among c-prime, 3-prime and prime ideals.

Lemma 1. In a Γ-LA-ring R, every c-prime ideal is a 3-prime ideal.

Proof. Let I be a c-prime ideal of Γ-LA-ring R. Let x, y ∈ R, β ∈ Γ and xβsβy ∈ I
for all s ∈ R. As I is c-prime ideal so x ∈ I or y ∈ I. So I is a 3-prime ideal of R.

Lemma 2. In a Γ-LA-ring R, every 3-prime ideal is a prime ideal.

Proof. Let I be a 3-prime ideal of Γ-LA-ring R. Let y ∈ I , γ ∈ Γ and xγy ∈ I. As I
is 3-prime ideal so x ∈ I or y ∈ I. Clearly, I is prime ideal of R.

Lemma 3. Every c-prime ideal in Γ-LA-ring is a prime ideal.

Proof. Let I be a c-prime ideal of Γ-LA-ring R, and let y ∈ I, γ ∈ Γ and xγy ∈ I.
Since I is c-prime ideal, x ∈ I or y ∈ I. Then I is a prime ideal of R.

Theorem 1. Let R be a Γ -LA-ring. Then, I is a 3-prime ideal in R iff R/I is a Γ -LA-
integral domain.

Proof. (=⇒)Let I be a 3-prime ideal of R, then by Lemma 2, I is a prime ideal. Thus,
R/I is a Γ -LA-integral domain.
(⇐=) Suppose that R/I is a Γ-LA-integral domain with xβsβy ∈ I for all s ∈ R. Then
I + arb = I, so (I + a) (I + b) = I, where a, b ∈ R. Since R/I is Γ -LA-integral domain,
we have I + a = I or I + b = I, then aI or bI is in I. Hence I is a 3-prime ideal of R.

Theorem 2. Let I be an ideal of a Γ -LA-ring R. Then, I is a c-prime ideal in R iff R/I
is a Γ -LA-integral domain.
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Proof. (⇒) Let I be a c-prime ideal in R. Then I is a prime ideal by Lemma 3. Thus
R/I is a Γ -LA-integral domain.
(⇐) Assume that R/I is a Γ-LA-integral domain with xβsβy ∈ I for all s ∈ R. Then,
I+arb = I so (I + a) (I+b) = I, a, b ∈ R. Since R/I is a Γ -LA-integral domain, I+a = I
or I + b = I, then aI or bI is in I. Thus I is a c-prime ideal of R.

Here we introduce the notion of weakly prime ideal in Γ-LA-rings.

Definition 4. A proper ideal I is said to be a weakly prime ideal of a Γ -LA-ring R if
0 6= AΓB ⊆ I implies either A ⊆ I or B ⊆ I for any ideals A and B of R.

Remark 1. Obviously every prime ideal is weakly prime and {0} is always weakly prime
ideal.

Theorem 3. Let I be a weakly prime ideal of Γ-LA-ring which is not prime. Then I = 0.

Proof. Since I is a weakly prime (but not prime), there exist ideals A 6⊆ I and B 6⊆ I
but 0 = AΓB ⊆ I. Since I ⊆ A + I and B ⊆ B + I. But, if I2 6= 0, by distributive laws
“.” over ” + ” of Γ-LA-ring, we have

0 6= I2 = IΓI ⊆ (A+ I)Γ(B + I)

= [(A+ I)ΓB] + [(A+ I)ΓI]

= AΓB + IΓB +AΓI + IΓI

⊆ I.

Which implies (A + I) ⊆ I and(B + I) ⊆ I, since I is a weakly prime i.e., A ⊆ I or
B + I ⊆ I, a contradiction. Hence, I2 = 0.

Remark 2. It is clear that if R2 = RΓR = 0 then every ideal of gamma left almost ring
is a weakly prime.

Theorem 4. In gamma left almost ring R, every ideal is a weakly prime iff AΓB =
A, AΓB = B or AΓB = 0, for any ideals A, B of R.

