EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 4, 2021, 1108-1111
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On Eigenvectors of Nilpotent Lie Algebras of Linear Operators

Morris W. Hirsch ${ }^{1,2, *}$, Joel W. Robbin ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720384, USA
${ }^{2}$ Department of Mathematics, University of Wisconsin at Madison, WI 53706, USA

Abstract

We give a condition ensuring that the operators in a nilpotent Lie algebra of linear operators on a finite dimensional vector space have a common eigenvector.

2020 Mathematics Subject Classifications: 22E25, 22E60, 47C05
Key Words and Phrases: Nilpotent, Lie algebras of Lie groups, Linear operators in algebras

1. Introduction

Throughout this paper V is a vector space of positive dimension over a field f and \gg is a nilpotent Lie algebra over f of linear operators on V. An element $u \in V$ is an eigenvector for $S \subset \gg$ if u is an eigenvector for every operator in S. If V has a basis $\left(e_{1}, \ldots, e_{n}\right)$ representing each element of \gg by an upper triangular matrix, then e_{1} is an eigenvector for \gg. Such a basis exists when f is algebraically closed and \gg is solvable (Lie's Theorem), and also when every element of \gg is a nilpotent operator (Engel's Theorem). Our results are further conditions guaranteeing existence of eigenvectors.

The minimal and characteristic polynomials of a linear operator A on V are denoted respectively by $\pi_{A}, \mu_{A} \in f[t]=$ the ring of polynomials over f. The cardinality of a set S is written $\# S$.

Let k be a Galois extension field of f of degree $d:=[k: f]$, and define $\mathbf{M} \subset$ to be the additive monoid generated by zero and the prime divisors d.

Consider the conditions:
(C1) μ_{A} splits in k for every $A \in \gg$
(C2) $\operatorname{dim} V \notin \mathbf{M}$
*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v14i4.4086
Email addresses: mwhirsch@chorus.net (M. W. Hirsch), robbin@math.wisc.edu (J. W. Robbin)

2. Results

Our main result is:
Theorem 1. If(C1) and(C2) hold then \gg has an eigenvector.
The proof is preceded by some applications.
When(C1) holds, Theorem 1 shows that there is an eigenvector in every invariant subspace whose dimension is not in \mathbf{M}. This is exploited to yield the following two results:

Corollary 1. If a nilpotent Lie algebra of linear operators on n does not have an eigenvector, every nontrivial invariant subspace has odd dimension.

Proof. When f is the real field and k is the complex field, \mathbf{M} consists of the positive even integers.

Corollary 2. Let(C1) hold. Assume \gg preserves a direct sum decomposition $V=\oplus_{i} W_{i}$, and let $D \subset$ denote the set of dimensions of the subspaces W_{i}.
(i) If \gg does not have an eigenvector then $D \subset \mathbf{M}$.
(ii) If $V^{\prime} \subset V$ is a maximal subspace spanned by eigenvectors of \gg then $\operatorname{dim}\left(V^{\prime}\right) \geq$ $\#\{D \backslash \mathbf{M}\}$.

Proof. Assertion (i) follows from Theorem 1. To prove (ii) order the W_{i} so that W_{1}, \ldots, W_{m} are the only summands whose dimensions are not in M. For each $j \in$ $\{1, \ldots, m\}$ we choose an eigenvector $e_{j} \in W_{j}$ by Theorem 1. The e_{j} are linearly independent and belong to V^{\prime} by maximality of V^{\prime}, whence (ii).

Example 1. Assume $n \notin \mathbf{M}$ and let $\alpha \in f[t]$ be a monic polynomial that splits in $k[t]$. Denote by $A(\alpha)$ the set of $n \times n$ matrices T over f such that $\alpha(T)=0$. Then every pairwise commuting family $T \subset A(\alpha)$ has an eigenvector in f^{n}. This follows from Theorem 1 applied to the Lie algebra \gg of linear operators on f^{n} generated by T. Being abelian, \gg can be triangularized over k, hence(C1) holds.

Example 2. The assumption that $n \in \mathbf{M}$ is essential to Theorem 1. For instance, take $f=, k=, V=2$. The abelian Lie algebra of 2×2 of real skew symmetric matrices. does not have an eigenvector in 2 .

Example 3. The hypothesis of Theorem 1 cannot be weakened to \gg being merely solvable. For a counterexample with $f=, k=$, take \gg to be the solvable 3-dimensional real Lie algebra with basis (X, U, V) such that $[X, U]=-V,[X, V]=U,[U, V]=0$.