Proof. Assume that every ideal in R is a weakly prime ideal. Let A, B be weakly
prime ideals of R, then AΓB is a left ideal of R provided that AB 6=R, then by hypothesis,
AΓB is weakly prime. We consider two situations, that is AΓB = 0 or AΓB 6= 0. If
0 6= AΓB ⊆ AB, then by Definition 4 we have A ⊆ AΓB or B ⊆ AΓB. Since A and B
are ideals of R, we have AΓB ⊆ A and AΓB ⊆ B. Therefore, A = AΓB or B = AΓB.
If AΓB = R then A = B = R, whence R2 = R. Conversely, for proper ideal I of R and
ideals A and B, suppose that 0 6= AΓB ⊆ I. Then either A = AΓB ⊆ I or B= AΓB ⊆ I.

Corollary 1. If every ideal of gamma left almost ring is weakly prime. Then, either
A2 = A or A2 = 0 for ideal A.
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Theorem 5. In Γ -LA-ring every c-prime ideal is a weakly prime ideal.

Proof. Let I be c-prime ideal of Γ -LA-ring R, by Lemma 1, I is a prime ideal. So I is
a weakly prime ideal of R because every prime ideal is weakly prime ideal.

Theorem 6. Every 3-prime ideal in Γ -LA-ring is a weakly prime ideal.

Proof. Let I is 3-prime ideal of Γ -LA-ring R, by Lemma 2, we have I is a prime ideal.
Since every prime ideal is a weakly prime ideal, we have I a weakly prime ideal of R.

3. Γ-LA-SEMIRINGS

In this section, we introduce the notion of Γ-LA-semiring. Furthermore, we introduce
prime, weakly prime, subtracted ideals and nilpotent elements in Γ -LA-semiring along
with some interesting results.

Definition 5. Let (S,+) and (Γ ,+) be the two LA-monoids. Then S is said to be a
gamma LA-semiring (or Γ -LA-semiring) if there exists a mapping S×Γ ×S → S written
(x, γ, y) by xγy such that the following axioms hold
1. xγ(y + z) = xγy + xγz and (x+ y)γz = xγz + yγz
2. x(γ + β)y = xγy + xβy
3. (xγy)βz = (zγy)βx
for all x, y, z ∈ S, γ, β ∈ Γ . In this case we denote Γ -LA-semiring by (S, Γ ).

Example 3. Let S = {a, b, c, d, e} with two binary operations ” + ” and ” .” given in
the Tables set 3 be the LA-semiring and Γ = {p, q, r, s} with binary operation ”

⊕
” is

LA-monoid.

Tables Set 3

+ a b c d e
a s t u v w
b a a d a b
c a b b d e
d a a b a d
e a d e b c

· a b c d e
a a b c d e
b e a b c d
c d e a b c
d c d e a b
e b c d e a

⊕
p q r s

p p p p p
q p q r s
r p s q r
s p r s q

Then, S is LA- Γ -semiring under operations, (xγy)βz = (zγy)βx and xγy = xy where
x, y ∈ S and γ ∈ Γ .

Definition 6. Let I be a proper ideal of gamma LA-semiring S and AB ⊆ I such that
A ⊆ I or B ⊆ I for any ideals A,B of S, then proper ideal I of a gamma LA-semiring S
is a prime ideal.

Definition 7. If I is a proper ideal of Γ -LA-semiring S and {0} 6= AΓB ⊆ I such that
A ⊆ I or B ⊆ I for any ideals A,B of S, then I is called weakly prime ideal of gamma
LA-semiring S.
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Definition 8. If sn = 0 for s ∈ S and positive integer n (depending on s), then the element
s in a Γ -LA-semiring S is nilpotent. The set of all nilpotent element of S is denoted by
Nil S.

Definition 9. If In = 0 for positive integer n (depending on I), then ideal I in a Γ -LA-
semiring S is nilpotent.

Theorem 7. Let A be a subtractive ideal in a Γ -LA-semiring S with 1 6= 0. Then the
followings are equivalent.
(i) A is a weakly prime ideal.
(ii) If {0} 6= XΓY ⊆ A for right (left) ideals X,Y of S, then X ⊆ A or Y ⊆ A.
(iii) If x, y ∈ S such that {0} 6= xΓSΓy ⊆ A, then x ∈ A or y ∈ A.

Proof. (i)⇒ (ii) Let A be a weakly prime ideal of S and X,Y are two right (left) ideals
of S such that {0} 6= XΓY ⊆ A. Let the ideals generated by X,Y are < X >,< Y >,
respectively. Then {0} 6=< X > Γ < Y >⊆ A implies < X >⊆ A or < Y >⊆ A and
X ⊆< X >⊆ A or Y ⊆<Y >⊆ A. Therefore, X ⊆ A or Y ⊆ A.
(ii)⇒ (iii) Let {0} 6= xΓSΓy ⊆ A. Since S has an identity, therefore {0} 6= (xΓS)(yΓS) ⊆
A implies x ∈ xΓS ⊆ A or y ∈ yΓS ⊆ A.
(iii) ⇒ (i) Suppose that XΓY ⊆ A, for ideals X and Y of S, where X 6⊆ A and
Y 6⊆ A. Let x ∈ X\A, y ∈ Y \A. Also let x′ ∈ XnA, y′ ∈ Y nA be chosen arbitrary.
Since x + x′, y + y′ 6∈ A, we must have {0} = (x + x′)ΓSΓ (y + y′). Now if we are let-
ting x′ = 0 or y′ = 0 or x′ = 0 and y′ = 0 and considering all combinations we get
0 = xγy = x′γy = xγy′ = x′γy′ and hence XΓY = {0}.

Proposition 1. Every ideal of a gamma LA-semiring S is weakly prime iff we have
XΓY = X, XΓY = Y , or XΓY = 0, for any ideals X,Y in S.

Proof. Assume X and Y are the weakly prime ideals of S. Suppose XΓY 6= S. Then
XΓY is a weakly prime. If {0} 6= XΓY ⊆ XΓY , then we have X ⊆ XΓY or Y ⊆ XΓY
(since XΓY is weakly prime ideal of S), that is, X = XΓY or Y = XΓY . If XΓY = S
then we have X = Y = S, whence SAs = S.
Conversely, let A be any proper ideal of S and let {0} 6= XΓY ⊆ A for ideals X and Y of
S. Then, we have either X = XΓY ⊆ A or Y = XΓY ⊆ A.

On the basis of above proposition we can easily prove the following results.

Remark 3. If every ideal of Γ -LA-semiring S is a weakly prime, then we have either
X2 = X or X2 = 0, for any ideal X of S.

Lemma 4. Let P be a subtractive and weakly prime ideal but not a prime ideal of Γ -LA-
semiring S. Let xγy = 0, for some x, y /∈ P , then we have xΓP = PΓy = {0}.

Proof. Suppose xγp1 6= 0, for some p1 ∈ P and γ ∈ Γ . Then 0 6= xγ(y+p1) ∈ P . Since
P is a weakly prime ideal of S, therefore y + p1 ∈ P or x ∈ P , that is, x ∈ P or y ∈ P , a
contradiction. Therefore xΓP = {0}. Similarly, we can show that PΓy = {0}.
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Theorem 8. Let P be a subtractive ideal of a Γ -LA-semiring S. If P is weakly prime but
not a prime, then P 2 = {0}.

Proof. Suppose p1γp2 6= 0, for some p1, p2 ∈ P and γ ∈ Γ and xγy = 0, for some
x, y /∈ P , where P is not a prime ideal of S. Then by Lemma 4 we have (x+p1)γ(y+p2) =
p1γp2 6= 0. Hence either (x+ p1) ∈ P or (y + p2) ∈ P , and thus either x ∈ P or y ∈ P , a
contradiction. Hence P 2 = {0}.

3.1. IDEALS IN Γ-LA-SEMIRING

In this section, we introduce the left and right ideals of Γ -LA-semiring and present
some results on bi-ideal and quasi ideal in Γ -LA-semiring.

Lemma 5. Let S be a gamma LA-semiring with identity. Then aγb = aβb, for all a, b ∈ S
and γ, β ∈ Γ .

Proof. Let S be a Γ -LA-semiring and e be the identity of S. Let x, y ∈ S and γ, β ∈ Γ .
Then, we have

xγy = xγ(eβy)

= eγ(xβy)

= xβy

Lemma 6. Let S be a gamma LA semiring with identity and x ∈ S. If X is a left ideal
of S then Xγx is a left ideal inS, whereγ ∈ Γ .

Proof. If S is gamma LA-semiring having left identity and let x ∈ S. Now consider

sγx+ rγx = (s+ r)γx

∈ Xγx.