A Lie algebra β over f is supersolvable if the spectrum of the linear map $\operatorname{ad} A: \beta \rightarrow \beta$ lies in f for all $A \in \beta$. If β is not supersolvable it need not have an eigenvector, as is shown by Example 3. We don't know if Theorem 1 extends to supersolvable Lie algebras, except for the following special case:

Theorem 2. A supersolvable Lie algebra β of linear transformations of 3 has an eigenvector.

Proof. Lacking an algebraic proof, we use a dynamical argument. Let $G \subset G L(3$, be the connected Lie subgroup having Lie algebra β. The natural action of G on the projective plane $\boldsymbol{\top} 2$ of lines in 3 through the origin fixes some $L \in \mathbb{T} 2$. This follows from supersolvability because $\operatorname{dim}(\mathbb{\top})=2$, the action on $\boldsymbol{\Omega} 2$ is effective and analytic, and the Euler characteristic of $\mathbb{T} 2$ is nonzero (Hirsch \& Weinstein [1]). The nonzero points of L are eigenvectors for β.

2.1. Proof of Theorem 1

We rely on Jacobson's Primary Decomposition Theorem [2, II.4, Theorem 5]. This states that V has a \gg-invariant direct sum decomposition $\oplus V_{i}$ where each primary component V_{i} has the following property: For each $A \in \gg$ the minimal polynomial of $A \mid V_{i}$ is a prime power in $f[t]$.

Condition(C2) implies the dimension of some primary component is $\notin \mathbf{M}$. To prove Theorem 1 it therefore suffices to apply the following result to such a primary component:

Theorem 3. Assume (C1) and(C2). If π_{A} is a prime power in $f[t]$ for each $A \in \gg$ then the following hold:

$$
\text { (a) } \pi_{A}(t)=\left(t-r_{A}\right)^{n}, r_{A} \in f
$$

(b) there is a basis putting \gg in triangular form

Assertion (a) is equivalent to π_{A} having a root $r_{A} \in f$. Therefore (a) follows from:
Lemma 1. Let $\alpha \in f[t]$ be a polynomial of degree n that splits in $k[t]$. If $n \notin \mathbf{M}$ then α has a root in f, and the sum of the multiplicities of such roots is $\notin \mathbf{M}$.

Proof. Let $R \subset k$ denote the set of roots of π, and $R_{j} \subset R$ the set of roots of multiplicity j.

The Galois group Γ has order $[k: f]$ and acts on R by permutations. The cardinality of each orbit divides $[k: f]$, and $R \cap f$ is the set of fixed points of this action.

Each R_{j} is a union of orbits, as is $R_{j} \backslash f$. It follows that $\#\left(R_{j} \backslash f\right) \in \mathbf{M}$.
Let $k \leq n$ denote the sum of the multiplicities of the roots that are not in f. Then

$$
k=\sum_{j=2}^{n} j \cdot \#\left(R_{j} \backslash f\right)
$$

Therefore $k \in \mathbf{M}$ because \mathbf{M} is closed under addition.
By hypothesis $n \notin \mathbf{M}$, hence $n-k \notin \mathbf{M}$ and $n-k>0$. As $n-k$ is the sum of the multiplicities of the roots in f, the conclusion follows.

Now that (a) of Theorem 3 is proved, assertion (b) is a consequence of the following result:

Lemma 2. Let be a nilpotent Lie algebra of linear operators on V. Assume that for all $A \in$ there exists $r_{A} \in f$ such that $\pi_{A}(t)=\left(t-r_{A}\right)^{n}$.

Then V has a basis putting in triangular form.
Proof. Every $A \in$ can be written uniquely as $r_{A} I+N_{A}$ with N_{A} nilpotent and I the identity map of V. It is easy to see that the set comprising the N_{A} is closed under commutator brackets. Therefore V has a basis triangularizing all the N_{A} (Jacobson [2, II.2, Theorem $\left.1^{\prime}\right]$), and such a basis triangularizes .

This completes the proof of Theorem 1.

References

[1] M Hirsch and A Weinstein. Fixed points of analytic actions of supersoluble Lie groups on compact surfaces. Ergod. Th. Dyn. Sys., 21(6):1783-1787, 2001.
[2] N Jacobson. Lie Algebras. Interscience Tracts in Pure Mathematics No. 10, John Wiley, New York, 1962.