And
SΓ (Xγx) ⊆ (SΓX)γx ⊆ Xγx

for all r, s ∈ X and γ ∈ Γ . Hence Xγx is a left ideal inS.

Corollary 2. Let S be a gamma LA-semiring with identity and x ∈ S. If X is a right
ideal of S, then xγX is a right ideal in S, where γ ∈ Γ .

Proof. It is similar to the proof of Lemma 6.

Lemma 7. Let S be a gamma LA-semiring with identity and X,Y be the left ideals of S.
then, for each left ideal Y of S, (X : Γ : Y ) is a left ideal in S, where (X : Γ : Y ) = {x ∈
S : xΓY ⊆ X}.
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Proof. Suppose that S is a gamma LA-semiring with left identity. Let s ∈ S and let
x, y ∈ (X : Γ : Y ). Then xΓY ⊆ X and yΓY ⊆ X so that

(x+ y)ΓY = xΓY + yΓY

⊆ X +X

= X.

And
(sγx)ΓY = sγ(xΓY ) ⊆ sγX ⊆ X

for all γ ∈ Γ . Hence x + y ∈ (X : Γ : Y ) and SΓ (X : Γ : Y ) ⊆ (X : Γ : Y ). Thus
(X : Γ : Y ) is a left ideal in S.

Corollary 3. Let S be a gamma LA-semiring with identity and X be a left ideal of S.
Then, (X : γ : r) is a left ideal in S, where (X : γ : r) = {x ∈ S : xγr ∈ X}.

Proof. This follows from lemma 7

Remark 4. Let X,Y and Z be the left ideals of a gamma LA-semiring S. Then (X : Γ :
Z) ⊆ (X : Γ : Y ), where Y ⊆ Z.

Theorem 9. Let S be a Γ-LA-semiring with identity. Then, (X : Γ : Y ) is a quasi-ideal
in S if X is quasi-ideal of S.

Proof. Assume that X is a quasi-ideal of S, then By Lemma 7, we have (X : Γ : Y ) is
a left ideal in S. Then,

(SΓ (X : Γ : Y )) ∩ ((X : Γ : Y )ΓS) ⊆ (X : Γ : Y ) ∩ (X : Γ : Y )

⊆ (X : Γ : Y ).

Hence (X : Γ : Y ) is a quasi-ideal in S.

Theorem 10. Let S be a gamma LA-semiring with identity. Then (X : Γ : Y ) is a left
k-ideal in S, if X be a left k-ideal of S.

Proof. Assume that X is a left k-ideal of S then By Lemma 7, (X : Γ : Y ) is a left
ideal in S. Similarly, if x, x + t ∈ (X : Γ : Y ) then xΓY ⊆ X and (x + t)ΓY ⊆ X that
is xΓY ⊆ X and xΓY + tΓY ⊆ X. Then, we get tΓY ⊆ X. Hence (X : Γ : Y ) is a left
k-ideal in S.
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3.2. ALMOST PRIME IDEALS IN Γ-LA-SEMIRING

In this section, we initiate the term almost prime and weakly almost prime ideals in
Γ -LA- semiring. Our starting point is the following definition.

Definition 10. A left ideal P is called almost-prime if XΓY ⊆ P implies that X ⊆ P or
Y ⊆ P , where X and Y are respectively left and right ideal of S.

Remark 5. It is easy to see that every almost-prime left ideal is prime.

Definition 11. A left ideal P is called weakly almost-prime if {0} 6= XΓY ⊆ P implies
X ⊆ P or Y ⊆ P , where X and Y are respectively left and right ideal of S.

Remark 6. It is easy to see that every almost-prime left ideal is weakly almost-prime.

Lemma 8. Let P be the ideal of a Γ -LA-semiring S with identity. Then P is an almost-
prime left ideal of S if xΓ (SΓy) ⊆ P implies x ∈ P or y ∈ P .

Proof. Let P be an almost-prime left ideal of a Γ -LA-semiring S with identity. Now
suppose that xΓ (SΓy) ⊆ P . Then by hypothesis, we have

(SΓx)Γ (yΓS) ⊆ (SΓx)ΓSΓ (yΓS)

= (xΓS)ΓSΓ (SΓy)

= (SΓS)ΓxΓ (SΓy)

⊆ (SΓS)ΓP

= (PΓS)ΓS

⊆ PΓS ⊆ P

which implies (SΓx)Γ (yΓS) ⊆ P . Then, x = eγx ∈ SΓx ⊆ P or y = yγe ∈ yΓS ⊆ P .
Hence x ∈ P ory ∈ P .

Corollary 4. Let P be an almost-prime left ideal of a Γ -LA-semiring S with identity.
Then P is a weakly almost-prime left ideal of S if {0} 6= xΓ (SΓy) ⊆ P , then x ∈ P or
y ∈ P .

Proof. This follows from Lemma 8

Theorem 11. Let S be a gamma LA-semiring with identity and x, y ∈ S and γ ∈ Γ . Then
a left ideal P of S is almost-prime iff xγy ∈ P implies x ∈ P ory ∈ P .

Proof. Let P be a left ideal of a Γ -LA-semiring with identity. Now suppose that
xγy ∈ P , where x, y ∈ S and γ ∈ Γ . Then by hypothesis, we get;

(SΓx)γ(yΓS) ⊆ SΓ ((xγy)ΓS)
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⊆ SΓ (PΓS)

⊆ SΓP

⊆ P.
So by the definition of almost-prime, we have x ∈ P or y ∈ P .
Conversely, assume that if xγy ∈ P implies x ∈ P or y ∈ P and X is left ideal of S. Let
XΓY ⊆ P , where Y is right ideal of S such that Y ⊆ S−P . Then there exists y ∈ Y such
that y /∈ P . Now we get xγy ∈ P . So by hypothesis, x ∈ P , for all x ∈ X =⇒ X ⊆ P . So
P is almost-prime left ideal in S.

Corollary 5. Let S be a gamma LA-semiring having identity and let x, y ∈ S, γ ∈ Γ .
Then a left ideal P of S is weakly almost-prime iff 0 6= xγy ∈ P implies x ∈ P or y ∈ P .

Proof. This follows from Theorem 11

Theorem 12. Let S be a gamma LA-semiring having left identity and X be an almost-
prime left ideal of S. Then (X : Γ : Y ) is an almost-prime left ideal in S, where Y ⊆ S−X.

Proof. Assume that X is a almost-prime left ideal of S. By Lemma 7, we have
(X : Γ : Y ), a left ideal in S. Let xγy ∈ (X : Γ : Y ), where x, y ∈ S and γ ∈ Γ . Suppose
that y /∈ (X : Γ : Y ). Since xγy ∈ (X : Γ : Y ), we have (xγy)ΓY ⊆ X. So by hypothesis

(SΓx)γ(yΓY ) = SΓ ((xγy)ΓY )

⊆ SΓX

⊆ X.
Then, following the definition of almost-prime, we have x = eγx ∈ SΓx ⊆ X or yΓY ⊆ X
implies that xΓS ⊆ XΓS ⊆ X. Hence (X : Γ : Y ) is an almost-prime left ideal in S.

Corollary 6. Let S be a gamma LA-semiring having left identity and let X be an ideal of
S. If X is a weakly almost-prime left ideal of S, then (X : Γ : Y ), is a weakly almost-prime
left ideal in S, where Y ⊆ S −X.

Proof. This follows from Theorem 12

Corollary 7. Let S be a gamma LA-semiring having left identity and let X be an ideal of
S. If X is an almost-prime left ideal of S, then (X : γ : s) is an almost-prime left ideal in
S, where s ∈ S −X and γ ∈ Γ .

Proof. This follows from Theorem 12

Corollary 8. Let S be a gamma LA-semiring with left identity and let X be an ideal of
S. If X is a weakly almost-prime left ideal of S, then (X : γ : s), is a weakly almost-prime
left ideal in S, where s ∈ S −X and γ ∈ Γ .

Proof. This follows from Corollary 5
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4. Conclusion

In this manuscript, firstly we have added some fresh examples along with new results
in Γ -LA-rings. Next, we introduced the notion of Γ -LA-semirings and discussed different
types of ideals in Γ -LA-semirings. We examined that almost all the results of LA-rings
and LA-semirings are valid in case of Γ -LA-rings and Γ -LA-semirings. One could extend
this work by shifting our results towards the theory of Γ -LA-nearrings, Γ -LA-hemirings
etc.
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